DAC Data Collection, Xcalibur-1

http://www.crystal.vt.edu/crystal/

This version: 22-July-2006

This is intended as a short guide to setting up a DAC for a data collection on an Xcalibur-1 diffractometer, equipped with a dual detector arm with point detector and CCD (see below).

- If you do not have a CCD camera use these instructions for the point detector (old and new design Xcalibur instruments).
- If only you have a CCD detector, use the separate instructions for the DAC with CCD.

The user is assumed to be familiar with the Crysalis software and commands and their use for data collections from crystals in air.

This diffractometer has a dovetail slide for mounting a CCD camera. When the point detector is used for DAC data collections this slide is used to hold a set of additional collimation slits as shown in the picture on the left.

In the following documentation, commands to be typed into the command line of the Crysalis GUI are indicated thus: **gt** \mathbf{r} **4 0 0**. Command line entries where numerical values should be substituted are indicated by italics, thus: **gt** \mathbf{r} *h k l*

Step 1: Preparation.

Operation	Command/Action
Create filespace for data collection	Open a file browser
	Create a new directory for this data (e.g. \P1)
Start program	Double-click on desktop icon for Crysalis CCD
Check that software is set for point	GUI should have angles and scan display
detector operation	
If the software is in CCD mode, change to	Select Tools Setup file
PD mode.	Select Xcalibur1PD.par
	Exit from Tools Setup
	Exit from program: en
	Restart Crysalis CCD from desktop
Switch to DAC mode	sw s 2
Set DAC opening angle (normally 40deg)	sw a <i>angle</i>
On the diffractometer, remove the slit	
assembly from the sled on the dovetail by	
unscrewing three screws.	

Step 2: Physical Alignment of DAC

Operation	Command/Action
Drive the diffractometer to alignment	gt a 0 21.75 0 0
position	
Load DAC onto diffractometer. Tighten	
the base screw firmly.	
Align the DAC by eye, perpendicular to	Loosen the locking screw for the height adjustment on
the beam	the goniometer head and rotate the cell until it looks
	perpendicular to the beam direction.
Accurately align the DAC perpendicular	Slide the sled on the dovetail to the back of the
to the beam.	dovetail.
	Mount the aluminium alignment tool on the sled.
	Carefully slide the tool in to touch the DAC.
	Rotate the DAC until the face of the DAC is exactly
	parallel to the end of the alignment tool.
	Gently tighten the height locking screw on the
	goniometer head.
Remove the alignment tool.	Slide the sled back on the dovetail and lift off the
	alignment tool, taking care not to hit the beam stop.
Set focus of video microscope, and cell	F12

translation along beam	View image of cell
	Loosen locking screw of video camera and move it to
	focus
	Spin cell by 180 on phi (keypad)
	If image not in focus adjust half way to focus with
	goniometer head slide and half with camera
	adjustment
	Repeat until cell is in focus at both of these two
	positions.
Set height of DAC	Lower position (keypad)
	Observe position of gasket hole centre on video screen.
	Upper position (keypad)
	Compare position of gasket hole and adjust height.
	Repeat until image of gasket hole does not move
	vertically between these two positions.
	Tighten height locking screw
Set cell translation across beam (x	gt e 0 0 90 –90
direction)	Observe position of centre of gasket hole.
	gt e 0 0 90 90
	Compare position and adjust with slide on goniometer
	head.
	Repeat until image of gasket hole does not move
	between these two positions.
	Tighten slide locking screw
Check that DAC is still perpendicular to	gt a 0 21.75 0 0
beam at zero	See instructions above for using alignment tool on sled.
	Correct alignment if necessary.
Obtaining an image of the crystal	
Start video utility	abs grab
Position goniometer so that the DAC is	Select goniometer
perpendicular to the video camera and the	Hit override remote control <i>twice</i> .
crystal is visible	Go to lower position
	Rotate phi position until crystal is visible (normally
	phi = 0).
	Record which face of the DAC is facing the camera!
	Close the goniometer control window.
Capture the image	Check the focus and illumination.
	Select clipboard once
Save the image	Open a graphics program (e.g. MS Paint)
	Select paste from clipboard
	Save the image as a jpeg.

Step 3: Determine Initial Orientation Matrix.

There are several possibilities, depending on the stage of the high-pressure experiment:

- 1. The UB from a measurement on the Xcalibur diffractometer at a previous pressure is known
- 2. The UB from a measurement on the Huber diffractometer is known.
- 3. The UB is not known.

Step 3.1: UB known from previous measurement on Xcalibur.

Important: If you read in an old par file, you will overwrite the current peak table in the software, and you will have the peak table associated with the par file that you read in!!

Operation	Command/Action
Copy the peak table from the previous	Use the Windows file browser to copy the *.tab file to
measurement	the current working directory.
	rd t
Or input values at command line	um s <i>u11 u12 u13 u21 u22 u23 u31 u32 u33</i>
Check table is correct by calculating	ty l
lattice parameters from UB	
Go to step 3.4	

Step 3.2: UB known from previous measurement on Huber.

Operation	Command/Action
Convert the UB matrix from the Huber	$\begin{pmatrix} 0 & -1 & 0 \end{pmatrix}$
(Single software)	$UB(Crysalis) = 0.71 \times \begin{vmatrix} 1 & 0 & 0 \end{vmatrix} UB(Huber)$
Input values at command line	um s <i>u11 u12 u13 u21 u22 u23 u31 u32 u33</i>
Check table is correct by calculating	ty l
lattice parameters from UB	
Save UB to disk	wd t
Go to step 3.4	

Step 3.3: UB unknown

Operation	Command/Action
Switch to CCD	
Perform short data collection	Use a DAC run file but cut down the runs to those at
	kappa=0
Find peaks, index, save peak table	
Switch back to point detector	
Go to step 3.4	

Step 3.4: Look for reflections

Operation	Command/Action
Insert detector slits 3.3 2.0	Insert pair of slits labeled 3.3 (horizontal) and 2.0
	(vertical) with notches towards the back of the cabinet.
Set slit values in software	da 3.3 2.0
Drive to a strong reflection	gt r <i>h k l</i>
Scan the positionset the scan width	sc w 2.0 0.0
Do the omega scan	sm s 40 0.1
If the maximum is in the scan, check two	
more reflections. If all ok, go to step 4	
If maximum is not in the scan, drive	gt o omega (omega should be shifted by 1 deg)
around in omega and rescan until you find	sm s 40 0.1
it.	
When peak is found, drive to position of	gt o omega
maximum	
Centre the reflection	ce 0
Note: it is often better to do the centering	
with slits 2 and 2	
Add reflection to peak table	pt a
Look this reflection up in the peak list	pt e
select it, edit it, insert the correct hkl	-
values, exit the list	
Save the table	wd t
Repeat for another reflection	
Select the two reflections in the table	pt e
	Select each reflection in turn, select Edit, click
	"select". Make sure indices are correct.
Do two-reflection calculation of UB	um f2 <i>a b c</i> $\alpha \beta \gamma$, where <i>abc</i> and $\alpha \beta \gamma$ are the estimated
	cell parameters.
	-
Check the result:	ty l
If the lattice parameters change a lot, then	
your indexing was incorrect; change the	pt e
indexing and try again.	um f2 $a b c \alpha \beta \gamma$
When you have a valid UB, save it	wd t
Check the UB finds other reflections:	
Drive to a strong reflection	gt r <i>h k l</i>
See if it is in the detector window	sm i 1 (or F7) and observe counts
If all Ok, proceed to step 4. If not fix it.	

Step 4: Refine UB

Operation	Command/Action
Edit the peak list	pt e
- make a note of the <i>hkl</i>	
- delete all reflections (see note at end	
of this table)	
- insert the <i>hkl</i> of one of each	
symmetry-equivalent set	
- exit from the peak list	
Expand the peak list by Laue symmetry	pt l <i>n</i> (if you do not know <i>n</i> for your Laue group then
	type pt l to obtain a list)
Edit the peak list to remove reflections	pt e
with low kappa angles.	Select "angles" at bottom of display
	Click on "kappa" column header to order reflections
At this stage you need 20-30 strong	Delete reflections with $-15^{\circ} < \kappa < 15^{\circ}$.
reflections.	Exit the peak list editor
Save the peak list	wd t
Start reflection centering	um u
<i>Note:</i> If a reflection in the list cannot be	
centered it will be skipped and deleted	
from the list. If many reflections are	To recover from this problem:
skipped then either the UB matrix and the	Read the original table back into software, rd t
cell parameters are wrong, or the software	Enter the correct slit values da hslit vslit
has the wrong values loaded (with da) for	Repeat centering um u
the detector slits.	
At the end of centering, the UB is	wd t
determined. Save it and the peak positions	
Switch to smaller slits, h=2.0, v=1.0	Exchange brass slits on detector
	Update values in software: da 2.0 1.0
Check the UB finds reflections with	
smaller slits:	
Drive to a strong reflection	gt r <i>h k l</i>
See if it is in the detector window	sm i 1 (or F7) and observe counts
If ok, repeat centering	um u
At the end of centering, the UB is	wd t
determined. Save it and the peak positions	

Note on the peak table: The Crysalis centering procedure um u works by first driving to the angular positions given in the peak table. This is different from the Single software in which the starting position for centering is calculated from the *hkl* in the peak table, and the current UB matrix. This means that in Crysalis when the UB is changed significantly, the peak table must be cleared and the indices of reflections be reloaded into the table; this procedure ensures that the peak positions are calculated from the current UB.

Step 5: Determine crystal offsets

At this stage the gasket hole of the DAC has been well-centered optically across the beam, but the positioning along the beam has relied on focusing the video microscope on the sample. The centering along the beam can be improved by "diffracted beam centering". There are two ways to achieve this:

- 1. By 8-position centering of a single reflection with a Eulerian-chi value between 80° and 90° .
- 2. By collecting data scans of 30 or more low-angle reflections and refining the crystal offsets by the method of Dera and Katrusiak (1999, Journal of Applied Crystallography 32:510-515).

Method 1 takes less time, but method 2 is often more reliable. Both alternatives are described below:

Step 5.1: 8-position centering

Operation	Command/Action
Find a strong reflection with Eulerian chi	gt r <i>h k l</i>
$> 80^{\circ}$	sm i 1
Do 8-position centering	ce HP
Adjust goniometer position according to	
offsets from ce HP procedure	
Repeat until offsets are small or zero	

Step 5.2: Crystal offsets from data collection

Important Note: If you set the parameters for this step by opening an old par file, then you will overwrite the current UB matrix and peak table with the one from the par file. Recover from this problem by reading in the peak table (rd t) that you saved in step 4.

Operation	Command/Action
Set up parameters for a short low-angle	
data collection, as follows.	
Set detector slits to h=2.0, v=0.5	Exchange brass slits on detector
	Update values in software: da 2.0 0.5
Set scan parameters to stop rescanning	mo s 1 60 10 0 0.005
Set fast scan speed	sc s 0.05
Set background calc	mo b 0.5
Set scan width	sc w 1.200 0.000 1.00300
Set omega scan	sc t 0.0 0.0
Set index limits to cover all reciprocal	il –10 10 –10 10 –10 10
space	
Note: this sets the maximum values of	
indices to be tested against 2theta limits	
etc. Just make them sufficiently large.	
Clear ma limits	ma b 0 0 0 0 0 0 0 0 0 0
Set 2theta limits	tr 2 25
Set absence conditions	Rc
Clear reference reflections	rr 0

Check all values are correct	ty p
Check number of reflections that will be	dc t
collected	
Adjust 2theta limits and/or index limits	tr tthmin tthmax
until you have 30-50 reflections to be	il hmin hmax kmin kmax lmin lmax
collected	
Save parameters (it is useful to call this	wd p
something like <i>orient.par</i>)	
Start data collection (use a distinct	dc s
filename such as orient n) where n	
indicates the iteration through this process	
When data collection is complete, export	Open the Crysalis Reduce software
the data to a <i>dca</i> file	type dc redpd on its command line
	Select your data file
	Select Convert to Ascii
Open the WinIntegrStp program	Double-click on desktop icon
Select the <i>dca</i> file you just created	
Select Xcalibur.par as the instrument	
parameter file.	
Run preprocessing option to obtain the	Run Preprocess in WinIntegrStp.
peak positions	Set I/sigma to 10.0
	Set Intensity, peak width, position to be refined
	Set background to not refined, with default value "D"
	Set eta and Iratio to not refined
	Start preprocess with "Go"
If insufficient (<20) reflections are stored	
after Preprocess, reduce I/sigma or adjust	
the test limits on the parameters.	
Once you have >20 reflections stored	Utilities Calc UB
from Preprocess, calculate the UB	Select refine crystal offsets
	Run
Record the crystal offsets reported (in	
mm).	
The X and Z offsets should already be	
small (<50micron).	
The Y offset is along the beam. If it is less	
than 30 micron go to step 6.	
If Y offset >30 micron proceed as follows	
Drive goniometer to zero	gt a 0 0 0 0
Place the dial gauge in contact with the	
downstream face of the cell.	
Adjust the cell position along the beam	One division on the dial gauge is 25 micron.
	If the Y offset is positive, move the DAC towards the
	X-ray tube.
	If the Y offset is negative, move the DAC away from
	the X-ray tube.
Repeat step 5.2 until Y offset is <30	
micron.	

Step 6: Data Collection with point detector

Note: See subsequent sections for data collection with CCD

Install additional slits on detector armScrew down the slits onto the carrier on the dovetail Set the slide to 9.55Install Be cones into DACgt e 0 0 90 90 install one cone into top side of cell gt e 0 0 90 -90 install the other cone Make sure they do not fall out!Set detector slits to h=2.0, v=0.5Exchange brass slits on detector Update values in software: da 2.0 0.5	Operation	Command/Action
Set the slide to 9.55 Install Be cones into DAC gt e 0 0 90 90 install one cone into top side of cell gt e 0 0 90 -90 install the other cone Make sure they do not fall out! Set detector slits to h=2.0, v=0.5 Exchange brass slits on detector Update values in software: da 2.0 0.5	Install additional slits on detector arm	Screw down the slits onto the carrier on the dovetail
Install Be cones into DACgt e 0 0 90 90 install one cone into top side of cell gt e 0 0 90 -90 install the other cone Make sure they do not fall out!Set detector slits to h=2.0, v=0.5Exchange brass slits on detector Update values in software: da 2.0 0.5		Set the slide to 9.55
install one cone into top side of cell gt e 0 0 90 -90 install the other cone Make sure they do not fall out! Set detector slits to h=2.0, v=0.5 Exchange brass slits on detector Update values in software: da 2.0 0.5	Install Be cones into DAC	gt e 0 0 90 90
gt e 0 0 90 -90 install the other cone Make sure they do not fall out! Set detector slits to h=2.0, v=0.5 Exchange brass slits on detector Update values in software: da 2.0 0.5		install one cone into top side of cell
install the other cone Make sure they do not fall out! Set detector slits to h=2.0, v=0.5 Exchange brass slits on detector Update values in software: da 2.0 0.5		gt e 0 0 90 –90
Make sure they do not fall out! Set detector slits to h=2.0, v=0.5 Exchange brass slits on detector Update values in software: da 2.0 0.5		install the other cone
Set detector slits to h=2.0, v=0.5 Exchange brass slits on detector Update values in software: da 2.0 0.5		Make sure they do not fall out!
Update values in software: da 2.0 0.5	Set detector slits to h=2.0, v=0.5	Exchange brass slits on detector
		Update values in software: da 2.0 0.5
Set up parameters for the data collection	Set up parameters for the data collection	
as follows:	as follows:	
Set scan parameters mo s 1 60 1 10 0.005	Set scan parameters	mo s 1 60 1 10 0.005
Set fast scan speed sc s 0.05	Set fast scan speed	sc s 0.05
Set background calc mo b 0.5	Set background calc	mo b 0.5
Set scan width sc w 1.200 0.000 1.00300	Set scan width	sc w 1.200 0.000 1.00300
Set omega scan sc t 0.0 0.0	Set omega scan	sc t 0.0 0.0
Set index limits to cover required portion il hmin hmax kmin kmax lmin lmax	Set index limits to cover required portion	il hmin hmax kmin kmax lmin lmax
of reciprocal space	of reciprocal space	
Note: this sets the maximum values of	Note: this sets the maximum values of	
indices to be tested against 2theta limits	indices to be tested against 2theta limits	
etc. Just make them sufficiently large.	etc. Just make them sufficiently large.	
Set ma limits if required ma b n	Set ma limits if required	ma b n
Set 2theta limits tr thmin thmax	Set 2theta limits	tr thmin thmax
Set absence conditions rc	Set absence conditions	
Set reference reflections rr 3 200 0.15 15.0 h k l 0 h k l 0 h k l 0	Set reference reflections	rr 3 200 0.15 15.0 h k l 0 h k l 0 h k l 0
Check all values are correct ty p	Check all values are correct	ty p
Check number of reflections that will be $ \mathbf{dc} \mathbf{t} $	Check number of reflections that will be	dc t
collected	collected	
Check that parameters and UB are ok by $ \mathbf{sm r} h k l $	Check that parameters and UB are ok by	sm r h k l
scanning several reflections	scanning several reflections	,
Save parameters wd p	Save parameters	wa p
Start data collection dc s	Start data collection	dc s
Record details of data collection in log	Record details of data collection in log	
when data collection is complete, check Upen the Crysalis Reduce software	when data collection is complete, check	Open the Crysalis Reduce software
type uc reupu on its command line	that the data looks ok as follows:	spleet your data file
Select Your data file Select Convert to Assiji		Select Convert to Ascij
Open the WinIntegrStn program Double glick on deskton icon	Open the WinIntegrStn program	Double click on deskton icon
Select the <i>dca</i> file you just created	Select the <i>dca</i> file you just created	

Select Xcalibur.par as the instrument	
parameter file.	
Check the scans are ok and centered	Use Integrate Manual Profile Fit to review the dataset
If all is ok:	
- drive diffractometer to zero	gt a 0 0 0 0
- remove DAC from diffractometer	
- remove Be cones from DAC	
- Record details in log book	
- Inform the next user that the	
diffractometer is available	
- Integrate the data and refine the	WinIntegrstp, Absorb, Average
structure	

Note: the following sections are for data collection with the CCD

Step 7: Switching over to CCD detector

Operation	Command/Action	
Switch the par file	Select Tools Setup	
	Select Xcalibur1CCD.par	
Shutdown CCD program	En	
Start CCD program	Verify that Xcalibur1CCD.par is loaded	
Check $dd = 70$	Tools Options Instrument Model I	
Load CCD camera to dovetail	gt t 90	
	Remove slits from dovetail	
	Mount CCD detector from rear of dovetail	
	Slide CCD to 70mm	
	gt t 0	

Step 8: Pre-designed run files

We have designed a run file for data collection with the Sapphire CCD set at dd=70mm and a DAC with a half-opening angle of 40 degrees:

DAC_psi40_dd70_tth60_full_sapphire1.run

This run file attempts to cover all of accessible reciprocal space. If only one-half of that space is required, then the runs at negative values of 2theta can be deleted.

For more details about the design of DAC run files, see the Appendix to this manual.

Step 9: Data collection

- 1. Enter ccd skipremeasure 1 to prevent remeasuring on diamond reflection overflow.
- 2. Check that the correct flood field file is loaded (Tools|Correction files).
- 3. Check the correct detector distance is set in Tools|Options
- 4. Enter **dc s**. In the notes section make a note of the χ values you are using as these are hard to figure out afterwards.
- 5. Say "OK" to the warning about skipping the remeasuring. If this warning does not appear, interrupt and go back and do step 2 again!

Step 10: Data Integration

- 1. Start the Reduce software.
- 2. Check that the correct high-pressure parameter file is loaded (Tools|Setup File).
- 3. Use Setup|Options|Instrument model 1 to set dd = 70mm (or whatever you used).
- 4. Turn on DAC mode: sw s 2 and sw a Ψ_{max} . This prevents the software from attempting to search or integrate at peak positions that are obscured by the DAC.
- 5. Limits to the areas to be searched for peaks with **ph s** can be controlled with the **um skip** commands:
 - a. **um skipd dmax dmin** prevents peak searching between dmax and dmin
 - b. **um showskipd** lists the forbidden regions
 - c. **um clearskipd** clears the restrictions.
- 6. Read the necessary d-spacings off some images. Always set a skip region for 999.0 down to slightly longer than your unit-cell.
- 7. Run **ph s**. Use background subtraction with 5,5.
- 8. Use **pt e** to delete the strongest reflections (usually diamonds). Use **pt ewald** to inspect the peak list. Remove obvious Be rings etc.
- 9. Attempt indexing. Better still, use a known UB matrix to index the reflections.
- 10. Before doing the data reduction, clear the skip list with **um clearskipd** because the skip list also applies to data integration.
- 11. Run **dc red**:
 - a. In step 4, set the background evaluation to 10,5.
 - b. In step 5, set the DAC opening angle (in skip filters), the 2theta limit, and set *use* background LS plane (in peak finding).
 - c. In step 6, switch off outlier rejection.
 - d. In step 7, select the option to produce Shelx direction cosines on the output file.
- 12. Use Absorb, Average to correct the intensities for the effects of the DAC, and refine the structure!

Appendix: Designing a run list

Principles

The accessible region of reciprocal space of a crystal mounted in a DAC is toroidal in form, as shown in the diagram (from R. Miletich). The exact shape depends on the opening angles of the cell (see Miletich et al. in MSA Reviews in Mineralogy volume 41, available at <u>www.minsocam.org</u>). The challenge for a CCD data collection is to collect this volume of reciprocal space efficiently, without too much obscured (and thus unused) area of the detector, and without too much overlap of frames from different runs.

Our solution (also that of the Poznan group) is to do a series of

runs at a fixed chi value. This collects a swathe of reciprocal space across the toroid, as shown below. On the left is the section of reciprocal space perpendicular to the beam, in the middle is a section including the beam direction running vertically. On the lower edge of this section you can see the shadowing (pale yellow areas) caused by the DAC. This shows up on the individual CCD images as an area of the detector without diffraction intensity, as on the right side of the image on the right:

Subsequent sets of runs are designed to fill in the gaps. Our run files do a second full scan at $\chi = 90^{\circ}$. Together with the first scan, the coverage of reciprocal space in the plane of the diamond culets now looks like this.

The remaining sets of runs fill in the "corners" of this section. They are run at χ values of +/-45°, but only at the higher values of 2 θ , as runs at lower 2 θ values would only duplicate what is already collected.

Practical

The parameters controlling the data collection procedure are:

- 1. The detector distance and thus the 2θ aperture of the detector. We use Δ to specify the half-width of the detector in degrees
- 2. The maximum opening angles of the DAC, Ψ_{Imax} and Ψ_{Dmax}
- 3. The minimum proportion of the CCD you want illuminated.

Data collection proceeds as a series of scans in omega at fixed 20, ϕ , and χ or κ .

The aperture of the CCD controls only the choice of 2θ steps. For Xcalibur-1, $\Delta = 20^{\circ}$ at dd=70mm, and we therefore step in 20° increments in 2θ . The maximum in 2θ is usually set at the step previous to the maximum possible (see below).

The limits on absolute omega are given by two sets of conditions.

The diffracted beam: $-|\psi_{D\max}| \le 2\theta - \omega \le |\psi_{D\max}|$ or: $\omega \ge 2\theta - |\psi_{D\max}|$ and $\omega \le 2\theta + |\psi_{D\max}|$

The incident beam: $|\omega| \leq \psi_{\text{Im}ax}$

To calculate the scan limits, proceed as follows:

- 1. Decide on the 2θ values to be used. The maximum value of 2θ should be equal to twice Ψ_{Dmax} (but you will not use this value).
- 2. For each 20 value calculate the minimum and maximum values of ω consistent with $\Psi_{Dmax}.$
- 3. Cut down the values of ω to those consistent with $\Psi_{Imax}.$

Example for T _{max} – T _{Dmax} –50			
20	ω from step 2	ω from step 3	
-60	-90 to -30	-30 to -30	No scan!!
-40	-70 to -10	-30 to -10	
-20	-50 to +10	-30 to +10	
0	-30 to +30	-30 to +30	
20	-10 to +50	-10 to +30	
40	+10 to +70	+10 to +30	
60	+30 to +90	+30 to +30	No scan!!

D_{A} $max = 1 pmax = 50$

20	ω from step 2	ω from step 3	
-80	-120 to -40	-40 to -40	No scan!!
-60	-100 to -20	-40 to -20	
-40	-80 to 0	-40 to 0	
-20	-60 to +20	-40 to +20	
0	-40 to +40	-40 to +40	
20	-20 to +60	-20 to +40	
40	0 to +80	0 to +40	
60	+20 to +100	+20 to +40	
80	+40 to +120	+40 to +40	No scan!!

Example for $\Psi_{Imax} = \Psi_{Dmax} = 40^{\circ}$

These values of ω apply to $\phi = \chi = 0$. For other values of χ , proceed as follows:

- 1. For each value of χ use **gt e 0. 0.** χ **0**. to calculate the kappa angles required to set the cell perpendicular to the beam (i.e. so Eulerian $\phi = 0$).
- 2. Note the kappa goniometer angles at this position.
- 3. Use **dc editruns** to create a run at the noted ϕ_{Kappa} and κ values
- 4. Add the limits calculated above to the noted value of ω_{Kappa} to get the limits for ω at this goniometer setting.

Repeat for as many values of χ as required. Here are some commonly-used settings:

χ	ω _{Kappa}	к	ф _{Карра}
89.	-56.	133.	-56.
45.	-20.0	60.0	-20.

One can duplicate the coverage of reciprocal space by doing further runs but at ϕ_{Kappa} +180°.

Test the coverage and duplication by unwarping a dataset with the default UB matrix in Crysalis (with x along the beam, z vertical).