Refinement on weak or problematic small molecule data using SHELXL-97

Single Crystal and Powder Diffraction Software Workshop

24 August 2003 ECM-21 Durban, South Africa

Alexander J. Blake, School of Chemistry The University of Nottingham, Nottingham UK

Problem structures

回winning
\square pseudosymmetry
■ crystal size
（ residual \mathbf{e}^{-}
回 voids
回 absorption
回 ADPs
（ H atoms
■ disorder
■ etc

Restraints and constraints

\rightarrow Restraints: formally, add extra observations
Example: all B-F distances in $\mathrm{BF}_{4}{ }^{-}$are similar
\rightarrow Constraints: formally, fix parameters

Example: atoms fixed on special positions

The use of either must be justifiable

The system

a range of hexanuclear supramolecular cages

utilising

a ligand which is both blocking and chelating

Chem. Commun. 2003, pp. 682-683

A hexanuclear cage $\left\{\left[\mathrm{Cu}_{6} \mathrm{~L}_{6}\left(\mathrm{BF}_{4}\right)\right]\left(\mathrm{BF}_{4}\right)_{5}\right\}$

A hexanuclear cage $\left\{\left[\mathrm{Ag}_{6} \mathrm{~L}_{6}\left(\mathrm{SbF}_{6}\right)\right]\left(\mathrm{SbF}_{6}\right)_{5}\right\}$

A hexanuclear cage $\left[\mathrm{Ag}_{6} \mathrm{~L}_{6}\left(\mathrm{BF}_{4}\right)\right]\left[\mathrm{Co}\left(\mathrm{C}_{2} \mathrm{H}_{11} \mathrm{~B}_{9}\right)_{2}\right]_{5}$

A dinuclear cation $(\mathrm{AgL})_{2}\left[\mathrm{Co}\left(\mathrm{C}_{\mathbf{2}} \mathrm{H}_{\mathbf{1 1}} \mathrm{B}_{\mathbf{9}}\right)_{\mathbf{2}}\right]_{2}$

The problems

* Disorder in many anions
* Partial occupancy of some anions
* Low resolution, low r/p ratios

The (template) anions are important

Some of the tools - a brief survey

EXYZ atomnames

The same x, y and z parameters are used for all the named atoms.

EADP atomnames

The same isotropic or anisotropic displacement parameters are used for all the named atoms.

PART n sof

The following atoms belong to PART \mathbf{n} of a disordered group.

The tools

DFIX d s[0.02] atom pairs

The distance pairs of atoms are restrained to a specified target value of $d(s)$.

SADI s[0.02] atom pairs

The distances between pairs of atoms are restrained to be equal with an effective standard deviation s (cf. DFIX)

SAME s1[0.02] s2[0.02] atomnames

The atoms specified here are linked to the same number of atoms which follow.

The tools ...

FLAT s[0.1] four or more atoms
The named atoms are restrained to lie in a plane.

SUMP c sigma c1 m1 c2 m2 ...
The linear restraint: $c=c 1 * f v(m 1)+c 2 * f v(m 2)+\ldots$ is applied to the specified free variables.

DELU/ SI MU/ ISOR

Applies various restraints to ADPs.

The tools ...

FRAG code[17] a ... γ

Enables a fragment to be input using an input cell and coordinates.

FEND

This must immediately follow the last atom of a FRAG fragment.

AFIX n>16

Applies geometry of fragment with this \mathbf{n} value.

Practical application 1

DFIX 1.38 0.01 B F1 B F2 B F3 B F4

DFIX 2.25 0.02 F1 F2 F1 F3 F1 F4 = F2 F3 F2 F4 F3 F4

This is often a prelude to disorder modelling ...

Practical application 1

DFIX 1.38 0.01 B F1 B F2 B F3 B F4 DFIX 2.25 0.02 F1 F2 F1 F3 F1 F4 = F2 F3 F2 F4 F3 F4

DFIX 1.38 0.01 B F1' B F2' B F3' B F4'
DFIX 2.25 0.02 F1' F2' F1' F3' F1' F4' = F2' F3' F2' F4' F3' F4'

+ refine occupancy of F1-F4 versus F1'-F4'

Practical application 2

SADI 0.01 SB26 F27 SB26 F28 ...

SADI 0.02 F27 F28 F27 F29 ...
(cis angles only)

SADI 0.02 F27 F30 F28 F31 F29 F32 (trans angles)

F32

Practical application 3

\square unrealistic bonds and angles

I II-defined tripodal ligand
\square poor agreement between arms

- looks unsatisfactory

\rightarrow "average out" the discrepancies

Practical application 4

Disorder over multiple (>2) sites

- with two sites just use a free variable
- with more it is a bit more complicated
> SUMP instruction
> several free variables on FVAR instruction
> free variable references in ATOM instructions

Practical application 4 ...

Br2
 Br1

Br4 Br5 Br3

SUMP 1.000 .011213141516

FVAR osf $0.20 .20 .2 \quad 0.2 \quad 0.2$ ↔ these occupancies

$\operatorname{Br} 1$	5	$x y z$	21	\ldots
$\operatorname{Br2}$	5	$x y z$	31	\ldots
$\operatorname{Br} 3$	5	$x y z$	41	\ldots
$\operatorname{Br} 4$	5	$x y z$	51	\ldots
$\operatorname{Br} 5$	5	$x y z$	61	\ldots

will refine subject to their sum staying close to 1.00

Practical application 5

Multiple DFI X

instructions
Co-B Co-C B-B B-C
Manual or automatic generation

+ similarity restraints between cages

Complicated

(and no angle restraints)

A hexanuclear cage $\left[\mathrm{Ag}_{6} \mathrm{~L}_{6}\left(\mathrm{BF}_{4}\right)\right]\left[\mathrm{Co}\left(\mathrm{C}_{\mathbf{2}} \mathrm{H}_{\mathbf{1 1}} \mathrm{B}_{9}\right)_{2}\right]_{5}$

Practical application 5 ...

$$
\begin{aligned}
& {\left[\mathrm{Co}\left(\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right)_{2}\right]^{-} \text {is a } 3 \mathrm{D} \text {-rigid anion }} \\
& \quad \text { - can treat it as a rigid group }
\end{aligned}
$$

Can take model from
\square a better version in the same structure
\square a better version from another structure
\square a calculated or optimised version
\square a typical or average database structure

Practical application 5 ...

First import the model into the I NS file

Practical application 5 ...

Then apply this model to your structure

AFIX 17

| Co1 | 7 | 0.33250 | 0.76245 | 0.52909 | 11.000 | 0.0608 | $0.1389=$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | 0.0396 | -0.0183 | -0.0212 | 0.0153 | | |
| C1 | 1 | 0.37668 | 0.84367 | 0.54903 | 11.00000 | 0.155 | |
| C2 | 1 | 0.41382 | 0.84350 | 0.45796 | 11.00000 | 0.089 | |
| W | | | | | | | |
| B3 | 3 | 0.31680 | 0.82455 | 0.43612 | 11.00000 | 0.117 | |
| B19 | 3 | 0.20793 | 0.79538 | 0.51437 | 11.00000 | 0.138 | |
| AFIX | 0 | | | | | | |

Practical application 5 ...

- Your model is idealised to the input model
- FRAG ... FEND lines disappear in the RES file
- AFIX 17 is replaced by a simple AFIX 3
- Positional parameters reduced from 69 to 6
* The 3D matching requirements are rigorous
* The input model must be valid
* Check the refinement indicators for warnings

Could also be applied to ...

+ benzene solvent, phenyl rings, other rigid anions, etc ...

Thanks to

University of Nottingham
 Overseas Conference Fund

Royal Society

Oleg Dolomanov, Neil Champness, Martin Schröder, Claire Wilson

