Rietveld Basic

1. Data types:

BOOLEAN	true/false
INTEGER	$-2147483648 . .2147483647$
SINGLE	$1.5 * 10^{-45} . .3 .4^{*} 10^{38}(7$ significant figures $)$
DOUBLE	$5.0^{*} 10^{-324} . .1 .7^{*} 10^{308}(15$ significant figures $)$
STRING	up to 255 characters
DATE	date

One dimension arrays of the above
(INTEGER and BOOLEAN types are equivalent. Boolean has the following means: $1=$ true, 0 =false)

Examples:

```
DIM A[10] // single array A
DOUBLE F, W
STRING s1, s2, s3, s4
STRING s5[10] // string array s5
```


2. Operations:

+ addition
- subtraction
* multiplication
/ division
< less than
$<=\quad$ less than or equal
$>=\quad$ greater than or equal
> greater than
== equivalence
$=$ assign
<> not equal
OR OR operator
AND AND operator
() function
[] array

Examples:

Boolean b1,b2,test
B1 = true
B2 = false
Test = B1 or B2
If test $==$ true then /can also use: 'If test then'
Write('this will print')
End if

3. Functions:

Mathematical functions

ROUND(V as single) as single
FLOOR(V as single) as single
TRUNC(V as single) as single

SQR(V as single) as single SQRT(V as single) as single $\operatorname{SIN}(\mathrm{V}$ as single) as single COS (V as single) as single TAN(V as single) as single ARCSIN(V as single) as single ARCCOS(V as single) as single ARCTAN(V as single) as single $\mathrm{LN}(\mathrm{V}$ as single) as single LOG2(V as single) as single LOG10(V as single) as single LOGN(BASE as single, V as single) as single POWER(VAR as single, P as single) as single
$\operatorname{EXP}(\mathrm{V}$ as single) as single
$\mathrm{ABS}(\mathrm{V}$ as single) as single

String functions

GetLength(S as string) as integer
SetLength(ByRef S as string, N as integer) as string
StrCopy(S as string, Index as integer, Count as integer) as string // Return Count bytes from string S from the position Index
StrSet(ByRef S1 as string, Index as integer, S2 as string) as string // copying string S2 to the string S1 from the position Index
StrNSet(ByRef S1 as string, Index as integer, Count as integer, S2 as string) as string // copying Count characters of the string S2 to the string S1 from the position Index
StrUpper(S as string) as string
StrLower(S as string) as string

Date functions

EncodeDate(Y as Integer, M as Integer, D as Integer) as Date
DecodeDate(D as Date, ByRef Year as integer, ByRef Month as integer, ByRef Day as Integer) as Integer

Data converting function

FormatVal(FormatStr as string, Val as single) as string
$\mathrm{Val}(\mathrm{S}$ as string) as single
Str(Val as single) as string
DateToStr(D as date) as string
StrToDate(S as string) as date

Examples:

STRING s1, s2, s3, s4
s1 = 'Test string'
s2 = StrCopy(s1, 6, 6) // s2 = "string"
StrSet(s3, 3, "basic") // s3 = " basic"
StrNSet(s4, 3, 3, "basic") // s4 = " bas"

Input/Output functions

Beep()

Write(any 1 variable)
ClearScr()

Inputbox(s as string) as string
MessageBox(s as string, s2 as string)
Opendialog(S1 as string, S2 as string) as string
SaveDialog(S1 as string, S2 as string) as string

File functions

GetCurrentDir() as string
SetCurrentDir(s1 as string)
CopyFile(s1 as string, s2 as string)
RenameFile(s1 as string, s2 as string)
MoveFile(s1 as string, s2 as string)
DeleteFile(s1 as string)

Rietveld functions

Refinefile(filename as string) as integer
OpenRietveld(filename as string) as integer
StartRietveld() as integer
StepRietveld(\#ofsteps as integer) as integer
EndRietveld() as integer
GetParameter(histno, phaseno,atomno,varno as integer) as single
SetParameter(histno, phaseno,atomno,varno as integer, value as single) as integer
GetError(histno as integer) as string
GetFit(histno as integer) as single
PlotRefine(histno as integer)
Where histno is the histogram number, phaseno is the phase number, atomno is the atom number in a particular phase, varno is the variable number specified:

If histno $=$ histogram number and phaseno $=0$, atomno $=0$ then varno defines the following 1 = zero
$2 . .13$ = Background values
14 = Histogram Scale
$15=$ Wavelength 1 or DifC
$16=\operatorname{DifA}$
if phaseno $=$ phase number and histno $=0$, atomno $=0$ then varno takes the following
1 = Phase Scale
2 = Isotropic Thermal
$6=\mathrm{a}$
$7=b$
$8=c$
9 = Alpha
10 = Beta
11 = Gamma
if phaseno = phase number and histno= the histogram number and atomno=0 then varno takes the following
3=U
4=V
$5=W$
12=Preffered Orientation
13=R value/Flat Plate P0
14=Asymmetery
15=Gam-0
16=Gam-1

17=Gam-2
18=Extinction
19=Uaniso
21=TOF Alpha-1
22=TOF Alpha-2
23=TOF Beta-1
24=TOF Beta-2
25=Flat Plate Pore
26=Flat Plate Rough
if phaseno $=$ phase number atomno=the atom number and histno $=0$ then varno takes the following
1: hns := 'x';
2: hns := 'y';
3: hns := 'z';
4: hns := 'B';
5: hns := 'n';
6: hns := 'B11';
7: hns := 'B22';
8: hns := 'B33';
9: hns := 'B12';
10: hns := 'B13';
11: hns := 'B23';
if histno=the histogram number,phaseno $=99$ then
atomno $=1$ for f^{\prime}
atomno $=2$ for $\mathrm{f}^{\prime \prime}$
and varno is the scattering set number.

4. Constructions:

For-Next Loop

FOR variable $=$ expression1 TO expression2 [STEP expression3]
.....body.....
NEXT [variable]

Do-Until Loop

DO
.....body.....
LOOP UNTIL expression1

Do While Loop

DO WHILE expression1
.....body..
LOOP

If-Then

IF expression1 THEN
.....body.....
[ELSEIF expression2]
.....body.....
[ELSEIF expression3]
.....body.....

```
[ELSE]
.....body.....
END IF
```


Select Case

SELECT CASE variable
CASE expression1 [, expression2 [,...]]
.....body....
CASE expression3 [, expression4 [,...]]
..body.....
CASE ELSE
.....body.
END SELECT

Functions

FUNCTION FuncName [(ParamList)] as [TypeName]
FuncName $=$ expression 1
...body.....
EXIT FUNCTION
FuncName = expression2
..body..
END FUNCTION
// ParamList:
// [ByRef|ByVal] ParamName1 [as TypeName], ...

Example:

```
function F1(ByVal N as integer) as integer
    if N>0 then
        F1 = N * F1(N-1)
    else
        F1 = 1
    end if
end function
```

TypeName - can be one of the following:
INTEGER
SINGLE
DOUBLE
STRING
DATE
BOOLEAN
// A function can be called recursive.

Goto

GOTO LabelName
LabelName:

Class

CLASS ClassName [(ParentClass)]
Type1 variable1
Type2 variable2
FUNCTION F1[(ParamList)] as Type3
END FUNCTION
FUNCTION FN[(ParamList)] as TypeN
END FUNCTION
END CLASS
// Type1 .. TypeN - any valid type

Comments

// - 'C++'- style comments

