Rietveld refinement of complex

inorganic materials using FullProf

(Extended version in tutorial form)

Juan Rodríguez-Carvajal

 Laboratoire Léon Brillouin (CEA-CNRS), CEA/Saclay FRANCE
A program for analysis of diffraction patterns: FullProf

- A program for :

Simulation of powder diffraction patterns
Pattern decomposition \Rightarrow integrated intensities
Structure refinement
Powder and single crystal data

- Crystal and magnetic structures
- Multiple data sets: simultaneous treatment of several powder diffraction patterns (CW X-rays \& neutrons, Energy dispersive X-rays, TOF neutron diffraction)
- Combined treatment of single crystal and powder data
- Crystal and magnetic Structure determination capabilities: simulated annealing on integrated intensity data

FullProf Web site

http://www-llb.cea.fr/fullweb/powder.htm or
 ftp://ftp.cea.fr/pub/llb/divers/fullprof.2k

Also from CCP14: http://www.cep14.ac.uk
FullProf.2k (Fortran 90 subset ELF90) Windows, Linux, Solaris, MacOS

How works FullProf

Minimal input:

Input control file (extension '.pcr'): PCR-file Model, crystallographic/magnetic information

The PCR file: steep learning curve

DAT file(s)

PCR file

Format depending on the instrument, usually simple
\Rightarrow Many variables and options \Rightarrow Complex to handle
\rightarrow Hint: copy an existing (working) PCR-file and modify it for the user case, or...
\rightarrow USE the new GUI: EdPCR

Last minute changes in FullProf Documented in "fp2k.inf"

In this file new features, as well as discovered bugs, of FullProf. 2k are periodically documented. For details consult the manual of Fullprof. From 10 May 2003, comments on the programs constituting the FullProf suite are also provided.

Juan Rodriguez-Carvajal (Laboratoire Leon Brillouin, Saclay)

28 July 2003

- An updated version of FullProf. $2 k$ is now available.
- Some changes have been introduced for treating the background:
(1) The polynomial background of 12 coefficients, for constant wavelength case, has been changed so that the last three coefficients correspond to inverse powers of 2 theta.
(2) Now there is the possibility to include several previously calculated profiles as contributing, through a linear combination, to the background of a powder diffraction pattern. The individual profiles are read in input files named "filedat_n.bac". Where "filedat" is the code of the data file corresponding to a diffraction pattern and the index " n " is the number of the contributing profile. The additional contribution to the background is calculated as:

Last minute changes in FullProf Documented in "fp2k.inf"

- Reorganization of the TOF peak shapes and derivatives. The refinement of the instrumental parameters is now much more stable.
The new peak shape INSTR=13 (thanks to Laurent Chapon!) consisting in the convolution of a pseudo-Voigt function with the Ikeda-Carpenter function is now working.

The TOF peak shapes used in FullProf and the meaning of each refinable parameter is now documented in the note: TOF_FullProf.PDF

Some recent features in FullProf

\Rightarrow New facilities concerning symmetry
\Rightarrow Automatic mode for handling refinement codes and symmetry constraints
\Rightarrow The use of distances and angles restraints
\Rightarrow Changes in the format of the file containing the Instrumental Resolution Function
\rightarrow Special form factors
\Rightarrow Simulated Annealing
\Rightarrow The treatment of micro-structural effects

New facilities concerning symmetry in FullProf

\Rightarrow The symmetry used within FullProf is totally based in the Crystallographic Fortran 95 Modules Library (CrysFML) (Tuesday $26 \Rightarrow$ FA3-MS5, Meeting Room 11B)
\Rightarrow These modules provide better crystallographic information to the user of the program. In particular automatic calculation of the multiplicity of each site is now performed after reading the atoms as well as the calculation of the appropriate coefficients for automatic quantitative analysis of mixture of phases.
\Rightarrow New output files with full information of crystallographic symmetry are produced (extension: sym)

Simulated Annealing in FullProf

The structure of acid strontium oxalate was determined from X-ray powder diffraction G. Vanhoyland et al. JSSC 157, 283 (2001)

The raw chemical composition should be: $\mathrm{SrC}_{3} \mathrm{O}_{7} \mathrm{H}_{3}$

Where are the hydrogen atoms?

Neutron powder diffraction gives you the answer ...

The structure of acid strontium oxalate was determined from X-ray powder diffraction G. Vanhoyland et al. JSSC 157, 283 (2001)

> Where are the
> hydrogen atoms?

In the original paper hydrogen atoms were determined using Fourier synthesis.

Here we use this published example to illustrate how to use the Simulated Annealing option existing in FullProf

Portion of PCR (Acid Sr-oxalate) file to perform a Le Bail fit with output of an integrated intensity file suitable for Simulated Annealing

P 21/n \quad <--Space group symbol
!-------> Profile Parameters for Pattern \# 1

! Scale	Shape1	Bov	Str1	Str2	Str3	Strain-Model
$0.46025 \mathrm{E}-01$	0.23580	0.00000	0.00000	0.00000	0.00000	0
$!$	0.00000	0.000	0.000	0.000	0.000	0.000
$!$	U	V	W	X	Y	GauSiz
LorSiz Size-						

Model

| 0.405860 | -0.525900 | 0.243880 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | ---: | ---: |
| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
| $!$ | b | c | alpha | beta | gamma | | |
| 6.330998 | 16.862967 | 5.787098 | 90.000000 | 97.656639 | 90.000000 | | |
| 111.00000 | 121.00000 | 131.00000 | 0.00000 | 141.00000 | 0.00000 | | |
| Pref1 | Pref2 | Asy1 | Asy2 | Asy3 | Asy4 | | |
| 0.00000 | 0.00000 | 0.09150 | 0.02857 | 0.00000 | 0.00000 | | |
| 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | |

Durban, August 24, 2003

First cycle of Le Bail fit to extract integrated intensities for using Simulated Annealing within FullProf

COMM Neutron diffraction Acid Sr -oxalate (deuterated)

Second cycle of Le Bail fit to extract integrated intensities for using Simulated Annealing within FullProf

COMM Neutron diffraction Acid Sr -oxalate (deuterated)

Final Le Bail fit to extract integrated intensities for using Simulated Annealing within FullProf

COMM Neutron diffraction Acid Sr-oxalate (deuterated)

Intensity file generated after running FullProf with: Jbt=2, More=1, Jvi=11

How to prepare a Simulating Annealing PCR file?

```
COMM Neutron diffraction Acid Sr-oxalate (deuterated)
!Files => DAT-file: srox-sa, PCR-file: srox-sa
!Job Npr Nph Nba Nex Nsc Nor Dum Iwg Ilo Ias Res Ste Nre Cry Uni Cor Opt Aut
!
!Ipr Ppl Ioc Mat Pcr Ls1 Ls2 Ls3 NLI Prf Ins Rpa Sym Hkl Fou Sho Ana
    0
!
\begin{tabular}{ccccccccccc} 
! NCY & Eps & R_at & R_an & R_pr & R_gl & Thmin & Step & Thmax & PSD & Sent0 \\
1 & 0.10 & 1.00 & 1.00 & 1.00 & 1.00 & 5.000 & 0.050000 & 124.900 & 0.000 & 0.000
\end{tabular}
!
!
    9 !Number of refined parameters
! Data for PHASE number: 1 ==> Current R_Bragg for Pattern# 1: 43.79
Sr/C/O/D
!
!Nat Dis Ang Pr1 Pr2 Pr3 Jbt Irf Isy Str Furth ATZ Nvk Npr More
    14 0 0 0.0 0.0 1.0 0 4 0 0 0 0 0 0
```


How to prepare a Simulating Annealing PCR file?

How to prepare a Simulating Annealing PCR file?

No profile parameters,
part of the file similar to single crystal format

How to prepare a Simulating Annealing PCR file?

Example of
 Simulated Annealing
 run on acid Sr -oxalate

3 hydrogen atoms added to the asymmetric unit that can move freely in the whole unit cell

\Rightarrow BEST CONFIGURATIONS FOUND BY Simulated Annealing FOR PHASE

	Sol\#: ${ }_{\mathrm{X}}^{1} \mathrm{RF} 2=$	Y. ${ }_{\text {2. }} 865$	Z H1	X_H2	Y_H2	Z H2	X H3	Y H3
=>	1						7	
">	0.2813	0.4253	0.4885	0.1542	0.2493	0.5134	0.6104	0.1026
=>	Z_H3							
=>								
=>	0.7935							

Refinement of the Simulated Annealing solution (only background and scale factor are refined)

Durban, August 24, 2003
ECM-21 Software Workshop

Final Refinement of the Simulated Annealing solution: all structural (56) and profile(19) parameters are refined)

COMM Neutron diffraction Acid Sr -oxalate (deuterated)

Hydrogen atoms in acid strontium oxalate as

 determined by Simulated Annealing using FullProfThe chemical formula is $\operatorname{Sr}\left(\mathrm{HC}_{2} \mathrm{O}_{4}\right) \cdot 1 / 2\left(\mathrm{C}_{2} \mathrm{O}_{4}\right) \cdot \mathrm{H}_{2} \mathrm{O}$

As found

Where are the hydrogen atoms?

Two types of oxalate groups

Chains along \mathbf{c}
$\mathrm{C}_{2} \mathrm{O}_{4} \cdots \mathrm{H}_{\cdots} \mathrm{C}_{2} \mathrm{O}_{4} \cdots \mathrm{H} \cdots$
And water molecules

Refined

Hydrogen atoms in acid strontium oxalate as determined by Simulated Annealing using FullProf

The chemical formula is $\operatorname{Sr}\left(\mathrm{HC}_{2} \mathrm{O}_{4}\right) \cdot 1 / 2\left(\mathrm{C}_{2} \mathrm{O}_{4}\right) \cdot \mathrm{H}_{2} \mathrm{O}$

[武

Hydrogen atoms in acid strontium oxalate as

 determined by Simulated Annealing using FullProf

$$
\mathrm{Sr}\left(\mathrm{HC}_{2} \mathrm{O}_{4}\right) \cdot 1 / 2\left(\mathrm{C}_{2} \mathrm{O}_{4}\right) \cdot \mathrm{H}_{2} \mathrm{O}
$$

Sr is coordinated by oxygen atoms belonging to oxalate groups and water molecules Chains along c: $\quad \cdots \mathrm{C}_{2} \mathrm{O}_{4} \cdots \mathrm{H}^{\prime} \cdots \mathrm{C}_{2} \mathrm{O}_{4} \cdots \mathrm{H} \cdots$ Water molecules
Isolated $\mathrm{C}_{2} \mathrm{O}_{4}$ (no hydrogen bonding)

The use of distances and angles restraints in

FullProf

\Rightarrow The calculation of distances and angles, as well as bond valence sums can now be done automatically, without using external programs.
\Rightarrow Output files with extension dis contain all the relevant information for the different phases if the user ask for this option.
\Rightarrow A byproduct of these calculations is the generation of the output files of names dconstr" n ". $h l p$ (n stands for the number of the phase) containing lines that can be directly pasted to PCR files for soft constraints on distances and angles.

The use of distances and angles restraints in FullProf

Restrains: d(C-C) oxalate $=1.5500 \pm 0.0002$

First cycle:

=> Distance restraints:
Dobs Dcalc diff/sigma

(C1	- C3)	1.55000	1.56618	-80.88648
(C2	- C2)	1.55000	1.53215	89.24484

Second cycle:

(C1	- C3) :	1.55000	1.54243	37.82809
(C2	- C2) :	1.55000	1.56776	-88.77576

Third cycle:

(C1 -C 3)	1.55000	1.55625	-31.26800
(C2 -C 2		1.55000	1.55001	-0.06020

Convergence at cycle 8:
(C1 - C3):
1.55000
1.55004
-0.21458
(C2 - C2):
$1.55000 \quad 1.54999$
0.06676

The use of distances and angles restraints in FullProf

```
No restrains
=> Global user-weighted Chi2 (Bragg contrib.): 2.35
=> Phase: 1
=> Bragg R-factor: 4.21 Vol: 612.268( 0.040) Fract(%): 100.00( 0.91)
=> Rf-factor= 2.38 ATZ: 966.690 Brindley: 1.0000
```


Restrains: d(C-C) oxalate $=1.5500 \pm 0.0002$

```
=> Global user-weighted Chi2 (Bragg contrib.)2.34
```

=> Phase: 1
$=>$ Bragg R-factor: 4.22 Vol: 612.254(0.040) Fract(\%): 100.00(0.91)
=> Rf-factor= 2.43
ATZ: 966.690 Brindley: 1.0000

The use of linear restraints in FullProf

$$
\sum_{i=1, \ldots n} a_{i} p_{i}=q \pm \sigma(q)
$$

\Rightarrow If NLI >0, the program expect to read at the end of the PCR file the following items:

NLI pairs of lines containing First line:
Name of the restrain, number of coefficients (n), value (q), sigma
Second line:
Up to n pairs of: coefficient $\left(a_{i}\right)$, parameter number of p_{i}.

The treatment of microstructural effects in FullProf

Procedure for working with microstructural effects in FullProf

\Rightarrow Characterise the IRF of the diffractometer using a calibrating sample
\Rightarrow Use WinPLOTR for creating an INSTRUMENTAL RESOLUTION FILE (Fit individual peaks through the pattern)
\Rightarrow Use FullProf with IRF putting to ZERO all FWHM parameters
\Rightarrow Select a model for microstructure and refine only the parameters related to the sample.
\Rightarrow The program generates a microstructural file and other files for plot

Modeling the Gaussian and Lorentzian components of the profile function in terms of anisotropic microstructural parameters

$$
\begin{gathered}
H_{G}^{2}=\left(U+(1-\xi)^{2} D_{S T}^{2}\right) \tan ^{2} \theta+V \tan \theta+W+\frac{I_{G}}{\cos ^{2} \theta} \\
H_{L}=\left(X+\xi D_{S T}\right) \tan \theta+\frac{\left[Y+F\left(S_{Z}\right)\right]}{\cos \theta}
\end{gathered}
$$

Anisotropic strain broadening

Phenomenological model: strains considered as fluctuations and correlation between metric parameters
J. Rodríguez-Carvajal et al (J. Phys. Cond. Matt. 3, 3215 (1991)

$$
M_{h k l}=\frac{1}{d_{h k l}^{2}}=M\left(\alpha_{i} ; h k l\right)
$$

The metric parameters α_{i} (direct, reciprocal or any combination) are considered as stochastic variables with a Gaussian distribution characterized by :

- the mean $\left\langle\alpha_{i}\right\rangle$ and
- the variance-covariance matrix $C_{i j}$

The mean and the variance of the function $M_{h k l}$ are given by (JRC et al , J. Phys. Cond. Matt. 3, 3215 (1991)):

$\left\langle M_{h k l}\right\rangle=M\left(\left\langle\alpha_{i}\right\rangle ; h k l\right)$

$$
\sigma^{2}\left(M_{h k l}\right)=\sum_{i, j} C_{i j} \frac{\partial M}{\partial \alpha_{i}} \frac{\partial M}{\partial \alpha_{j}}
$$

$C_{i j}$ contains 21 parameters, 15 independent

If the metric parameters are taken as the coefficients of the quadratic form: $\frac{1}{d_{h k l}^{2}}=A h^{2}+B k^{2}+C l^{2}+D k l+E h l+F h k$

$$
\sigma^{2}\left(M_{h k l}\right)=\sum_{\substack{H K L \\\{H+K+L=4\}}} S_{H K L} h^{H} k^{K} l^{L}
$$

P. W. Stephens,
J. Appl. Cryst. 32, 281 (1999)

Re-entrant transition in $\mathrm{HoFe}_{4} \mathbf{G e}_{\mathbf{2}}$

Durban, August 24, 2003

Re-entrant transition in $\mathrm{HoFe}_{4} \mathrm{Ge}_{2}$: RX-vs-N

High resolution powder diffraction
X-ray Synchrotron radiation In the diffraction patterns one can see the re-entrant transition

Neutron powder diffraction The splitting of nuclear reflections is not seen Only a subtle broadening can be appreciated by individual refinement of the reflections. Extra reflections are of magnetic origin.

Durban, August 24, 2003

ECM-21 Software Workshop

Microstrain patterns of $\mathbf{H o F e}_{\mathbf{4}} \mathbf{G e}_{\mathbf{2}}$

$\mathrm{T}=52 \mathrm{~K}, P 4_{2} / \mathrm{mnm}$
HoFe4Ge2 P42/mnm 52K BM16

$\mathrm{T}=\mathbf{4} \mathrm{K}, \mathrm{Cmmm} \& \mathrm{P}_{2} / \mathrm{mnm}$
The patterns of microstrains can be visualized putting $J v i=5$ in the PCR file and reading the binary file with GFOURIER. Use projection mode.

Anisotropic broadening due to size effects

The intrinsic profile of a particular reflection due to size effect has an integral breadth β_{S}, the Scherrer formula:

$$
\langle D\rangle_{V}=\frac{\lambda}{\beta_{S} \cos \theta}=\frac{1}{\beta_{S}^{*}}
$$

gives the volume-averaged apparent size of the crystallites in the direction normal to the scattering planes. This apparent size has a perfectly defined physical interpretation:

$$
\langle D\rangle_{V}=\frac{1}{N} \sum_{i=1, \ldots N} \frac{1}{V_{i}} \iiint_{C_{i}} L_{\mathbf{h}}(x, y) d^{3} \mathbf{r}
$$

in terms of the normalized column-length distribution
$p_{\text {V }}(L)$:

$$
\langle D\rangle_{V}=\int_{0}^{\infty} L p_{V}(L) d L
$$

Portion of the neutron diffraction pattern of $\mathrm{Pd}_{3} \mathrm{MnD}_{0.8}$ at room temperature obtained on 3 T 2 (LLB, $\lambda=1.22 \AA$). On top, the comparison with the calculated profile using the resolution function of the instrument. Below the fit using IsizeModel $=-14$. Notice that only the reflections with indices of different parity are strongly broadened.

```
Pattern No: }1\mathrm{ Phase No: 1 Pd3MnD. 8 - CFC
```

 Integral breadths are given in reciprocal lattice units (1/angstroms)x 1000
 ! Apparent sizes are given in the same units as lambda (angstroms)
 Apparent strains are given in \%\% (x 10000) (Strain=1/2 * beta * d)
 ! An apparent size equal to 99999 means no size broadening
 ! The following items are output:
 ! The apparent sizes/strains are calculated for each reflection using the formula:
 ! App-size (Angstroms) = 1/(Beta-size)
 App-strain \((\% \%)=1 / 2\) (Beta-strain) * d(hkl)
 (Beta-size) is obtained from the size parameters contributing to the FWHM:
 FWHM^2 (G-size) \(=\operatorname{Hgz}^{\wedge} 2=\) IG/cos^2 (theta)
 FWHM \((\mathrm{L}-\) size \()=\mathrm{Hlz}=(\mathrm{Y}+\mathrm{F}(\mathrm{Sz})) / \cos\) (theta)
 ! (Beta-strain) is obtained from the strain parameters contributing to the FWHM:
 FWHM^\(^{\wedge}(G-s t r a i n)=\operatorname{Hgs}^{\wedge} 2=\quad=\left(\mathrm{U}+[(1-z) D S T]^{\wedge} 2\right) \tan ^{\wedge} 2(\) theta \()\)
 FWHM (L-strain) \(=\) Hls \(=(X+z\) DST) tan (theta)
 In both cases (H,eta) are calculated from \(T C H\) formula and then
 Beta-pV is calculated from:
 beta-pV= 0.5*H/(eta/pi+(1.0-eta)/sqrt(pi/Ln2))
 The standard deviations appearing in the global average apparent size and
 strain is calculated using the different reciprocal lattice directions.
 It is a measure of the degree of anisotropy, not of the estimated error
 | ... | betaG | betal | \ldots | App-size | App-strain | h | \mathbf{k} | \mathbf{l} | twtet |
| :--- | ---: | ---: | :--- | ---: | :---: | ---: | :--- | ---: | :--- | ...

Selective size broadening observed by neutron diffraction at room temperature (3T2, LLB) for superstructure reflections in $\mathrm{Ca}_{2} \mathbf{M n O}_{4}$. (top) Size parameter fixed to zero. (bottom) Single size parameter according to the rule ($h k l$), $l=\mathbf{2 n + 3}$.

Spherical harmonics to simulate the average form of crystallites

An arbitrary shape of crystallites can be simulated using spherical harmonics. To access this option in FullProf one needs to select the variable IsizeModel $=15$ to 22

$$
\frac{1}{D_{\mathbf{h}}}=\sum_{l m p} a_{l m p} P_{l m}\left(\cos \Theta_{\mathbf{h}}\right)\left\{\begin{array}{l}
\cos m \Phi_{\mathbf{h}} \\
\sin m \Phi_{\mathbf{h}}
\end{array}\right\} ; \quad p=+/-
$$

$\left(\Theta_{\mathbf{h}}, \Phi_{\mathbf{h}}\right)$: Polar angles of reciprocal vector \mathbf{h} w.r.t. crystal frame

$$
F W H M=\frac{k \lambda}{\cos \theta} \sum_{l m p} a_{l m p} P_{l m}\left(\cos \Theta_{\mathbf{h}}\right)\left\{\begin{array}{l}
\cos m \Phi_{\mathbf{h}} \\
\sin m \Phi_{\mathbf{h}}
\end{array}\right\}
$$

Spherical harmonic options for size broadening (Lorentzian)

```
ISizeModel = 15: Monoclinic with unique b-axis up to 4th-order Ylm's:
    : Y00,Y22+,Y22-,Y20,Y44+,Y44-,Y42+,Y42-,Y40
    : Spacegroups 3-15 (Laue class 2/m)
ISizeModel = 16: Trigonal with hexagonal setting, unique axis c
    : Spacegroups 149-167(Laue class -3 m)
    : Ylm's up to 6th order: Y00,Y20,Y40,Y43-,Y60,Y63-,Y66+
ISizeModel = 17: Cubic - x,y,z along a,b and c.
    : No restriction for spacegroups 195-206 (Laue class m -3)
    : For spacegroups 207-230 coefficient of K62=0 (Laue class m -3 m)
    : Cubic harmonics Klm's up to 8th order: K00,K41,K61,K62,K81
ISizeModel = 18: Orthorhombic - Spacegroups 16-74 (Laue class mmm)
    : Ylm's up to 4th order: YOO,Y2O,Y22+,Y40,Y42+,Y44+
ISizeModel = 19: Hexagonal - Spacegroups 168-194
    : For spacegroups 177-194,coefficient of Y66=0 (Laue class 6/mmmm).
    : No restriction for spacegroups 168-176 (Laue class 6/m )
    : Spherical harmonics Ylm's up to 6th order: Y00,Y20,Y40,Y60,Y66+,Y66-
ISizeModel = 20: Trigonal with hexagonal setting, unique axis c
    : Spacegroups 143-148 (Laue class -3)
    : Ylm's up to 4th order: Y00,Y20,Y40,Y43-,Y43+
ISizeModel = 21: Tetragonal - Spacegroups 75-142
    : For spacegroups 89-142 coefficients of Y44-=0, Y64=0 (Laue class 4/mmm)
    : No restriction for spacegroups 75-88 (Laue class 4/m)
    : Ylm's up to 6th order: Y00,Y20,Y40,Y44+,Y44-,Y60,Y64+,Y64-
ISizeModel = 22: Triclinic
    : Spacegroups 1-2 (Laue class -1)
    : Ylm's up to 2th order: Y00,Y20,Y21+,Y21-,Y22+,Y22-
Durban, August 24, 2003

\section*{Example: Simulated data of anisotropic size effects using Spherical Harmonics (based in unpublished real data)}
```

Simulated data for an Al-oxide (ex. spherical harmonics)
! Current global Chi2 (Bragg contrib.) =
93.78
NPATT
1
W_PAT 1.000
!Nph Dum Ias Nre Cry Opt Aut
1 0}000000000
!Job Npr Nba Nex Nsc Nor Iwg Ilo Res Ste Uni Cor
0
!File names of data(patterns) files
siz-sph.dat
!
! Resolution file for Pattern\# 1
xray-res.irf
!Mat Pcr NLI Rpa Sym Sho
0
!Ipr Ppl Ioc Ls1 Ls2 Ls3 Prf Ins Hkl Fou Ana
0

```

\section*{Simple example of a file containing the Instrumental Resolution Function in form a Caglioti-like parameters}

This is the file: xray-res.irf


Running the program without refining the profile parameters gives you an idea of the peak broadening

\section*{Comparison of the experimental pattern with the resolution function of the diffractometer}

[置

Refinement using isotropic Lorentzian and Gaussian parameters: Average crystallite size \(58.3 \AA\)


\section*{PCR-file treating anisotropic size effects using Spherical Harmonics}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline ! & Scale & Shape1 & Bov & Str1 & Str2 & \multicolumn{3}{|l|}{Str3 Strain-Model} \\
\hline & \(0.15556 \mathrm{E}-01\) & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & \multicolumn{2}{|l|}{0} \\
\hline & 11.00000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & & \\
\hline \(!\) & U & V & W & X & Y & GauSiz & LorSiz & Size-Model \\
\hline & 0.000000 & 0.000000 & 0.000000 & 0.000000 & 0.000000 & 0.905546 & 0.000000 & 21 \\
\hline & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 101.000 & 0.000 & \\
\hline ! & a & b & c & alpha & beta & gamma & & \\
\hline
\end{tabular}
\begin{tabular}{ccr} 
& 5.627625 & 5.627625 \\
& 0.00000 & 0.00000 \\
\(!\) & Pref1 & Pref2 \\
1.00000 & 0.00000 & 0.00 \\
& 0.00 & 0.00 \\
\(!\) & \(Y 00\) & \(Y 20\) \\
11.372407 & -5.957819 \\
& 51.00 & 61.00 \\
\(!\) & \(Y 64+\) & \(Y 64-+\) \\
& 0.000000 & 0.000000 \\
& 0.00 & 0.00
\end{tabular}

Durban, August 24, 2003

\section*{Refinement using isotropic Lorentzian and Gaussian parameters: Average crystallite size (anisotropy): 56.31 (7.74)}

\section*{Anisotropic crystallite size}


The visualization of the average crystallite shape is done by using GFOURIER to read the binary file: myPCR_size_n.bin generated when an IRF file is used and Jvi=5


\section*{3D visualization of the average crystallite shape}


\section*{New option to relax some profile parameters of special reflections}

This option works with Constant Wavelength and Time of Flight diffraction patterns.

The user may select few reflections from the pattern to treat them in a special manner: an additional Gaussian and Lorentzian broadening with respect to the values calculated with the resolution parameters, as well as the shift with respect to the calculated position (from cell parameters) can be fitted.

This situation may be found in cases of defective materials for which the law governing the shifts and broadening is not known in advance, or in cases of instrumental defects (slight change of wavelength across the pattern, etc).

At present 50 reflections per phase and per pattern is the maximum allowed.

\section*{New option to relax some profile parameters of special reflections}

The program expect to read a list Nspec_ref lines containing:
h k l nvk D-HG^2 Cod_D-HG^2 D-HL Cod_D-HL Shift Cod_Shift
The list starts at the end of the profile parameters for a given pattern.
The Gaussian FWHM^ \(^{\wedge} 2\) for a special reflections is calculated as:
FWHM^2 \(=\) FWHM^2 (resolution parameters) \(+\mathrm{D}-\mathrm{HG}^{\wedge} 2\)
Sigma^2= Sigma^2 (resolution parameters) + D-HG^2
\(\mathrm{D}-\mathrm{HG}^{\wedge} 2\) is treated as a free parameter.

The Lorentzian FWHM for a special reflections is calculated as:
\begin{tabular}{rll} 
FWHM & \(=\) FWHM (resolution parameters) + D-HL & (CW) \\
Gamma & \(=\) Gamma (resolution parameters) + D-HL & (TOF)
\end{tabular}
\(\mathrm{D}-\mathrm{HL}\) is treated as a free parameter.

The position of a special reflections is calculated as:
2Theta (degrees) \(=\) 2Theta (cell parameters,zero,etc.) + Shift
TOF (micro-scnds) = TOF (cell parameters,zero,dtt1,dtt2,etc.) + Shift
Shift is treated as a free parameter.

\section*{New option to relax some profile parameters of special reflections (Example)}
```

! Data for PHASE number: 1 ==> Current R_Bragg for Pattern\# 1: 1.06

```
Myphase
!
!Nat Dis Ang Pr1 Pr2 Pr3 Jbt Irf Isy Str Furth ATZ Nvk Npr More
    \(\begin{array}{llllllllllllllll}6 & 0 & 0 & 0.0 & 0.0 & 1.0 & 0 & 0 & 0 & 0 & 0 & 5050.20 & 0 & 7 & 1\end{array}\)
!Jvi Jdi Hel Sol Mom Ter Brind RMua RMub RMuc Jtyp Nsp_Ref
    \(\begin{array}{llllllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 1.0000 & 0.0000 & 0.0000 & 0.0000 & 1 & 3\end{array}\)
!
P \(31 \mathrm{c} \quad\) <--Space group symbol
\begin{tabular}{crrrrrrr} 
Pref1 & Pref2 & Asy1 & Asy2 & Asy3 & Asy4 & S_L & D_L \\
0.00000 & 0.00000 & 0.07373 & 0.01902 & 0.00000 & 0.00000 & 0.00000 & 0.00000 \\
0.00 & 0.00 & 251.00 & 241.00 & 0.00 & 0.00 & 0.00 & 0.00
\end{tabular}
! Special reflections:
\begin{tabular}{rrrrrrrrrr} 
! & h & l & nvk & D-HG^2 & Cod_D-HG^2 & D-HL & Cod_D-HL & Shift & Cod_Shift \\
1 & 0 & 1 & 0 & 0.00000 & 0.000 & 0.04417 & 551.000 & -0.01236 & 561.000 \\
2 & 0 & 0 & 0 & 0.00000 & 0.000 & 0.03056 & 571.000 & -0.00274 & 581.000 \\
3 & 0 & 1 & 0 & 0.00000 & 0.000 & 0.00759 & 591.000 & -0.00119 & 601.000
\end{tabular}
\(\mathbf{N a}_{2} \mathbf{C a}_{3} \mathbf{A l}_{2} \mathbf{F}_{14}\) : shifts of peaks due to complex T.O.F. versus d-spacing

\(\mathrm{Na}_{2} \mathrm{Ca}_{3} \mathrm{Al}_{2} \mathrm{~F}_{14}\) : shifts of peaks due to complex T.O.F. versus d-spacing. Effect of relaxing some peak positions
```

