Previous Standard and Nonconventional Settings Next

The publishing of the International Tables for Crystallography (IT), Vol A supports a general accepted classification of crystal structures. On the base of group theory there you will find a systematic description of the two- and three-dimensional arrangement of symmetry elements. The space-group types can be described as combination of symmetry elements under consideration of certain conventions (Bravais lattices etc.). Even in the monoclinic crystal system one can define the structures using different basis vectors, i.e. unit cell settings. In these cases the absolute arrangement of symmetry elements will be changed, too. But also in other crystal systems (e.g. trigonal, tetragonal, cubic) different origins or basis vectors are described (and allowed). Often they will be caused by the defined conventions which sometimes don't enables a clear description of space-group symmetry. However, especially the change of origin is unproblematically because these settings are documented additionally in detail in IT.

In contrast to that, for orthorhombic space-group types only one setting is given, respectively. Only for the monoclinic symmetry different cell choices are listed, but only one setting will be described in detail whereas some other will be given in a shorter form. The consequence of a simple permutation of the basis vectors is described in the introduction part of the IT (Vol A). Considering this permutation and the different cell choices in the monoclinic system in maximum 18 different settings must be distinguished. Especially because of the implementation of group-subgroup relations it prooves to be necessary to consider all these different settings listed in Tab. 4.3.1 (Vol A) in IT. Therefore diffractograms can be calculated for more than 740 different settings implemented in the symmetry file pcwspgr.dat.

Within PowderCell only these settings will be regarded as standard settings which are described in IT in detail (more than 230!). This includes the settings differed by a shifted origin, but not the different settings and cell choices given for the monoclinic space-group types.

In contrast to the numbering of settings in the former DOS version the numbering here is based on the order of Tab. 4.3.1 in the IT. This seemed to be consequently and simplified the automatism of the transformation procedure within the program.


Monoclinic setting numbers  |  Orthorhombic settings

3  |   4  |   5  |   6  |   7  |   8  |   9  |   10  |   11  |   12  |   13  |   14  |   15  |  


In the monoclinic crystal system either 6 or 18 settings can be derived in dependence of the space-group type, respectively. These settings described in detail in IT correspond to the settings given in the column 1 and 3 of the following table. Because of the consideration of all settings incompatibilities result to the numbering of settings of the former DOS version. The assignments of the setting numbers between DOS and Windows version is changing as follows: 1 will be 1, 2 transforms to 7, 3 to 13, 4 will be changed to 3, 5 to 9 and the 6. setting will be described by setting number 15. PowderCell converts the structure files of the DOS version automatically. However, a message will be given as hint which must be confirmed that the conversion is really necessary. For new constructed parameter files it is urgent to use the following numbers of settings! These will be given in the following table as number of row or in several cases as number in brackets behind the Hermann-Mauguin symbol.


Monoclinic Settings
RGNR
1
2
3
4
5
6
3
 P  1 2 1   P  1 2 1   P  1 1 2   P  1 1 2   P  2 1 1   P  2 1 1 
4
 P  1 21 1   P  1 21 1   P  1 1 21   P  1 1 21   P  21 1 1   P  21 1 1 
5
 C  1 2 1   A  1 2 1   A  1 1 2   B  1 1 2   B  2 1 1   C  2 1 1 
    A  1 2 1 (7)  C  1 2 1 (8)  B  1 1 2 (9)  A  1 1 2 (10)  C  2 1 1 (11)  B  2 1 1 (12)
     I  1 2 1 (13)   I  1 2 1 (14)   I  1 1 2 (15)   I  1 1 2 (16)   I  2 1 1 (17)   I  2 1 1 (18)
6
 P  1 m 1   P  1 m 1   P  1 1 m   P  1 1 m   P  m 1 1   P  m 1 1 
7
 P  1 c 1   P  1 a 1   P  1 1 a   P  1 1 b   P  b 1 1   P  c 1 1 
    P  1 n 1 (7)  P  1 n 1 (8)  P  1 1 n (9)  P  1 1 n (10)  P  n 1 1 (11)  P  n 1 1 (12)
    P  1 a 1 (13)  P  1 c 1 (14)  P  1 1 b (15)  P  1 1 a (16)  P  c 1 1 (17)  P  b 1 1 (18)
8
 C  1 m 1   A  1 m 1   A  1 1 m   B  1 1 m   B  m 1 1   C  m 1 1 
    A  1 m 1 (7)  C  1 m 1 (8)  B  1 1 m (9)  A  1 1 m (10)  C  m 1 1 (11)  B  m 1 1 (12)
     I  1 m 1 (13)   I  1 m 1 (14)   I  1 1 m (15)   I  1 1 m (16)   I  m 1 1 (17)   I  m 1 1 (18)
9
 C  1 c 1   A  1 a 1   A  1 1 a   B  1 1 b   B  b 1 1   C  c 1 1 
    A  1 n 1 (7)  C  1 n 1 (8)  B  1 1 n (9)  A  1 1 n (10)  C  n 1 1 (11)  B  n 1 1 (12)
     I  1 a 1 (13)   I  1 c 1 (14)   I  1 1 b (15)   I  1 1 a (16)   I  c 1 1 (17)   I  b 1 1 (18)
10
 P  1 2/m 1   P  1 2/m 1   P  1 1 2/m   P  1 1 2/m   P  2/m 1 1   P  2/m 1 1 
11
 P  1 21/m 1   P  1 21/m 1   P  1 1 21/m   P  1 1 21/m   P  21/m 1 1   P  21/m 1 1 
12
 C  1 2/m 1   A  1 2/m 1   A  1 1 2/m   B  1 1 2/m   B  2/m 1 1   C  2/m 1 1 
    A  1 2/m 1 (7)  C  1 2/m 1 (8)  B  1 1 2/m (9)  A  1 1 2/m (10)  C  2/m 1 1 (11)  B  2/m 1 1 (12)
     I  1 2/m 1 (13)   I  1 2/m 1 (14)   I  1 1 2/m (15)   I  1 1 2/m (16)   I  2/m 1 1 (17)   I  2/m 1 1 (18)
13
 P  1 2/c 1   P  1 2/a 1   P  1 1 2/a   P  1 1 2/b   P  2/b 1 1   P  2/c 1 1 
    P  1 2/n 1 (7)  P  1 2/n 1 (8)  P  1 1 2/n (9)  P  1 1 2/n (10)  P  2/n 1 1 (11)  P  2/n 1 1 (12)
    P  1 2/a 1 (13)  P  1 2/c 1 (14)  P  1 1 2/b (15)  P  1 1 2/a (16)  P  2/c 1 1 (17)  P  2/b 1 1 (18)
14
 P  1 21/c 1   P  1 21/a 1   P  1 1 21/a   P  1 1 21/b   P  21/b 1 1   P  21/c 1 1 
    P  1 21/n 1 (7)  P  1 21/n 1 (8)  P  1 1 21/n (9)  P  1 1 21/n (10)  P  21/n 1 1 (11)  P  21/n 1 1 (12)
    P  1 21/a 1 (13)  P  1 21/c 1 (14)  P  1 1 21/b (15)  P  1 1 21/a (16)  P  21/c 1 1 (17)  P  21/b 1 1 (18)
15
 C  1 2/c 1   A  1 2/a 1   A  1 1 2/a   B  1 1 2/b   B  2/b 1 1   C  2/c 1 1 
    A  1 2/n 1 (7)  C  1 2/n 1 (8)  B  1 1 2/n (9)  A  1 1 2/n (10)  C  2/n 1 1 (11)  B  2/n 1 1 (12)
     I  1 2/a 1 (13)   I  1 2/c 1 (14)   I  1 1 2/b (15)   I  1 1 2/a (16)   I  2/c 1 1 (17)   I  2/b 1 1 (18)


Orthorhombic setting numbers  |  Monoclinic settings

20 |  25 |  30 |  35 |  40 |  45 |  50 |  55 |  60 |  65 |  70 | 


Please notice the specific settings of the space-group types 48, 50, 59 68 and 70! There you must distinguish between 12 different settings resulting from the different choice of origins (look Tab. 4.3.1 in IT ).
For new constructed parameter files it is urgent to use the following numbers of settings! These will be given in the following table as number of column or in several cases as number in brackets behind the Hermann-Mauguin symbol.


Orthorhombic Settings
RGNR
1
2
3
4
5
6
16
 P  2 2 2   P  2 2 2   P  2 2 2   P  2 2 2   P  2 2 2   P  2 2 2 
17
 P  2 2 21   P  2 2 21   P  21 2 2   P  21 2 2   P  2 21 2   P  2 21 2 
18
 P  21 21 2   P  21 21 2   P  2 21 21   P  2 21 21   P  21 2 21   P  21 2 21 
19
 P  21 21 21   P  21 21 21   P  21 21 21   P  21 21 21   P  21 21 21   P  21 21 21 
20
 C  2 2 21   C  2 2 21   A  21 2 2   A  21 2 2   B  2 21 2   B  2 21 2 
21
 C  2 2 2   C  2 2 2   A  2 2 2   A  2 2 2   B  2 2 2   B  2 2 2 
22
 F  2 2 2   F  2 2 2   F  2 2 2   F  2 2 2   F  2 2 2   F  2 2 2 
23
  I  2 2 2    I  2 2 2    I  2 2 2    I  2 2 2    I  2 2 2    I  2 2 2 
24
  I  21 21 21    I  21 21 21    I  21 21 21    I  21 21 21    I  21 21 21    I  21 21 21 
25
 P  m m 2   P  m m 2   P  2 m m   P  2 m m   P  m 2 m   P  m 2 m 
26
 P  m c 21   P  c m 21   P  21 m a   P  21 a m   P  b 21 m   P  m 21 b 
27
 P  c c 2   P  c c 2   P  2 a a   P  2 a a   P  b 2 b   P  b 2 b 
28
 P  m a 2   P  b m 2   P  2 m b   P  2 c m   P  m 2 m   P  c 2 a 
29
 P  c a 21   P  b c 21   P  21 a b   P  21 c a   P  c 21 b   P  b 21 a 
30
 P  n c 2   P  c n 2   P  2 n a   P  2 a n   P  b 2 n   P  n 2 b 
31
 P  m n 21   P  n m 21   P  21 m n   P  21 n m   P  n 21 m   P  m 21 n 
32
 P  b a 2   P  b a 2   P  2 c b   P  2 c b   P  c 2 a   P  c 2 a 
33
 P  n a 21   P  b n 21   P  21 n b   P  21 c n   P  c 21 n   P  n 21 a 
34
 P  n n 2   P  n n 2   P  2 n n   P  2 n n   P  n 2 n   P  n 2 n 
35
 C  m m 2   C  m m 2   A  2 m m   A  2 m m   B  m 2 m   B  m 2 m 
36
 C  m c 21   C  c m 21   A  21 m a   A  21 a m   B  b 21 m   B  m 21 b 
37
 C  c c 2   C  c c 2   A  2 a a   A  2 a a   B  b 2 b   B  b 2 b 
38
 A  m m 2   B  m m 2   B  2 m m   C  2 m m   C  m 2 m   A  m 2 m 
39
 A  b m 2   B  m a 2   B  2 c m   C  2 m b   C  m 2 a   A  c 2 m 
40
 A  m a 2   B  b m 2   B  2 m b   C  2 c m   C  c 2 m   A  m 2 a 
41
 A  b a 2   B  b a 2   B  2 c b   C  2 c b   C  c 2 a   A  c 2 a 
42
 F  m m 2   F  m m 2   F  2 m m   F  2 m m   F  m 2 m   F  m 2 m 
43
 F  d d 2   F  d d 2   F  2 d d   F  2 d d   F  d 2 d   F  d 2 d 
44
  I  d d 2    I  d d 2    I  2 d d    I  2 d d    I  d 2 d    I  d 2 d 
45
  I  b a 2    I  b a 2    I  2 c b    I  2 c b    I  c 2 a    I  c 2 a 
46
  I  m a 2    I  b m 2    I  2 m b    I  2 c m    I  c 2 m    I  m 2 a 
47
 P  m m m   P  m m m   P  m m m   P  m m m   P  m m m   P  m m m 
48
 P  n n n (1)  P  n n n (3)  P  n n n (5)  P  n n n (7)  P  n n n (9)  P  n n n (11)
 
 P  n n n (2)  P  n n n (4)  P  n n n (6)  P  n n n (8)  P  n n n (10)  P  n n n (12)
49
 P  c c m   P  c c m   P  m a a   P  m a a   P  b m b   P  b m b 
50
 P  b a n (1)  P  b a n (3)  P  n c b (5)  P  n c b (7)  P  c n a (9)  P  c n a (11)
 
 P  b a n (2)  P  b a n (4)  P  n c b (6)  P  n c b (8)  P  c n a (10)  P  c n a (12)
51
 P  m m a   P  m m b   P  b m m   P  c m m   P  m c m   P  m a m 
52
 P  n n a   P  n n b   P  b n n   P  c n n   P  n c n   P  n a n 
53
 P  m n a   P  n m b   P  b m n   P  c n m   P  n c m   P  m a n 
54
 P  c c a   P  c c b   P  b a a   P  c a a   P  b c b   P  b a b 
55
 P  b a m   P  b a m   P  m c b   P  m c b   P  c m a   P  c m a 
56
 P  c c n   P  c c n   P  n a a   P  n a a   P  b n b   P  b n b 
57
 P  b c m   P  c a m   P  m c a   P  m a b   P  b m a   P  c m b 
58
 P  n n m   P  n n m   P  m n n   P  m n n   P  n m n   P  n m n 
59
 P  m m n (1)  P  m m n (3)  P  n m m (5)  P  n m m (7)  P  m n m (9)  P  m n m (11)
 
 P  m m n (2)  P  m m n (4)  P  n m m (6)  P  n m m (8)  P  m n m (10)  P  m n m (12)
60
 P  b c n   P  c a n   P  n c a   P  n a b   P  b n a   P  c n b 
61
 P  b c a   P  c a b   P  b c a   P  c a b   P  b c a   P  c a b 
62
 P  n m a   P  m n b   P  b n m   P  c m n   P  m c n   P  n a m 
63
 C  m c m   C  c m m   A  m m a   A  m a m   B  b m m   B  m m b 
64
 C  m c a   C  c m b   A  b m a   A  c a m   B  b c m   B  m a b 
65
 C  m m m   C  m m m   A  m m m   A  m m m   B  m m m   B  m m m 
66
 C  c c m   C  c c m   A  m a a   A  m a a   B  b m b   B  b m b 
67
 C  m m a   C  m m b   A  b m m   A  c m m   B  m c m   B  m a m 
68
 C  m m n (1)  C  m m n (3)  A  n m m (5)  A  n m m (7)  B  m n m (9)  B  m n m (11)
 
 C  m m n (2)  C  m m n (4)  A  n m m (6)  A  n m m (8)  B  m n m (10)  B  m n m (12)
69
 F  m m m   F  m m m   F  m m m   F  m m m   F  m m m   F  m m m 
70
 F  d d d (1)  F  d d d (3)  F  d d d (5)  F  d d d (7)  F  d d d (9)  F  d d d (11)
 
 F  d d d (2)  F  d d d (4)  F  d d d (6)  F  d d d (8)  F  d d d (10)  F  d d d (12)
71
  I  m m m    I  m m m    I  m m m    I  m m m    I  m m m    I  m m m 
72
  I  b a m    I  b a m    I  m c b    I  m c b    I  c m a    I  c m a 
73
  I  b c a    I  c a b    I  b c a    I  c a b    I  b c a    I  c a b 
74
  I  m m a    I  m m b    I  b m m    I  c m m    I  m c m    I  m a m 


© Dr. Gert Nolze & Werner Kraus (1998)

Federal Institute for Materials Research and Testing
Unter den Eichen 87, D-12205 Berlin,
Germany