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K. Burger

Institut für Kristallographie der Universität

Charlottenstraße 33

D – 72070 Tübingen

Germany

e-mail: karsten.burger@uni-tuebingen.de
Abstract

Three new „Tübingen“ versions of the japanese Maximum Entropy method (MEM) program MEED (Kumazawa, Kubota, Takata & Sakata (1995), J. Apll. Cryst. 26, 453-457) are presented. Changes to the original code include: modernization of the programming style, automatization of the constraint divergence error handling, and addition of a Fourier transformation program capable of reading the MEM-input files. The new programs are named MEED, MEND and MEEDCAB: 1. With MEED strictly positive scattering densities can be calculated (e.g. electron densities from x-ray data); 2.  with MEND positive or negative densities using neutron scattering data. 3. MEEDCAB is an extended version of MEED incorporation a new constraint function for acentric reflections with ambiguous phase, which are obtained from certain anomalous scattering experiments, e.g. powder diffraction using the absorption edge of one type of resonantly scattering atoms. 

The programs are written in FORTRAN77 and are available with complete source code at internet address http://www.uni-tuebingen.de/uni/pki . The publication of these programs is intended to help to overcome the problem of limited availability of MEM programs – currently the original MEED program is available via internet from Japan, but not MEND. 

1. Introduction

 The Maximum-Entropy method has been used in many fields of crystallography, as recently reviewed by Gilmore (1996). It is a non-linear calculation that has its roots in information and probability theory, and is originally designed to reconstruct the most probable and least biased  probability distribution in an underdetermined situation. In crystallography it is often used to calculate electron densities which are strictly positive, using single crystal or powder diffraction data. Usually a MEM-density is less affected by missing reflections and series termination errors as compared with an ordinary Fourier density. Some interesting crystallographic applications published are: the case of poor resolution in one given direction (Papoular, Zheludev, Ressouche & Schweizer, 1995); thermal vibrations from single-crystal neutron diffraction data (Takata, Sakata, Kumazawa, Larsen & Iversen, 1994); model-free search for extra-framework cations in zeolites using powder diffraction (Papoular & Cox, 1995); extraction of strictly positive integrated intensities from strongly overlapping reflections in powder patterns (Sivia & David, 1994;  however the availability of the program is very limited); quasicrystals (Haibach & Steurer, 1995); disorder in crystals (Papoular, Prandl & Schiebel, 1992); the problem of overlapping reflections in Laue diffraction patterns (Popov & Bartunik, 1996); magnetisation densities from polarized neutron diffraction data (Schleger, Puig-Molina, Ressouche, Rutty & Schweizer, 1997). 

We used it mainly with data obtained from resonant (anomalous) scattering powder diffraction experiments, where Patterson, difference Patterson and partial Patterson densities can be calculated, as well as phases of structure factors of the unique reflections in the powder diagram (Burger, 1997; Burger & Prandl, 1997; Burger, Cox, Papoular & Prandl, 1998). With  these densities an ab initio structure solution is possible.

Since not all phases can be determined, and many reflections usually overlap in the powder diagram, the dataset used to calculate an electron density is systematically incomplete, and much information is lost compared with the single crystal case. A valuable feature of the MEM is, that all remaining information obtained from such a measurement can be used in the calculation of the charge density, i.e. phased, unphased, ambiguously phased and overlapping reflections, while in a Fourier calculation only the phased reflections can be used, which leads often to severe distortions of the calculated Fourier-density.

2. The MEM-Algorithm used in MEED 

The programs described here are based on the original code of the program MEED (Kumazawa, Kubota, Takata & Sakata, 1993). The algorithm used there has been described by Sakata & Toraya (1990) and Sakata, Mori, Kumazawa, Takata & Toraya (1990), and its `single-pixel-approximation´ has been further discussed by Kumazawa, Takata & Sakata (1995).  The basis is an iterative algorithm of Collins (1982). The unit cell of a crystal is divided in pixels of equal size, and the positive charge density is used in a normalized form. This discrete density is then used as if it were a probability distribution of independent events, so that the Maximum-Entropy principle of Jaynes can be applied to it (Skilling 1989; Buck & Macauley, 1991): the most probable distribution fitting the known data is the one with the maximum value of the „entropy“ 
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 with ( the normalized pixel density value, and ( a prior density incorporating prior knowledge. This number has to be maximized  subject to the constraint, that the measured data have to be reproduced. 

In the current algorithm, the measured data are included via a (2 –like sum
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 , with the calculated and observed value of the structure factor F
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 , respectively, the number of observations N, and the estimated error  
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 of an observation. The key feature of Collins´ algorithm is an approximation: new values of the density value (l of every pixel l in the cell (asymmetric unit) are calculated iteratively, 
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 the value of the cycle before. Independent  pixels are assumed, and relatively small changes of 
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. Without prior knowledge, the calculation is usually started from the uniform distribution 
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· F-constraints: for the 
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· I-constraints: for the 
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 reflections where only the intensity 
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 is known, i.e. with unknown phase,  
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· G-constraints: for closely overlapping reflections, which cannot be resolved in a powder diagram, only their intensity sum 
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 can be measured (
[image: image19.wmf]i

m

 multiplicity). In this case the `mean structure factor of the group j´ Gj is calculated, 
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· New A-constraints: in our enhanced version of MEED
, MEEDCAB,  there is the possibility to include acentric reflections with ambiguous phase 
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 , where ( is obtained from the measured intensities 
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of a certain unique reflection with the wavelength ( near to and far from the absorption edge of a single chemical element contained in the sample, and 
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 is known at this stage of the procedure, since the partial structure is determined e.g. from a partial Patterson or a difference Patterson density, which are much easier to interprete than a usual Patterson density (from one-wavelength data only). A complete description can be found in Burger (1997) and Burger & Prandl (1998). Such an ambiguity occurs with powder data, since no Bijvoet differences can be measured, and with single crystal SIR data. With the quantities 
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 known, the constraint function is  
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In the current algorithm the different constraint functions are simply summed up and then used in eq. (1). The iteration is stopped, when 
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 EINBETTEN Equation.3  [image: image31.wmf]is reached. The additional constraint of normalization of the density is fulfilled by doing it after each cycle. In the `Tübingen´ version of MEED and MEND, the restriction of relatively small changes of 
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 used in the derivation of Collins is taken into account by limiting the maximum  change of 
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 to an ad hoc value of ten percent. If the change of 
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 is larger in a certain cycle, then the value of ( is halfed, and the calculation redone. In a mathematical sense only the constraint function 
[image: image35.wmf]F

C

 is convex, the others are concave and have no unique solution (for a mathematical treatment see e.g. Wilkins, Varghese & Lehmann, 1983; Wu 1997). However they contain very important information and should not be omitted. On the other hand, the simple linear Fourier transformation can only use the F-constraints. 

In principle one should introduce an independent  `Lagrangian factor‘ (i for each constraint, and include all prior knowledge as well as each observation as extra constraints. The ´weak constraints´ (Sato, 1992) used instead in the current algorithm are surely a compromise with ease of implementation and computational costs. One could think of additional constraints, e.g. insuring smoothness of the density, and the correct Gaussian distribution of  
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 around the observations 
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. These considerations make plausible, why some authors have reported of problems, when very weak features in charge densities are studied, and proposed extensions to the current algorithm (Jauch & Palmer, 1993; de Vries, Briels & Feil, 1994; Takata & Sakata, 1996; Yamamoto, Takahashi, Ohshima, Okamura, & Yukino, 1996; Brummerstedt-Iversen, Ledet-Jensen & Danielsen, 1997). 

The algorithm of the neutron version MEND has been published by Sakata, Uno, Takata & Howard (1993). Since probabilities are always positive, and also negative scattering densities have to be modeled, two positive normalized densities 
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 describes the negative fraction of the total scattering density. In other aspects the two algorithms are the same. The key equation in the MEM-process (1) is then simply replaced by 
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and the effective scattering density is
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 with the given sums of positive and negative scattering lengths of all atoms in the unit cell. 

3. Practical aspects

The programs read a MEM-input file with the crystal parameters and reflection list, and produce an asymmetric unit density file and a documentation file. If a starting density is given, it is read before the first cycle. The asymmetric unit pixel coordinates are determined from a general algorithm by testing each pixel in the whole unit cell. The space group is input via its number and setting number as listed in the International Tables for Crystallography (1983). 

For Patterson densities, the corresponding space group without translational components has to be used (e.g. crystal: Pnma ( Patterson density: Pmmm). For MEED and MEEDCAB, the unit-cell charge sum 
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 is input, while for MEND the scattering length sums of both the positive and negative part are input. 

The programs run easily on modern desktop computers or PCs, however the calculation times and computer memory needed may become a problem with low-symmetry crystals, high pixel resolution, or with many reflections (say, more than 1000). The memory requirement is dominated by two tables of cos- and sin-values (single-precision variables), for each single pixel and each reflection. In the case of a centrosymmetric sample, only the cos-table is needed. Because of this, the programs MEED and MEND are used for a centrosymmetric sample, MEEDC and MENDC for a non-centrosymmetric sample. MEEDCAB (with the new A-constraints) is for non-centrosymmetrical samples. At the start of the main program FORTRAN source code, some parameters define the maximum pixel resolution along a cell-axis, maximum number of reflections, and maximum number of pixels in the asymmetric unit – these parameters should be adjusted and the program newly compiled in exeptional cases. 

The program FOURIER can read MEED and MEEDCAB files for all space groups and calculates the ordinary Fourier transformation. It can however only use the F-constraints information. There is a special version FOURIERN to do the Fourier-transformation using a MEND neutron case input file. As a result of the calculation, an asymmetric unit density file can be created similar to the MEM density file, or arbitrary sections and projections on these planes. The auxiliary program MECO reads the asymmetric unit  density file from either a MEM program or FOURIER, reconstructs the density of the whole unit cell, and allows to extract sections and projections from it, with plane normals parallel to a cell edge or with arbitrary direction. It creates ASCII files, which the user is supposed to view with his own graphics program.

 If the parameter 
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in eq. (1) is chosen too small, the calculation converges too slowly, if it is too large, the constraint sum 
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 changes too quickly, or produces a divergence error, when 
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 gets larger instead of smaller. The calculation of this cycle is then automatically repeated with 
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 set to half its value, until the proper convergence is achieved again. If the last cycle was successful, then 
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 is automatically increased by a small amount of  1.5 %. With this procedure the program can run in a batch queue without inspection by the user, avoiding both too small and too large values of 
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 (idea of  Th. Haibach, ETH Zürich).

In cases with a small fraction of the reflections known as unique F-constraints it may happen, that the algorithm does not converge to the target value 
[image: image51.wmf]1

=

C

. This may also be the case if a Patterson density
 is calculated, which has an extremely strong peak at the origin, so that the final density is extremely far from the uniform starting density. In the current version, the atomic density peaks have often shapes, for which (instead of the expected physical nearly-Gaussian shape) the center is somewhat exaggerated, and the diameter of the atom appears to be smaller than usual. This underlines the qualitative nature of the density calculated. 

4. Conclusion

Although the present algorithm can be developed further by incorporation of more prior knowledge in the form of additional constraints, it has also in its present form very impressive features compared with the ordinary Fourier transform: with x-ray data or in cases where it is known from the physics of an experiment that the resulting scattering densities have to be positive, this is guaranteed by the use of the program MEED. The Maximum-Entropy algorithm is less influenced by missing reflections in an incomplete dataset. Important is the possibility to use different informations together in a single calculation of a scattering density: a first set of  reflections with known structure factor 
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; a third set of the reflections with only the intensity 
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 known; and a fourth set  of groups of overlapping reflections in a powder diffraction pattern, where only the sum of intensities 
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 is known for each group. The ordinary Fourier transformation can only use the first set, but has to omit the others, while a MEM calculation can now use all four sets in the form of constraint functions of different type, which contribute to the total constraint sum C. These additional informations used improve the calculated density considerable.

New versions of the original MEED program have been presented, which have been improved in several ways: MEED for strictly positive densities, MEND for neutron data, where also negative scattering densities may occur, and MEEDCAB with the new „ambiguous phase“ A-constraints implemented. These programs run on common desktop computers, are freely available, and offer important help to crystallographers in the ab initio structure determination, especially if only powder data is available. 
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� The original code of MEED (Kumazawa et al. 1993) is available at address � HYPERLINK http://www.mcrmnuap.nagoya-u.ac.jp/mem ��http://www.mcr.nuap.nagoya-u.ac.jp/mem� .


� For a Patterson or difference Patterson density, we use only the unique reflections with their intensities � EINBETTEN Equation.3  ��� and omit overlapping reflection groups. In practical use, instead of the ordinary F-constraints, where A and B of the structure factor � EINBETTEN Equation.3  ��� are input, now at the place of A the intensity � EINBETTEN Equation.3  ��� is input, and B is set to zero. Currently here the G-constraint type cannot be used, since otherwise a special version of the G-constraint function had to be implemented. 
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