

無機材質研究所 泉 富士夫

日本セラミックス協会年会 「セラミストのためのパソコン講座」 ミニシンポジウム

2001年3月22日

			0	RIETAN	-2000)			
戻る	連む	中止	(2) 更新	ሰ ホ-ム		自動入力	プリント	ν - γν	6
F 4 2 :	http://	www2.nirir	n.go.jp/~izu	mi/rietan,	/angle_c	lispersive	/angle_disp	ersive.html	>8
) Live Ho	ome Page (③ アップル:	コンピュータ	() 카ポ	- ト @) Apple S	tore 🔘 M	1acTopia Japan	
M			000	Dat	+-				-
-IXI	ulur	-urp	ose	Edi	TE	U LT		ng J	SL
			CT.	AN	0	01	2		
		R	EI.		-2	UL	JU		
				-		a. 11		a	
My evi 	i image of Rit olving poison	ous air.	is a white d	ewy flowei	r of lotu	is floating	quiet on a m	iuddy pond	
Th	is is the reas	on why the	present pag	e has a bac	kground	of pure v	/hite.		
E									
Cont	ents								
	1 Distr	cibution		TAN-20	00 a	nd the	license		
	agre	ement			vv u	nu cho	9		
	2. What	. can we	e do wit	h RIET	AN-2	000?			
	3. Refin	ne diffe	rent						
	4. LINK	differe	nt	e and a		95U 00	ftwara		
	6 Arch	ive edi	ting an	s anu a id conv	ersin	n util	ities		
	7. Arch	ive file	s for RI	ETAN-	2000	. ORFF	E, and t	emplates	
	8. Sour	ce prog	rams an	d Fortr	an co	mpile	rs		
	9. Temp	plate fi	les						
1	O. PDF	documer	nts and	other o	copyr	ighted	article	S	
1	1. Know	n probi	ems d. cugao	ationa					
1	Z. reeu	unceme	u suyye: nte	5110115					
1	v. mino	ancoming	revisio	on unde	r cor	sidera	tion/		
1	4. Forth	ICOMING				Contraction of the second second	and the second		
1 1 1	4. Forti cons	truction	n						
1 1 1	4. Fortl cons 5. Ackn	truction owledge	n ments						

- 🔵 リンク:http://www2.nirim.go.jp/~izumi/rietan/angle_dispersive/angle_dispersive.html#Distribution

11

I

三種のパターン分解法とリートベルト法の比較

	局所的プロファイル・ フィッティング法	Pawley 法	Le Bail 法	リートベルト法
解析の目的	パターン分解	パターン分解 格子定数の精密化	<mark>パターン分解</mark> 格子定数の精密化	構造パラメータと 格子定数の精密化
解析対象範囲	パターンの一部	パターン全体	パターン全体	パターン全体
プロファイル ピーク位置 積分強度	2θ依存性なし 独立パラメータ 独立パラメータ	2θ依存性あり 格子定数の関数 独立パラメータ	2 <i>θ</i> 依存性あり 格子定数の関数 <mark>精密化後に計算</mark>	2 <i>θ</i> 依存性あり 格子定数の関数 構造パラメータの関数

Estimation of 'observed' integrated intensity

$$I_{ok} = \sum_{i} y_{iB} \frac{Y_{ik}}{\sum_{K} Y_{iK}}$$
$$Y_{ik} = sm_k P_k L_k |F_k|^2 f(2\theta_i - 2\theta_k)$$

Results of Le Bail refinements of fluorapatite with initial integrated intensities estimated (a) by Wilson's statistics

(b) estimated from structure parameters

部分プロファイル緩和のもとでの リートベルト解析

 $H_k = (U\tan^2\theta_k + V\tan\theta_k + W)^{1/2}$

Primary Profile Parameter: PPP (H_k) Secondary Profile Parameter (U, V, W)

- フィットのよくない(半)孤立 反射のPPPを直接,精密化する.
 PPPに関する近似や仮定はいっ さい必要ない.
- 2) すべての反射のピーク位置と積 分強度は,通常のリートベルト 解析同様,それぞれ格子定数と 構造パラメーターから計算する.

Dehydrated zeolite Li-FAU

Comparison of R_{wp} 's obtained with two different profile functions

Pseudo-Voigt function of TCH + asymmetry correction of FJC

Split-type pseudo-Voigt function + partial profile relaxation

* Angular aperture of Soller slits = 5°

Imaging of diffraction data by the MEM Sakata *et al*.

More adequate modeling of

1. disordered atomic arrangements Split-atom model

> Electron/nucleardensity distribution

2. covalent bondings

3. nonlocalized electrons

4. anharmonic thermal vibration

RIETAN-2000 + MEED = REMEDY

MEMと連携した全回折パターン・フィッ ティングによるNa-LTAの構造精密化過程 におけるR因子の変化

Idealized layered structure of $K_x Ti_{2-x/3} Li_{x/3} O_4$ (x = 0.8)

Electron-density distribution in $K_x Ti_{2-x/3} Li_{x/3} O_4$ (x = 0.8)

(100) Section of $K_x Ti_{2-x/3} Li_{x/3} O_4$ (*x* = 0.8)

MEM analyses (3 iterations)

No negative densities or ripples appear by virtue of estimation of F for truncated reflections

Fourier synthesis

Full of ripples mainly because of the truncation of small-*d* reflections

Structural model of HgBa₂CuO_{4+ δ}

HgBa₂CuO_{4+ δ} (*T*_c = 98 K)

Nuclear-density map for the paraelectric phase of KH₂PO₄

A series of structure analyses using powder diffraction data and several programs

入力ファイル == Tink ==> 入力データ

If NBEAM = 1 and NTRAN = 1 then

DSANG = 0.5:最低角で照射幅が SWIDTH となるような発散スリットの角度/°.

RGON = 185.0: ゴニオメーター半径/mm.

SWIDTH = 20.0: 試料の照射幅/mm.

- else if NBEAM = 1 and NTRAN = 2 then
 - PCOR1 = 0.5: 完全結晶の寄与の分率.
 - SABS = 1.0: (線吸収係数)×(有効厚み).
- else if NBEAM = 1 and NTRAN = 3 then
 - XMUR1 = 0.0: (線吸収係数)×(キャピラリー内試料の半径).

end if

If NBEAM = 0 then

試料に含まれる(中性)化学種と物質量. 最後に'/'を置く. 物質量は吸収補正に使 # う. 磁気散乱が観測される場合に限り, 磁性原子の元素記号の後に'*'を付加する. # 例: 'Fe*', 'Ni*'.

'0' 12.0 'P' 3.0 'Ca' 5.0 'F' 1.0 /

磁性原子名に'*'を付けたなら、LCMFF(0に固定)とCMFF(I)(I = 1~7)を磁性原
子の数と同じ行数だけ入力する.ただしLCMFFとCMFFは"International Tables,"
Vol. C, pp. 391-399中の(4.4.5.2)式と(4.4.5.3)式中のiと7つの係数である.
たとえばFe2+(化学種名としては'Fe'を入力)の場合,次のように入力する:
0 0.0263 34,960 0.3668 15.943 0.6188 5.594 -0.0119

'*'つきの原子の数はすでにわかっているので. '}'は不要.

else

試料に含まれる化学種. どんな化学種が入力できるかは, データベース・ファイル asfdc を参 # 照のこと. 行の最後に'/'を置く.

'0-' 'P' 'Ca2+' 'F-' /

end if

If NBEAM = 2 then

使用した波長における異常分散の補正項(Δf'とΔf")を化学種の数(NREAL)だけ # 繰り返し入力する.

RIETAN 中での入力文: READ(5,*) (DELTF1(J), DELTF2(J), J = 1, NREAL)

入力データの数(2×NREAL)はすでにわかっているので, '/'も'}'も不要.

end if

CIFの 徹底 活用

Other structure-drawing programs (CrystalDesigner, Diamond, etc.)

Windows 2000上でのRIETAN-2000, ORFFE, Igor Proの実行結果

ファイルー覧ウィンドウ 入力ファイル編集中のエディタ

将来計画

近未来: Mac OS X対応Carbonアプリケー ションの作成

長期的計画:東海で5年後から稼働予定の 大強度陽子加速器を利用したTOF粉末中性 子回折装置用のソフト開発

