Marshing: Past, Present and Future

Ton Spek

National Single Crystal Service Facility

Utrecht University

The Netherlands

to be Marshed; Marshing

- My first encounter with the missionary work of Dick Marsh on missed higher symmetry was with the 1979 note in Inorganic Chemistry entitled:
 - 'Some Incorrect Space Groups in Inorg. Chem, Volume 16'.
- Since then many Marsh and 'look-alike' papers appeared, correcting many more SG-assignments.
- New Verb: to be Marshed
- However: MS-Word will change 'Marshing' into 'Mashing' .. as happened initially in the ACA-office to the title of my submitted abstract...

25 Years of Marshing

• Obvious Question:

Is the Missed Symmetry Issue now Solved after 25 years?

• Answer:

- -Yes: For Publications in the IUCr Journals.
- No: For Publications in Chemical Journals.

Illustrative Example

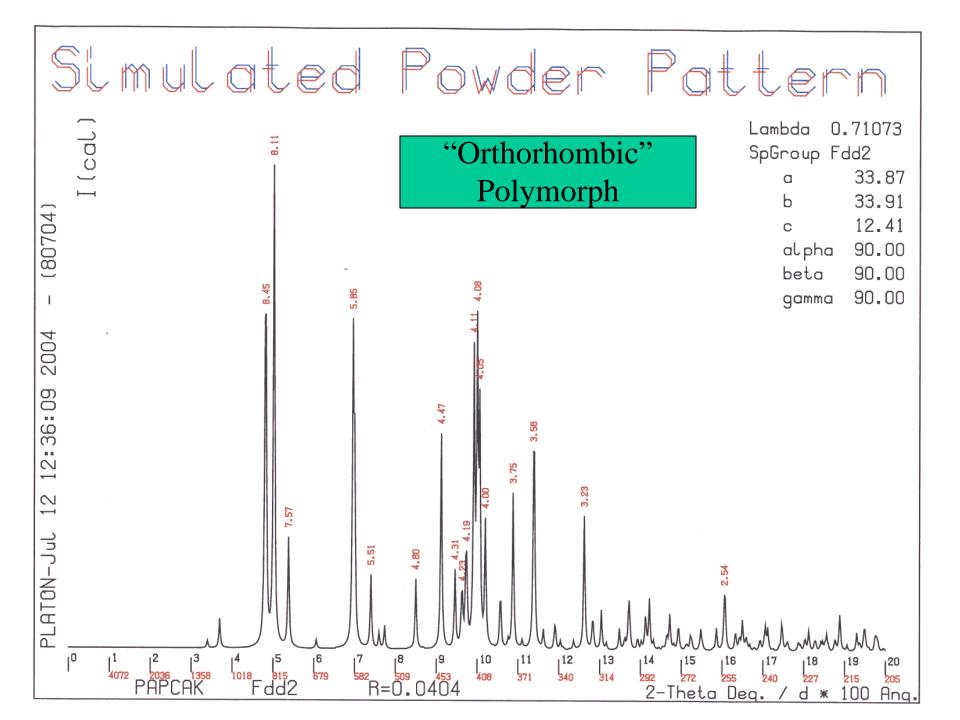
- A survey by Dick Marsh in 1997 of all structures published in space group Cc showed that about 10% of the assignments was wrong.
- A new survey by Dick Marsh in 2004 surprisingly showed that this percentage is still around 10%.
- Note: none of the additional 164 corrected assignments were from Acta Cryst. journals.
- Revisions to C2/c, Fdd2, R-3c etc.

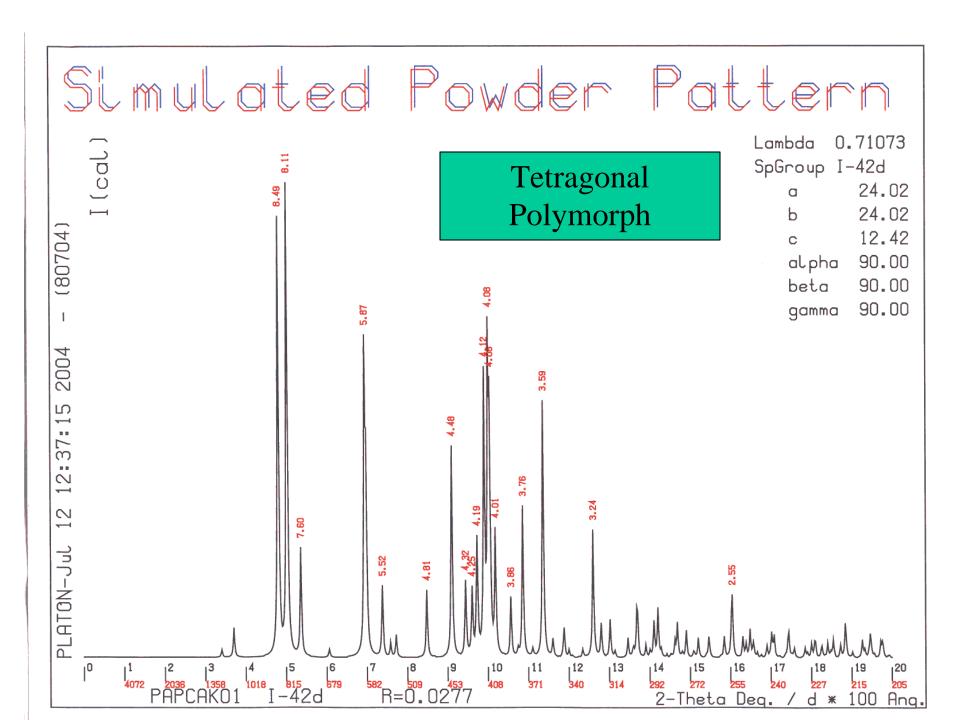
ORGANOMETALLICS

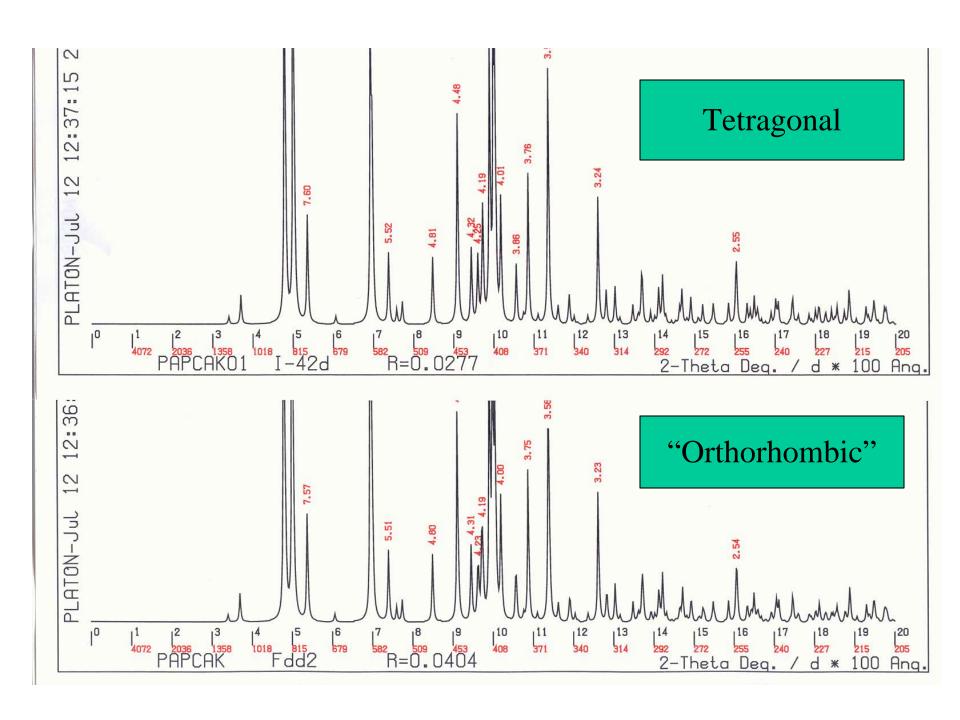
- Automatic Analysis with PLATON/ADDSYM
- Release: CSD 2003 + 2 UPDATES
- # of Alerts for missed or pseudo-symmetry:

	Year-Range	Entries	Space Group Alerts
•	1982-1989	2687	28
•	1990-1995	5194	62
•	1996-1999	5688	88
•	2000-2004	6550	117

Examples from OM


Organometallics: Fdd2 🛂 I-42d


'Orthorhombic Polymorph': PAPCAK


Private Communication to the CSD: I-42d

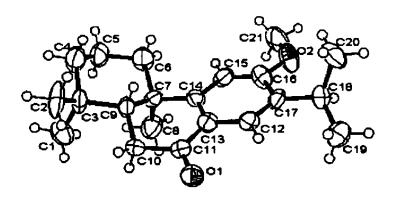
Tetragonal Polymorph: PAPCAK01

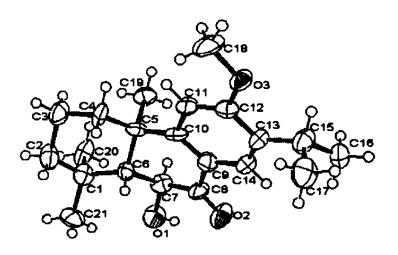
Identical Simulated Powder Patterns!!

RECENT CSD UPDATES

• Version: CSD Nov 2003 + 2 Updates

• 22530 Entries for 2003 & early 2004 papers

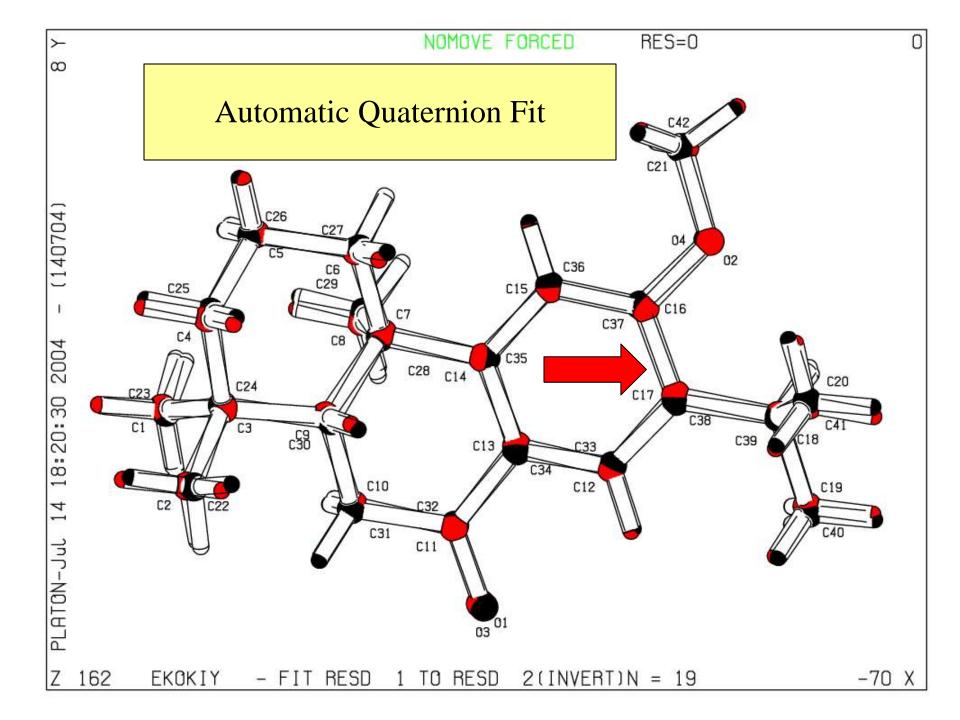

• Default PLATON/ADDSYM run **4** 458 New Hits requiring close examination (2%).


... Subset of 19 out of 458 Alerts ...

WUSDOD	Cc	R=0.070	mC=>mC	0.0	0	0	0.000	0.00	0.000	989	c2/c
WUSLIF	Cc	R=0.049	mC=>mC	0.0	0	0	0.000	0.00	0.000	1009	c2/c
WUSLIF01	Cc	R=0.049	mC=>mC	0.0	0	0	0.000	0.00	0.000	100	s C2/c
WUWNAD	Cc	R=0.054	mC=>mC	0.0	0	0	0.000	0.00	0.000	1009	s C2/c
WUXTOY	P21	R=0.059	mP=>mP	0.0	0	0	0.000	0.00	0.000	809	s P21/c
WUYXAP	12	R=0.063	mI=>mC	0.0	0	0	0.000	0.00	0.000	91	s C2/m
WUYZIZ	14	R=0.065	tI=>tI	0.0	0	0	0.000	0.00	0.000	1009	14/m
WUZQIR	P21	R=0.039	mP=>mP	0.0	0	0	0.000	0.00	0.000	909	P21/c
WUZXAQ	P1	R=0.056	aP=>aP	0.0	0	0	0.000	0.00	0.000	859	s P-1
XABFAI	P21	R=0.089	mP=>mP	0.0	0	0	0.000	0.00	0.243	939	P21/c
XUMDUE	P21/c	R=0.047	mP=>mC	0.0	0	0	0.000	0.00	0.248	s 1009	s C2/m
XURVUB	Cc	R=0.136	mC=>mC	0.0	0	0	0.000	0.00	0.000	1009	c2/c
XUSMAZ	P212121	R=0.038	oP=>oP	0.0	0	0	0.000	0.00	0.000	859	Pnma
XUSZOA	C2/c	R=0.092	mC=>tI	0.0	0	0	0.000	0.03	0.062	1009	s I41/acd
XUVGUQ	P1		aP=>oC	0.0	0	0	0.000	0.00	0.000	979	cmc21
XUVNAD	P-1	R=0.040	aP=>aP	0.0	0	0	0.000	0.00	0.000	s 1009	s P-1
XUVNAD01	P-1	R=0.041	aP=>aP	0.0	0	0	0.000	0.00	0.000	s 1009	s P-1
XUYDOK	C2	R=0.024	mC=>mC	0.0	0	0	0.000	0.00	0.000	1009	s C2/c
XUYKOR	P63/m	R=0.038	hP=>hP	0.0	0	0	0.000	0.00	0.094	1009	P63/mmc

EKOCIY Pc -> P21/c

EKOKOE P1 -> P-1



X-ray structure of 2 (CCDC 209202)

X-ray structure of 8 (CCDC 209203)

Tetrahedron, 59 (2003) 5737-5741

Comparison of the Bonds of the Fitted Residues for EKOKIY

Resd#1	Resd#2	Dist#1	Dist#2	Diff	Diff/Sig	
O(1) -C(11)	O(3) -C(32)	1.188(11)	1.264(11)	-0.076	-4.9	
O(2) - C(16)	O(4) - C(37)	1.360(12)	1.362(14)	-0.002	-0.1	
O(2) -C(21)	O(4) - C(42)	1.427(14)	1.406(17)	0.021	1.0	
C(1) -C(3)	C(23)-C(24)	1.551(18)	1.498(15)	0.053	2.2	
C(2) -C(3)	C(22)-C(24)	1.475(16)	1.614(16)	-0.139	-6.1 <	
C(3) -C(4)	C(24)-C(25)	1.536(12)	1.550(17)	-0.014	-0.7	
C(3) -C(9)	C(24)-C(30)	1.506(14)	1.608(12)	-0.102	-5.5	
C(4) -C(5)	C(25)-C(26)	1.558(16)	1.405(19)	0.153	6.2	
C(5) -C(6)	C(26)-C(27)	1.484(16)	1.577(15)	-0.093	-4.2	
C(6) -C(7)	C(27)-C(28)	1.473(14)	1.575(10)	-0.102	-5.9	
C(7) -C(8)	C(28)-C(29)	1.567(16)	1.530(14)	0.037	1.7	
C(7) -C(9)	C(28)-C(30)	1.561(14)	1.543(11)	0.018	1.0	
C(7) -C(14)	C(28)-C(35)	1.494(13)	1.569(10)	-0.075	-4.6	
C(9) -C(10)	C(30)-C(31)	1.551(11)	1.513(12)	0.038	2.3	
C(10)-C(11)	C(31)-C(32)	1.493(13)	1.514(13)	-0.021	-1.1	
C(11)-C(13)	C(32)-C(34)	1.506(12)	1,426(13)	0.080	4.5	
C(12)-C(13)	C(33)-C(34)	1.411(13)	1.405(13)	0.006	0.3	
C(12)-C(17)	C(33)-C(38)	1.421(13)	1.317(12)	0.104	5.9	
C(13)-C(14)	C(34)-C(35)	1.372(12)	1.417(11)	-0.045	-2.8	
C(15)-C(16)	C(36)-C(37)	1.414(13)	1.344(13)	0.070	3.8	
C(16)-C(17)	C(37)-C(38)	1.329(13)	1.490(11)	-0.161	-9.5 <	
C(17)-C(18)	C(38)-C(39)	1.528(15)	1.503(13)	0.025	1.3	
C(18)-C(19)	C(39)-C(40)	1.47(2)	1.554(14)	-0.084	-3.4	
C(18)-C(20)	C(39)-C(41)	1.479(18)	1.552(16)	-0.073	-3.0	

BAMYEU

Dalton Trans 2003,134-140

Cc

Dick?

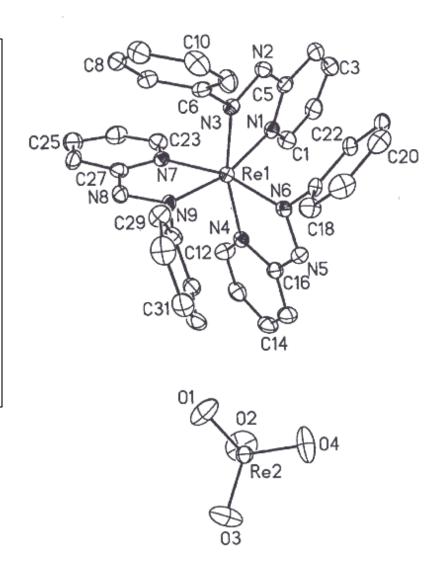
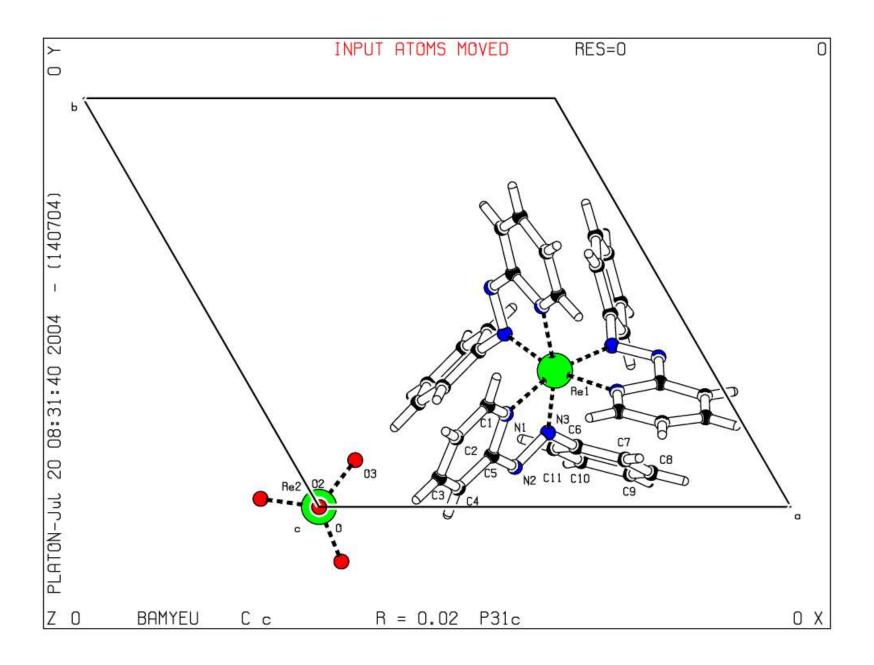
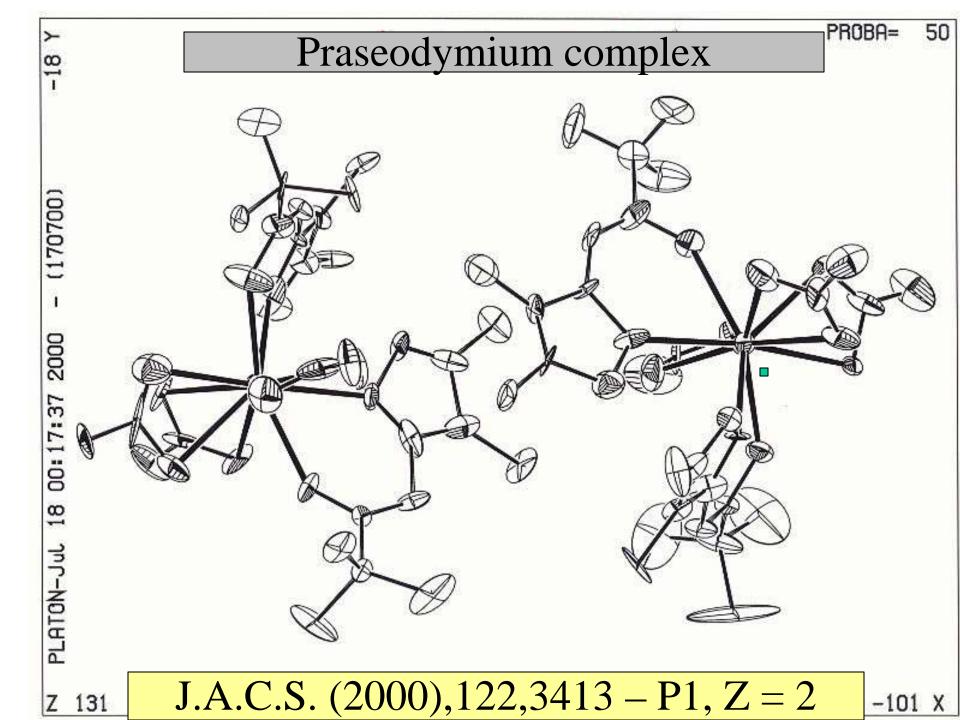
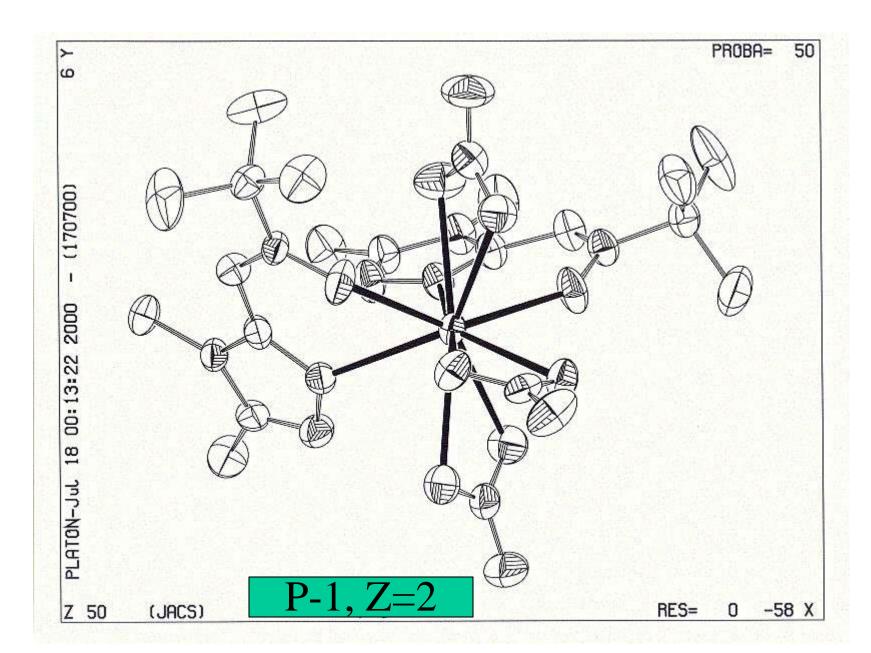



Fig. 4 A perspective view of [Re(L⁵)₃]ReO₄ 4a. The atoms are represented by their 30% thermal probability ellipsoids.


Sources of the Problem


- Education: Acta Cryst. Author query:

 Please teach me: what does it mean 'space group incorrect'
- Structures often solve only in lower symmetry space groups (e.g. P1)
- Authors either forget to check for or do not know how to manage transformation to higher symmetry space groups
- E.g. the origin shift (P-1) or origin choise (C2/c) problems.

Residual Problems

- Chemists Perception: Space Group Terror
- Crystallographic data 'hidden' in suppl.mat. and not readily available for the referee.
- Pseudo-symmetry:
 - chiral molecules with Z'=2,
 - Angle close to 90 degrees but not exactly. e.g. 'Orthorhombic with 90 90 89.50(1)
- No observed structure factors etc. available for detailed analysis.
- Interesting author response!

Concluding Remarks

- All Journals should implement an automated validation scheme for crystal structures
- Free IUCr CHECKCIF server
- Use Free Software in-house
- (Space Group) ALERTS should be addressed by Authors and validated by knowledgeable referees.
- Structure Factors should be deposited being the primary data (required for detailed analysis).
- We need the expertise of Dick Marsh for the final word

Thanks!

 Dick Marsh – For his sustained efforts and service to the crystallographic community

• Yvon LePage – For the MISSYM algorithm, the basis of ADDSYM

 The Organisers of this Symposium Larry Falvello & Alberto Albinati