High-Pressure Powder Diffraction
R.J. ANGEL

Bayerisches Geoinstitut,

Universitat Bayreuth, D95440 Bayreuth, Germany

INTRODUCTION

Diffraction studies at high pressures provide an opportunity to probe the behaviour of
the chemical bonding of solids as a function of decreasing inter-atomic separation,
without the complications introduced by changing chemistry. In this contribution to the
workshop, the methods available for performing high-pressure powder diffraction are
briefly introduced along with a number of important cautions for the experimentalist new
to high-pressure diffraction.

In general, powder diffraction methods at high pressures yield data that is of lower
quality than that which is obtainable from the same sample measured at ambient
conditions on the same instrument. The reasons for this are several. High-pressure
apparatus generally only allow small sample volumes while the containment of the
sample absorbs both the incident and diffracted beams, all of which reduce the intensities
of the diffracted beams. Secondly, the containment of the sample can give rise to
scattered radiation that appears as background in the detector, either by diffraction from
pressure-cell components (especially the gasket) or other scattering processes including
Compton scattering from the diamonds of diamond-anvil cells (DACs). The lower signal
levels can only be overcome by longer counting times and more intense radiation sources.
The higher levels of background are best addressed by appropriate shielding and/or
collimation at the time of the experiment.

Thus, the most important differences between performing a powder diffraction
experiment at high pressure and one at ambient conditions are in the data collection
process. Some important points are reviewed here in some detail. Then, a few brief
remarks are made about the refinement of high-pressure powder diffraction data, which is
essentially no different from refinement of data collected at ambient conditions. Finally, a
brief review of how to analyse pressure-volume data in the form of Equations of State
(E0S) is presented, along with a program to do the necessary least-squares fitting.

EXPERIMENTAL METHODS

X-ray powder diffraction.



Synchrotrons have been the X-ray source of choice for some time for high-pressure
powder diffraction, which can be performed, with care, to pressures in excess of 100 GPa.
A wide variety of diamond-anvil cell designs have been developed for high-pressure
powder diffraction, but many are based on the very simple principle of applying a
moderate force to the relatively large surface-area of the thread of a drive screw, and then
transferring this force onto the small area of the tips of two opposed diamond-anvils. An
alternative drive mechanism is used in the “gas-membrane cells”, in which the force is
generated by inflating a metal membrane whose expansion drives the anvils together.
DACs that have been specifically designed for single-crystal diffraction can also be
successfully used for powder diffraction. An extensive review of DAC designs, including
their relative advantages and disadvantages, can be found in Hazen (2000).

Most early X-ray powder diffraction studies at high pressures employed energy-
dispersive diffraction, a method which is limited in resolution because of the restricted
energy resolution of the solid-state detectors involved. The advent of image-plate
detectors and improved DAC designs with larger opening angles to allow X-ray access to
the sample has resulted in angle-dispersive diffraction becoming the standard method.
The data quality from image plates is also greatly increased because the entire diffraction
cone can be collected and therefore effects due to, for example, sample texture can be
readily identified before integration of the data into a conventional 1-dimensional
Intensity vs. 2theta data-set used for refinement. Currently, data quality is such that
reliable unit-cell parameters can be obtained from high-pressure powder diffraction as
well as structural data in more simple systems. The recent introduction of in-situ read-out
from image plates that allows data to be collected and processed on a ~1 minute cycle
(Thoms et al., 1998) makes these detectors competitive with other area detectors such as
CCD-based systems for real-time studies of phase transitions, and rapid measurements of
compressibility.

Neutron powder diffraction.

Neutron diffraction is the method of choice for studies of materials containing both
light and heavy atoms. For precise studies up to 0.5 GPa there are a wide variety of gas-
pressure cells suitable for both angle-dispersive and time-of-flight diffraction. For slightly
higher pressures there are a variety of clamp cells, the latest developments of which can
reach pressures of 3.5 GPa and temperatures in excess of 800 K (e.g. Knorr et al. 1997,
1999). Scaled-up opposed-anvil cells equipped with sapphire anvils have been used to
pressures of at least 3 GPa (e.g. Kuhs et al. 1996). For higher pressures there is the Paris-
Edinburgh cell which is capable of developing pressures of up to 25 GPa (Besson et al.
1992, Klotz et al. 1998).

Pressure Media

It is very important to perform high-pressure diffraction experiments under well-
defined conditions of applied stress. In effect, this means that a hydrostatic pressure
medium must be used to enclose the crystal, because non-hydrostatic stresses in a high-
pressure device are very difficult to quantify. The effects of non-hydrostatic stresses
include, but are probably not limited to -



- Broadening of diffraction peaks and consequently reduction in signal-to-noise
ratios.

- Incorrect measurement of pressures (see the example of the ruby pressure sensor,
below).

- Displacement of the transition pressures of ferroelastic or coelastic structural phase
transitions (e.g. Decker et al. 1979).

A 4:1 mixture by volume of methanol.ethanol remains hydrostatic to just over 10
GPa (Eggert et al. 1992) and is convenient and suitable for many studies. If the sample
dissolves in alcohols, then a mixture of pentane and iso-pentane which remains
hydrostatic to ~ 6 GPa (Nomura et al. 1982), or a solidified gas such as N, , He, or Ar can
be employed. Water appears to remain hydrostatic to about 2.5 GPa at room temperature,
just above the phase transition from ice-VI to ice-VIlI (Angel, unpublished data). The
solid pressure media such as NaCl or KCI favoured by spectroscopists are very non-
hydrostatic even at pressures below 1 GPa. Similarly, the “fluorinert” material used in
many neutron diffraction experiments because of its low neutron scattering power
becomes significantly non-hydrostatic at ~1.3 GPa. At pressures in excess of the
hydrostatic limit of the solidified gas and fluid pressure media, the non-hydrostatic
stresses can be relaxed after each change in pressure by annealing the sample chamber,
either by laser-heating or an external resistance furnace. For example, heating a cell in
which the ethanol:methanol mixture is the pressure fluid to 150-200 °C for about 1 hour
is sufficient to relax the non-hydrostatic stresses developed above 10 GPa (Sinogeikin and
Bass, 1999).

Ideally each grain of the sample should be completely surrounded by the pressure
fluid, and not make contact with any other grain because grain-grain contacts can lead to
the development of non-hydrostatic stresses. This criterion can not be achieved perfectly,
except by resort to a single-crystal experiment! But in loading a high-pressure cell for
powder diffraction, it is important not to over-fill the sample chamber with sample - for
DACs and X-ray diffraction the author’s experience is that the lightly-compressed powder
should occupy approximately one-half of the volume of the hole in the gasket.

Pressure Measurement

The ruby fluorescence method is the most commonly used to determine pressure in
diamond-anvil cell measurements. It is based upon the observation that a pair of
electronic transitions in the Cr®* dopant atoms in Al,O3 change in energy as the Al,Os
lattice is compressed. The fluorescence in the red area of the optical spectrum is strong
and easily excited by blue/green laser light, and the shift is quite large, approximately
3.6A/GPa. Unfortunately, the fluorescence wavelength is also very sensitive both to
temperature, such that a 5° temperature change gives rise to a shift equivalent to 0.1 GPa
(Barnett et al. 1973, Vos and Schouten 1991). It is also sensitive to the c/a ratio of the
Al,O3 host lattice (Sharma and Gupta 1991). As a result, non-hydrostatic stresses increase
the observed shift of the stronger R, component of the doublet, and can yield an apparent
pressure that is higher than the true pressure (Gupta and Shen 1991, Chai and Brown



1996). Other fluorescence sensors have also been employed; for reviews see Holzapfel
(1997) and Miletich et al. (2000). Measurement of optical fluorescence is relatively fast,
and is extremely useful for setting the approximate pressure in a DAC prior to a
diffraction measurement. With the proper precautions it can yield pressures as precise as
0.1 GPa, provided temperature fluctuations are completely excluded. In reality, these and
other factors often mean that 0.3 GPa is a more realistic estimate of the precision. For
more precise pressure determination internal diffraction standards can be used in DACs,
while this is essential for completely enclosed cells, such as the Paris-Edinburgh cell. The
pressure is then determined from the unit-cell volume of the standard and its EoS. The
precision in pressure then depends upon the precision of the volume measurement and the
bulk modulus of the material; the softer the standard the more precise the pressure
determination. Materials in common use as standards at pressures up to 10 GPa include
NaCl (Brown 1999), quartz (Angel et al. 1997) and fluorite (Hazen and Finger 1981,
Angel 1993), while metals such as gold (e.g. Heinz and Jeanloz 1984) have been used at
higher pressures. It is important to note that there is no absolute pressure standard
measurement above 2.5 GPa, so all EoS and all pressure scales are provisional and
subject to revision in the light of improved calibrations. As an example, the pressure scale
based upon the EoS of NaCl which was introduced by Decker (1971) and developed by
Birch (1986) was recently shown to be in significant error by Brown (1999).

Experimental Strategy.

Because all pressure cells affect the intensities in the diffraction pattern of the
sample, and imperfect alignment and positioning of the cell with respect to the incident
beam and the detector can influence the positions of the diffracted beams, it is strongly
recommended that all high-pressure studies should commence with a measurement of the
diffraction pattern of the sample in the pressure cell, but at ambient pressure. Comparison
of the result with a refinement of the diffraction pattern measured outside of the cell will
provide an indication of the systematic errors present in the high-pressure results. For EoS
determination, the room pressure determination of the unit-cell volume also provides a
strong constraint on the EoS parameters. In all subsequent analysis, the room pressure
datum collected from within the cell should be used as the room-pressure reference. Use
of data collected outside of the cell as this reference often leads to false conclusions being
drawn about the high-pressure evolution of structure or unit-cell parameters (e.g. Hazen
and Finger, 1989).

If the only intention of the experiment is to derive the parameters of the EoS of the
sample, then the number of data points required to obtain a given precision in the EoS
parameters can be estimated from the known experimental parameters. The details are
given in Angel (2000a). To summarise, the number of data required can be estimated
from the bulk modulus of the sample (usually known approximately, or can be estimated),
the precision of the volume and pressure measurements and the maximum pressure
achievable.

REFINING HIGH-PRESSURE POWDER DIFFRACTION DATA



As noted above, the refinement of powder-diffraction data by the Rietveld method is
not intrinsically different from the refinement of data collected under any other
conditions. Just a few notes are given here, based on the author’s own, but somewhat
limited, experience.

The reduction of the data collected by the detector, whether time-of-flight neutron
powder diffraction data or a 2-dimensional image from an area detector used in X-ray
powder diffraction, is usually performed by software provided by the facility. This data
reduction usually includes, if appropriate, corrections for spatial distortion and calibration
of the detector (e.g. Fit2D, Hammersley et al. 1995, 1996) and normalisation to the
incident beam spectrum. An important consideration for X-ray powder diffraction is the
calibration of the wavelength and the sample-to-detector distance, normally obtained by
performing diffraction from a standard sample. Repeat measurements of the standard over
the period of the experiment will provide an estimate of the reproducibility and variation
of these parameters.

Because the background levels in a high-pressure diffraction pattern are much higher
than in an ambient pressure measurement, the question of whether the background should
be subtracted before refinement rears its ugly head. The statistical arguments for and
against such a process have been made before in the literature. My personal view is that
the background should be fitted as far as possible, although specific regions in which the
background changes sharply may be excluded entirely from the fitting process. Within
GSAS, the best background function for most high-pressure data appears to be the
shifted-Chebyshev polynomial. For some cases, the refinement becomes more stable if a
set of fixed background points are determined to provide a basis for the refinement
process. Diffraction peaks from the cell components can either be excluded (if they are
few and they do not interfere with the sample), or they can be refined as further phases. If
these phases are refined, it is quite normal to have to resort to a Le-Bail fit to obtain a
reasonable approximation to the observed intensities, as one expects cell components to
have strong preferred orientation and possibly an exceedingly poor powder average. The
same cautions apply to the diffraction pattern from the sample itself, especially as the
application of pressure can often lead to the development of strong preferred orientation.
Lastly, the peak widths of the samples should be monitored carefully from pattern to
pattern in order to detect the possible onset of non-hydrostatic conditions. However, this
is not a guaranteed test for non-hydrostatic conditions as it is possible that these can affect
a pressure sensor such as ruby at pressures below that at which broadening is first
detected in the sample.

In summary, refinements of high-pressure data should, at minimum, include
refinement of the background, together with the unit-cell parameters, scale factors and
peak-widths of each phase in the sample. If image-plate data is being fitted, the 26 zero of
the pattern should also be refined as the integration methods do not locate this to better
than about 1 pixel in the 2-dimensional image. Refinement of further parameters,
including structural parameters, depends on the quality of the pattern.



EQUATIONS OF STATE
Formulations of Equations of State.

The unit-cell parameters and unit-cell volume of a solid normally vary in a non-linear
way with pressure because as the volume of the solid becomes smaller the inter-atomic
forces opposing further compression become stronger. The “stiffness” of a solid is
characterised by the bulk modulus, defined as K =-V dP/ov which will generally
increase with increasing pressure. Different assumptions can then be made about how K
varies with P, or how V varies with P. Each set of assumptions then leads to a
relationship between P and V known as an “Equation of State” or EoS. Note that, unlike
“ideal gases” there is no absolute thermodynamic basis for specifying the correct form of
the EoS of solids, although for simple solids such as the NaCl structure a direct
relationship between the inter-atomic potential and the EoS can be derived (see Anderson
1995 for a thorough review).

Measured equations of state are usually parameterized in terms of the values of the
bulk modulus and its pressure derivatives, K' = dK/dP and K" = d°K/dP? , evaluated at
zero pressure. These zero-pressure moduli are normally denoted by a subscript “0”, thus:
Ko = V,(aP/oV) Kq = (oK /oP) and K/ = (o"ZK/dPZ)P:0 High-pressure
diffraction measurements are isothermal measurements, so in the following all references
to bulk modulus, Ko, and its derivatives K, and K; , refer to isothermal values and all
compression values, n =V, , and variables such as finite strain f derived from them, are

similarly isothermal quantities. The relationship between the isothermal bulk modulus,
more generally denoted Ky, and the adiabatic bulk modulus Ks that describes compression
in a thermally closed system (at constant entropy) is K¢ = K, (1+ayT) where a is the

volume thermal expansion coefficient and y is the Gruneisen parameter. At room
temperature the factor ayT is normally in the range of 0.01-0.02 for most ceramic solids.

P=0' P=0'

The EoS most commonly used for fitting isothermal (i.e. P-V datasets) are listed
briefly below. Further details of the derivations and limitations can be found in, for
example, Anderson (1995) and Angel (2000a).

Murnaghan. This can be derived from the assumption that the bulk modulus varies
linearly with pressure, K = K, + K;P; K; being independent of pressure. Integration

yields the P-V relationship:

K,PO
+—2— 1)
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This EoS (Murnaghan, 1937) both reproduces P-V data and yields correct values of the
room pressure bulk modulus for compressions up to about 10% (i.e. V/V, > 0.9), and has
the advantage of algebraic simplicity over other formulations such as the Vinet or Birch-



Murnaghan EoSs (e.g. Anderson 1995, Angel 2000a) which should be used if the range of
compression is greater than 10%. The Murnaghan EoS can also be re-arranged to provide
a direct expression for pressure in terms of compression:

K, ogé 0
= -1 2
Ks % 0 ?

Birch-Murnaghan. This is a “Finite strain EoS”, and is based upon the assumption
(e.g. Birch 1947) that the strain energy of a solid undergoing compression can be
expressed as a Taylor series in the finite strain, f. There are a number of alternative
definitions of f, each of which leads to a different relationship between P and V. The
Birch-Murnaghan EoS (Birch 1947) is based wupon the Eulerian strain,

fo = [(V()/\/)zl3 —1] /2. Expansion to fourth-order in the strain yields an EoS:

P= 3K0fE(1+2fE)5’2§+§(K' -4)f. +§§<0K" +(K'-4)(K'-3) +%§f;ﬁ(3)

If this EoS is truncated at second-order in the energy, then the coefficient of fg must be
identical to zero, which requires that K" has the fixed value of 4 (higher-order terms are
ignored). The third-order truncation, in which the coefficient of fz? is set to zero yields a
three-parameter EoS (with Vo, Ky and K') with an implied value of K" given by
(Anderson 1995):

35
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Natural strain. Poirier and Tarantola (1998) developed an EoS based upon the
“natural” or “Hencky” measure of linear strain, f, = In(l/lo) which, for hydrostatic
compression, may be written as f, =1/3In(v/V,). This yields a pressure-volume
relationship expanded to fourth-order in strain of:

P =3K %@fé (K" -2)f, +:23(1+K0K"+(K’—2)+(K'—2)2)f,f§ (5)

Examination of Equation (5) shows that truncation of this “Natural strain” EoS at second-
order in the strain implies a value of K’ = 2, different from that of the second-order Birch-
Murnaghan EoS. For truncation at third-order in the strain, the implied value of K” is
given by:

K" :%[1+(K’—2)+(K'—2)2] (6)



This value for K” is normally substantially larger than that implied by the truncation of
the 3rd-order Birch-Murnaghan EoS (Eqn. 4), and this may result in significantly different
values of Ky being obtained from fits of the two equations to the same P-V data, as in the
worked example with quartz P-V data, given below.

Vinet. The finite-strain EoS do not accurately represent the volume variation of most
solids under very high compression (n < 0.6), so Vinet et al. (1986, 1987) derived an EoS
from a general inter-atomic potential. For simple solids under very high compressions the
resulting Vinet EoS provides a more accurate representation of the volume variation with
pressure:

p =3k, 1= fV)GXP%(K"l)(l‘fV)Q ()
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where f, = (V/\/O)m. There is no theoretical basis for truncation of the EoS to lower

order, although examination of Equation (7) shows that such truncation yields an implied
value for K’ of 1. The value of K” implied by Equation (7) is given by Jeanloz (1988) as:

K" = };—1 %K?g + @K?Q— %%% ®)

Expansions of the Vinet EoS to include a refineable K” have been proposed but are not
required to fit most experimental P-V data of simple solids. Despite being often called a
“Universal EoS” (e.g. Vinet et al. 1986, 1987) it should be noted that the Vinet E0S is not
intended for materials with significant degrees of internal structural freedom such as
bond-bending (Jeanloz, 1988).

Fitting Equations of State: EOSFIT.

Because of the algebraic form of EoSs, least-squares fitting of P-V data leads to high
correlations between the refined parameters Vo, Ko and K*. Great care must therefore be
taken in fitting EoS to avoid unintended bias of the resulting parameters by incorrect
weighting schemes, incorrect fixing of parameters or outliers in the dataset. And in
assessing the final refined parameter values the covariance must be considered. Further
details about the methods of data analysis and assessment of the results are provided in
Angel (2000a). Here the program EOSFIT, distributed with the course software, is used to
illustrate the fitting of a P-V dataset (Table 1).

Because all of the EoS listed above, except the Murnaghan, can be written with
pressure as a function of volume and not vice-versa, the EOSFIT program performs least-
squares fit of P-V data with pressure as the dependent variable. The dataset (see the
quartzpv.dat file as an example) must be an ASCII file with one data point per line,
delimited by commas. At minimum, each line must include a pressure and a volume. In



addition, each line may also include a value of esd(P) and/or a value for esd(V). If both
are provided, esd(P) must be written before esd(V).

Assignment of weights. In any P-V dataset, both the pressures and the volumes have
experimental uncertainties associated with them. EOSFIT provides the user with the
opportunity to perform the least-squares fit with either the data un-weighted, or with
weights derived from either the estimated uncertainties in the pressures, or in the
volumes, or both. If one or both uncertainties are not present in the datafile, then the
choice of weighting scheme is restricted by the program. Uncertainties in volumes are
converted into uncertainties in pressure by the effective variance method (e.g. Orear
1982):

K
2 2 2
o —ap+a\,.§7

Because the bulk modulus at the pressure of each datum appears on the right-hand-
side of this equation, the EOSFIT program recalculates the weights before each least-
squares cycle.

Refinement strategy. Examination of the equations of all isothermal EoS (Egns. 1-8)
shows that they are non-dimensional; they can all be written in terms of P/Ky and V/V,
Therefore Ko and Vy have the same units as the experimental pressures and volumes
respectively and are the scaling parameters of an EoS. In particular, Vy is a quantity that is
dependent upon the calibration of the technique used to measure the volumes. For
example, in monochromatic angle-dispersive powder diffraction, the volumes obtained
from fitting the powder pattern will depend upon the alignment of the monochromator
and the value of the resulting X-ray wavelength. Errors in calibration of the sample-to-
detector distance will also strongly affect the value of V. Similarly, in energy-dispersive
diffraction the volume is dependent upon the energy calibration of the detector. In all of
these cases the volumes measured at high pressures may be on a different scale from
some high-accuracy value of V, determined by another technique. As demonstrated by
Hazen and Finger (1989), the fixing of V, to such an inappropriate value can lead to
incorrect estimates of the other EoS parameters being obtained from the least-squares
refinement to high-pressure volume data.

The parameters V, and K, thus have the largest influence on the calculated pressure
and should always be refined. For isothermal data sets the first stage of refinement should
therefore be the refinement of Vy and Ky alone in a second-order EoS, with the next
higher order term, K’ set to its implied value. For fitting the quartz data in Table 1 with a
Birch-Murnaghan EoS, we proceed as follows with the EOSFIT program (a summary of
the results that you should obtain is given in Table 2):

Start the program in a DOS box from the directory in which the datafile (quartzpv.dat) is
stored. The program first requests the name for a log file, and then the name of the data
file:



INPUT NAME OF PRINT FILE: quartz.prt
INPUT NAME OF DATA FILE: quartzpv.dat

The next display is the main menu, to which the program always returns after fitting an
EoS:

SELECT ACTION:
-1 EXIT
0: SELECT NEW DATA FILE
1: FIT EOS
2: FIT LINEAR DATA

ENTER SELECTION: 1

There now follow two menus that initialise the fitting of the EoS. At the first menu, select
the Birch-Murnaghan P,V fit by entering “3”.

The next menu allows you to select the weighting scheme to be used in performing the
least-squares process. It is normal to use weights derived from the uncertainties in both
pressure and in volume, so select this option by entering “4”.

The least squares program requires some initial estimates of the values of the parameters
to be refined, together with the values of those to be fixed in the refinement. For a
second-order Birch-Murnaghan EoS the value of K" must be fixed at 4, the value implied
by the truncation (see above). A reasonable guess for V is 113A3 and 45 GPa for K,
(these values are not critical). Therefore,

INPUT INITIAL VALUES OF PARAMETERS, Vo, K, Kp: 113,45,4.0

The program now calculates and prints the implied value for K; from your input
parameters.

You now choose which parameters to refine at the next prompt: 1 for refine, O to fix.
Thus, to refine a 2nd-order Birch-Murnaghan EoS:

INPUT 4 REFINEMENT FLAGS (1=YES, 0=N0): 1,1,0,0

The program performs the least-squares fit and terminates when the total sum of the
parameter shifts divided by their esd’s becomes insignificant. The parameter values after
each least-squares cycle are printed to the log file. The parameter values after the last
cycle are printed to the screen, together with their esd’s (a summary is in given in Table
2). Note also that the implied values for the unrefined parameters are also provided. The
next pages (listed by entering a <CR>) list the observed and calculated values of the
pressures, the difference Pgps-Pealc , and the weight of each data point. This is followed by
a screen showing a number of fit parameters (all of this information is printed to the log
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file). Note the large value of 128 for x2, together with the maximum misfit,
P,.—P

obs calc |max

indicates that this EoS does not represent the data. The EoS must therefore be expanded
by a further parameter by refining Kp as well. This can be achieved by answering “Y” to:

, more than ten times larger than the esd in an individual data point

FURTHER CALCULATIONS (Y/N)? Yy

which returns you to the main menu. Select EoS fit again by entering “1”, and proceed as
above until the prompt to input the refinement flags. This time, refine the value of K’ as
well:

INPUT 4 REFINEMENT FLAGS (1=YES, 0=N0): 1,1,1,0

This expansion of the EoS to third-order reduces x2 to 0.95, indicating a significant
improvement to the fit. The same conclusion would be drawn from the other indicators;
the refined value of the additional parameter K' (5.99) differs by 50 esd’s from the
previously implied value of K’ = 4, the esd’s of Vy and K have decreased, the maximum
misfit is similar to the estimates of the uncertainties in pressure estimated directly from
the experiment, and the value of V is identical to that determined experimentally.

As a final step, proceed through the menus again and refine a fourth-order Birch-
Murnaghan EoS by setting all of the refinement flags to 1, so as to refine the value of K".
This yields only a marginal improvement in x?2 , because the refined value of K" only
differs marginally (1.2 esd’s) from the value implied by the 3rd-order truncation of the
EoS. Note also that the esd’s of Ky and K' have increased significantly in this last
refinement due to their strong correlation (93.6% and -99.2% respectively) with K". For
practical purposes, therefore, the 3rd-order Birch-Murnaghan EoS would be considered to
yield an adequate representation of the data-set.

The steps in the refinement of the Natural Strain EoS to the same data-set (Table 2) are
similar, except for the choice of termination of the refinement process. In this case further

expansion of the Natural Strain EoS to 4th order results in a significant decrease in x?,

from 1.15 to 0.93 as a result of the value of K" deviating by more than 4 esd’s from the
value implied by the 3rd-order truncation (Eqn. 6).
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Table 1. Cell parameters of quartz with pressure, from Angel et al. (1997)

P: GPa a A c A v: Ad

10 4.91300(11) 5.40482(17)  112.981(2)
0.429(9)  4.89295(29) 5.38861(22)  111.725(14)
0.794(10)  4.87657(12) 5.37563(12)  110.711(6)
1651(9)  4.84201(15) 5.34856(14)  108.597(7)
1845(9)  4.83461(39) 5.34284(37)  108.150(19)
1933(9)  4.83136(17) 5.34135(17)  107.974(8)
2628(12)  4.80593(16) 5.32266(15)  106.467(8)
3209(9)  4.78306(18) 5.30679(16)  105.141(9)
3.468(12)  4.77750(27) 5.30341(22)  104.831(12)
3.778(12)  4.76798(22) 5.29692(22)  104.285(10)
4026(12)  4.75970(27) 5.29116(28)  103.810(13)
4553(11)  4.74411(16) 5.28128(14)  102.939(7)
4827(14)  4.73671(25) 5.27699(23)  102.534(12)
5212(11)  4.72561(21) 5.27072(19)  101.933(10)
5416(12)  4.71973(17) 5.26617(17)  101.592(08)
5736(11)  4.71137(25) 5.26150(21)  101.143(11)
6.203(14)  4.69710(32) 5.25385(32)  100.385(15)
6.478(13)  4.69089(33) 5.25027(30)  100.051(15)
6.751(12)  4.68392(18) 5.24622(20)  99.677(09)
7191(15)  4.67228(27) 5.23993(21)  99.064(12)
7.898(8)  4.65612(30) 5.23058(28)  98.204(14)
8.449(15)  4.64333(15) 5.22416(32)  97.545(16)
8.005(13)  4.63253(38) 5.21863(35)  96.989(17)
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Table 2. EoS parameters fitted to the quartz P-V data of Angel et al. (1997)

Vo : A3 Ko:GPa K K':GPa® 2 Prs = Pac|
GPa
BM2  112.97(2)  41.5(3) [4.0] [-.094] 128  0.32
BM3  112.981(2) 37.12(9) 5.99(5)  [-.265] 0.95 0.025

BM4  112.981(2) 36.89(22) 6.26(24) -.41(12) 0.93 0.026
NS2  112.95(5) 465(6)  [2.0] [-.022] 580  0.65

NS3  112.982(2) 36.39(11) 6.91(7) [-.825] 115 0.026
NS4  112.981(2) 36.90(24) 6.25(29) -.39(11) 0.93 0.026

Vinet 112.981(2) 37.02(9) 6.10(4)  [-.319] 0.90 0.025

Murn. 112.981(2) 37.63(10) 5.43(4)  [0] 157 0.033

Note: Numbers in parentheses represent esd’s in the last digit. Numbers in square
brackets are the implied values of the parameters.
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Fitting high-pressure lattice parameters.

As for volume variations with pressure, there is no fundamental thermodynamic
basis for specifying the form of cell parameter variations with pressure. It is therefore not
unusual to find in the literature cell parameter variations with pressure fitted with a
polynomial expression such as a =a, +a,P +a,P?, even when the P-V data have been

fitted with a proper EoS function. Use of polynomials in P is not only inconsistent, it is
also unphysical in that a linear expression implies that the material does not become
stiffer under pressure, while a quadratic form will have a positive coefficient for P?
implying that at sufficiently high pressures the material will expand with increasing
pressure. A consistent alternative is provided by using the same EoS as that used to fit the
P-V data, but substituting the cube of the lattice parameter for the volume in the EoS, and
this is the method implemented in the EOSFIT program. The cubing of the lattice
parameter and the transformation of it’s esd is performed by the program when the user
selects the “Fit linear data” option. (The datafile format is the same as for P-V data,
except that the lattice parameter and its esd should be entered in the datafile). The refined
parameter value and its esd is transformed back from volume to unit-cell parameter, but
note that the printed variance-covariance matrix contains entries for the lattice parameter
cubed. Note also, that the value of “Ky” obtained from fitting the cell parameters in this
way is related to the zero-pressure compressibility [y of the axis by

-1/3K, = B, =a,"(da/dP),_, in which ao is the length of the unit-cell axis at zero
pressure.

P=0

For crystals with higher than monoclinic symmetry the definition of the axial
compressibilities in this way fully describes the evolution of the unit-cell with pressure
because the tensor describing the strain arising from compression is constrained by
symmetry from rotating. In the monoclinic system, however, one unit-cell angle may
change, and in triclinic crystals all three unit-cell angles may change. The full description
of the change in unit-cell shape in these cases must therefore include the full definition of
the strain tensor resulting from compression. A computer program, originally written by
Ohashi (1972) is available to calculate the components and principal axes of strain
tensors. The calculation method of Ohashi (1972), further developed by Schlenker et al.
(1975) and Jessen and Kippers (1991), is explicitly based upon a finite difference
approach. The strain is evaluated from the change in lattice parameters between one data
point and the next. Thus the resulting strain tensor represents an average strain over this
interval in pressure or temperature. This is a sound approach for crystals of orthorhombic
symmetry, or higher, because the orientation of the strain ellipsoid is fixed by symmetry.
But for triclinic and monoclinic crystals the strain ellipsoid may rotate with changing P or
T. The finite difference calculation of strain then represents an average not only the
magnitudes of the principal axes of the strain ellipsoid, but also an average of their
orientation over the finite interval in P or T. An alternative approach which avoids this
problem and employs the calculation of the continuous derivatives of the unit-cell
parameters with respect to T (or P) has been developed by Paufler and Weber (1999).
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Fortunately, in monoclinic systems the strain tensor often does not rotate
significantly with pressure. Then it may be appropriate to fit quantities such as asinf3
against pressure with an EoS function, or the 3 angle separately as a polynomial function
of pressure (e.g. Angel et al.,, 1999). The important criterion is that the resulting
expressions provide not only a good fit to the data, but are reliable in extrapolation to
further pressures of interest (e.g. when studying phase transitions; see Angel, 2000b). The
reliability of these extrapolations can always be tested by parallel calculations with
different functions (e.g. Boffa-Ballaran et al. 2000). A further internal check on the
robustness of the extrapolations can be obtained by comparing the unit-cell volumes
obtained from the lattice parameters extrapolated to a given pressure with those predicted
by the EoS function fitted to the unit-cell volume.

Program release notes.

The EOSFIT program is distributed on a non-commercial basis and the author would
appreciate its use being acknowledged by reference to Angel (2000a) in any publications.
| plan to re-write and expand the program with a GUI, incorporating a more flexible
input-file format and the calculation of strain tensors. If you would like to receive
program updates (including bug fixes), please register with me as a user by e-mail
(ross.angel@uni-bayreuth). If you discover apparent bugs in the program, please send me
both the input file, the output file and a full description of the problem by e-mail.
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