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Session 1: Introduction and Space Groups

This tutorial guide is intended to help you learn how to use ISOTROPY. All of the
features of ISOTROPY are not shown here. For more details, see the descriptions of the
commands in the user’s manual.

Start ISOTROPY by typing iso. The following message will appear on the screen:

Isotropy, Version 6.3, September 1999

Harold T. Stokes and Dorian M. Hatch

Brigham Young University

Current setting is International (new ed.) with conventional basis vectors.
%

The asterisk * is a prompt, telling you that ISOTROPY is waiting for a command. Let’s
begin with an example. Let us display the elements of space group #24 12,2:2; (D3).
We suggest that you work through these examples at the computer terminal with
ISOTROPY running.

*VALUE PARENT 24

*SHOW PARENT

*SHOW ELEMENTS

*DISPLAY PARENT

Parent Elements

24 12_12_12_1 (E|0,0,0), (C2x]0,0,1/2), (C2yl1/2,0,0), (C2z|0,1/2,0)
*

Commands are composed of keywords (VALUE, PARENT, SHOW, and ELEMENTS in the
example above) and parameters (24, in the example above). Different keywords and
parameters are separated by space characters in the command. All keywords may be
entered using either upper or lower case letters. All keywords may be abbreviated to the
first one or more characters, depending on the ambiguity of different keywords that start
with the same letter(s). For example, we could have typed V PA 24 instead of VALUE
PARENT 24. However, if we type

*V P 24

Ambiguous command: P
sk

we find that the keyword P is ambiguous, since there is another keyword, POINTGROUP,
also beginning with P, and ISOTROPY doesn’t know which you mean. ISOTROPY returns
an error message and does not try to execute the command. In our examples, we will
always enter the keywords spelled out in full and in upper-case letters. If you misspell a
keyword,

*VALUE PARRENT

Syntax error: PARRENT
%
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ISOTROPY tells you which word is misspelled and does not try to execute the command.
If you enter extra keywords or parameters at the end of a command,

*SHOW PARENT VALUE
Warning: Extra parameters ignored: VALUE
*

ISOTROPY executes the valid part of the command SHOW PARENT and then issues a
warning about the extra keyword or parameter at the end. Let us return to our example:

*VALUE PARENT 24

*SHOW PARENT

*SHOW ELEMENTS

*DISPLAY PARENT

Parent Elements

24 12_12_12_1 (E|0,0,0), (C2x|0,0,1/2), (C2yl1/2,0,0), (C2z|0,1/2,0)
*

DISPLAY commands cause output to be generated. In this case, DISPLAY PARENT causes
information about space groups to be displayed. The VALUE command selects which
space group to display. The SHOW commands control what information about each space
group is to be displayed. In this case, VALUE PARENT 24 selects space group #24. SHOW
PARENT and SHOW ELEMENTS causes the symbol for the space group and the elements of
the space group to be displayed (actually, the coset representatives with respect to the
translational subgroup of the space group). The program recognizes the international
and Schoenflies symbols for the space group as well. For example, we could have typed
VALUE PARENT I2_12_12_1 or VALUE PARENT D2-9. We can also control which kind of
space-group symbols are to be displayed.

*VALUE PARENT 24

*SHOW PARENT

*SHOW ELEMENTS

*LABEL SPACEGROUP SCHOENFLIES

*DISPLAY PARENT

Parent Elements

24 p2-9 (El0,0,0), (C2x|0,0,1/2), (C2yl1/2,0,0), (C2z|0,1/2,0)
*LABEL SPACEGROUP INTERNATIONAL

*DISPLAY PARENT

Parent Elements

24 12_12_12_1 (E|0,0,0), (C2x]0,0,1/2), (C2yl1/2,0,0), (C2z|0,1/2,0)
%

See the description of the command, LABEL SPACEGROUP, in the user’s manual for more
information. We can also control the way space-group elements are displayed.

*LABEL ELEMENTS INTERNATIONAL

*DISPLAY PARENT

Parent Elements

24 12_12_12_1 (x,y,z), (x,-y,-z+1/2), (-x+1/2,y,-z), (-x,-y+1/2,2z)
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*LABEL ELEMENTS BRADLEY-CRACKNELL

*DISPLAY PARENT

Parent Elements

24 12_12_12_1 (E|0,0,0), (C2x|0,0,1/2), (C2yl1/2,0,0), (C2z|0,1/2,0)
%

See the description of the command, LABEL ELEMENTS, in the user’s manual for more
information. We can also use different settings of space groups. For example, the

space-group setting (choice of origin and axes) for this space group is chosen different by
Bradley and Cracknell.

*SETTING BRADLEY-CRACKNELL

*DISPLAY PARENT

Parent Elements

24 12_12_12_1 (E|0,0,0), (C2yl0,0,1/2), (C2x]0,1/2,0), (C2z|1/2,0,0)
%

Sometimes it is useful to see the vectors in terms of primitive lattice vectors instead of
conventional lattice vectors.

*LABEL VECTOR PRIMITIVE

*DISPLAY PARENT

Parent Elements

24 12_12_12_1 (E|0,0,0), (C2yl1/2,1/2,0), (C2x|0,1/2,1/2), (C2z|1/2,0,1/2)
sk

By the way, we can always find out which setting and form of vectors are being used:

*DISPLAY SETTING
Current setting is Bradley-Cracknell with primitive basis vectors.
*

For that matter, we can always find out which VALUE and SHOW commands are in effect:

*DISPLAY VALUE

The following VALUE commands are in effect:
PARENT 24

*DISPLAY SHOW

The following SHOW commands are in effect:
ELEMENT, PARENT

*

We can also display information using different settings in International Tables. For
example, there are two choices of origin for space group #48. By default, the program
uses the second choice, where the the origin is at the point of inversion.

*VALUE PARENT 48

*LABEL VECTOR CONVENTIONAL
*SETTING INTERNATIONAL
*DISPLAY PARENT
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Parent Elements

48 Pnnn (E|0,0,0), (C2x|0,1/2,1/2), (C2yl1/2,0,1/2), (C2z|1/2,1/2,0), (I|0,0,0),
(sGxl|0,1/2,1/2), (SGyl1/2,0,1/2), (SGz|1/2,1/2,0)

*SETTING INTERNATIONAL ALL ORIGIN 1

*DISPLAY PARENT

Parent Elements

48 Pnon (E|0,0,0), (C2x]0,0,0), (C2yl|0,0,0), (C2z|0,0,0), (Il1/2,1/2,1/2),
(sGxl1/2,1/2,1/2), (SGyl1/2,1/2,1/2), (SGz|1/2,1/2,1/2)

sk

The different settings for monoclinic and rhombohedral space groups are also available.
See the command, SETTING INTERNATIONAL in the user’s manual for more information.
The settings and forms of symbols that you prefer can be written into the file, iso.ini,
which the program will read and execute when it starts. For example, suppose that you
want elements to be displayed using the notation of International Tables and that you
want to always use the first origin choice. Then you would create a file, iso.ini, with the
following lines:

LABEL ELEMENT INTERNATIONAL
SETTING INTERNATIONAL ALL ORIGIN 1

and when the program starts it would read and execute those commands:

Isotropy, Version 6.3, September 1999

Harold T. Stokes and Dorian M. Hatch

Brigham Young University

Commands from iso.ini:

*LABEL ELEMENT INTERNATIONAL

*SETTING INTERNATIONAL ALL ORIGIN 1

End of commands from iso.ini.

Current setting is International (new ed.) with conventional basis vectors.
sk

Now let us examine some of the other options for the DISPLAY PARENT command. We
can select space groups with a monoclinic base-centered lattice:

*CANCEL SHOW ALL
*CANCEL VALUE ALL
*SHOW PARENT
*VALUE LATTICE MC
*DISPLAY PARENT
Parent

5 C2

8 Cm

9 Cc

12 C2/m
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15 C2/c
*

Note that the CANCEL command can remove SHOW and VALUE commands that have been
previously executed. See the description for the command, VALUE LATTICE, in the user’s
manual for a list of symbols for the the lattices. We can also select space groups with
crystal class 2/m:

*CANCEL VALUE LATTICE
*VALUE POINTGROUP 2/M
*DISPLAY PARENT
Parent

10 P2/m

11 P2_1/m

12 C2/m

13 P2/c

14 P2_1/c

15 C2/c

%

See the description for the command, VALUE POINTGROUP, in the user’s manual for a list
of symbols for the point groups. We can display the generating elements of the space

group:

*CANCEL VALUE POINTGROUP

*VALUE PARENT 24

*SHOW GENERATORS

*DISPLAY PARENT

Parent Generators

24 12_12_12_1 (C2z|0,1/2,0), (C2x|0,0,1/2)
*

We can display the Wyckoff positions:

*CANCEL SHOW GENERATORS

*SHOW WYCKOFF VECTOR

*DISPLAY PARENT

Parent Wyckoff Points

24 12_12_12_1 a (x,0,1/4), b (1/4,y,0), c (0,1/4,z), d (x,y,2)
*

We can also display all of the points for each position:

*SHOW WYCKOFF VECTOR ALL
*DISPLAY PARENT

Parent Wyckoff Points Coordinates
24 12_12_12_1 a (x,0,1/4), (-x+1/2,0,-1/4)
b (1/4,y,0), (1/4,-y,1/2)

C (0,1/4,z), (0,-1/4,-z+1/2)
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d (x,y,2), (x,-y,-z+1/2), (-x+1/2,y,-2),
(‘X,‘Y+1/2,Z)
*

We can select a particular position:

*CANCEL SHOW WYCKOFF VECTOR ALL
*VALUE WYCKOFF A

*DISPLAY PARENT

Parent Wyckoff Points

24 12_12_12_1 a (x,0,1/4)

%

We can show the point group of the position:

*SHOW WYCKOFF POINTGROUP

*DISPLAY PARENT

Parent Wyckoff Points, Point Groups
24 12_12_12_1 a (x,0,1/4) C2

sk

(5 is the Schoenflies symbol for the point group. If we want the international symbol 2
to be displayed,

*LABEL POINTGROUP INTERNATIONAL

*DISPLAY PARENT

Parent Wyckoff Points, Point Groups
24 12_12_12_1 a (x,0,1/4) 2

sk

We can also show the elements of the point group:

*SHOW WYCKOFF ELEMENTS

*DISPLAY PARENT

Parent Wyckoff Points Point Group Elements

24 12_12_12_1 a (x,0,1/4) 2 (E10,0,0), (C2x|0,0,1/2)
%

We can select values for the parameters x, y, z in the Wyckoff positions and display the
atomic coordinates:

*CANCEL SHOW WYCKOFF POINTGROUP

*CANCEL SHOW WYCKOFF ELEMENTS

*VALUE WYCKOFF XYZ 0.245 0 O

*SHOW WYCKOFF VECTOR ALL

*DISPLAY PARENT

Parent Wyckoff Points Coordinates

24 12_12_12_1 a (0.24500, 0.00000, 0.25000)
(0.25500, 0.00000, -0.25000)
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Note that values must be selected for y and z, even though they are not used in the
Wyckoff position. If we select values for the lattice parameters, a, b, ¢, , 8, (« is the

angle between b and ¢, etc.), then we can display the coordinates in cartesian coordinates:

*VALUE LATTICE PARAMETER 7.62 8.43 9.79 90 90 90

*SHOW CARTESIAN

*DISPLAY PARENT

Parent Wyckoff Points Coordinates

24 12_12_12_1 a (1.86690, 0.00000, 2.44750)
(1.94310, 0.00000, -2.44750)

sk

See the description for the command, SHOW WYCKOFF in the user’s manual for more
information. There is a limited amount of on-line help available. The keyword 7 displays
the valid keywords that could possibly be inserted at that position. For example,

*SETTING 7

Valid Keywords: BRADLEY-CRACKNELL, INTERNATIONAL, KOVALEV, MILLER-LOVE,
ZAK, MAGNETIC, NOMAGNETIC

*

This is the end of this tutorial. You may exit the program:

*QUIT
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If you have been running ISOTROPY, quit the program and start it again.

We can display the k vectors in the first Brillouin zone. Let us do this for space group
#225 Fm3m (O3}):

*VALUE PARENT 225
*SETTING MILLER-LOVE
*SHOW KPOINT

*SHOW KDEGREE
*DISPLAY KPOINT

k vector k degree
GM (0,0,0) 0
DT (0,2a,0) 1
LD (a,a,a) 1
SM (2a,2a,0) 1
L (1/2,1/2,1/2) 0
X (0,1,0) 0
W (1/2,1,0) 0
Q (1/2,-2a+1,2a) 1
\') (2a,1,0) 1
C (b,b,2a-b) 2
A (-2a+2b,2a,0) 2
GP (-at+b+c,a-b+c,a+b-c) 3

These symbols for the k vectors follow the convention of Miller and Love. Greek letters
are represented with pairs of letters (GM = T, DT = A, LD = A, SM = X). GP is the general
point. The symbols a,b, ¢ represent the parameters defining the k vector when it is along
a line, or in a plane, or at a general point. (Miller and Love use symbols «, 3,v.) The
degrees of freedom is equal to the number of parameters which define each k vector. k
vectors with zero degrees of freedom are called k points of symmetry. Those with one
degree are k lines of symmetry. Those with two degrees are k planes of symmetry. The
general point always has three degrees of freedom. The coordinates are given in terms of
the conventional reciprocal lattice vectors, which in this case are (27/a)i, (27/a)j,

(2m/ a)ﬁ, where a is the lattice parameter. For example, the actual cartesian coordinates
for the W point are (7/a,2n/a,0). In terms of the primitive reciprocal lattice vectors,

*CANCEL SHOW KDEGREE
*LABEL VECTOR PRIMITIVE
*DISPLAY KPOINT

k vector
GM (0,0,0)
DT (a,0,a)
LD (a,a,a)
SM (a,a,2a)
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L (1/2,1/2,1/2)

X (1/2,0,1/2)

W (1/2,1/4,3/4)

Q (1/2,a+1/4,-a+3/4)
VvV (1/2,a,a+1/2)

C (a,a,b)

A (a,-a+b,b)

GP (a,b,c)

We can select a particular k point and display its star:

*LABEL VECTOR CONVENTIONAL
*VALUE KPOINT X
*SHOW STAR
*DISPLAY KPOINT
k vector Star of k
x (o,1,00 (0,1,0), (1,0,0), (0,0,1)
sk

Irreducible representations (irreps) are associated with k vectors. For example, the irreps
at the I' point are

*CANCEL SHOW ALL
*VALUE KPOINT GM
*SHOW IRREP
*DISPLAY IRREP
Irrep (ML)

GM1+

GM2+

GM3+

GM4+

GM5+

GM1-

GM2-

GM3-

GM4-

GM5-

*

These irrep symbols following the convention of Miller and Love and denote the irreps
I'{, TS, etc. We can display the corresponding symbols for other settings:

*SHOW IRREP KOVALEV

*D IRREP
Irrep (ML) Irrep (Kov)
GM1+ kiitil

GM2+ k11t3
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GM3+ k11t5
GM4+ k11t9
GMb5+ k11t7
GM1- k11t2
GM2- ki1t4
GM3- k11t6
GM4- k11t10
GM5- k11t8

*

where the symbols denote irreps of Kovalev (ki17!, k1173, etc.) For irreps at k=0
(T point), the symbols for point-group irreps are often used. We can also display these:

*CANCEL SHOW IRREP KOVALEV
*SHOW IRREP POINTGROUP
*DISPLAY IRREP

Irrep (ML)

GM1+ Alg
GM2+ A2g
GM3+ Eg
GM4+ Tig
GM5+ T2g
GM1- Alu
GM2- A2u
GM3- Eu
GM4- Tiu
GM5- T2u

*

where the symbols denote A4, Aag, etc. Irreps map elements of the space group onto
matrices. The character is the trace of the matrix. We can display the character and/or
matrix for any element of the space group.

*CANCEL SHOW IRREP POINTGROUP
*VALUE IRREP GM4-

*SHOW CHARACTER

*SHOW MATRIX

*VALUE ELEMENT C2X 0 0 O
*DISPLAY IRREP

Irrep (ML) Element Char Matrix
GM4- (€2x|0,0,0) -1.000 1 0 O
0-1 0

0 0 -1
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Here is an example for an irrep with a large dimension:

*VALUE IRREP W5
*VALUE ELEMENT SGX 1/2 1/2 0
*DISPLAY IRREP

Irrep (ML) Element Char Matrix

W5 (s6x|1/2,1/2,0) 0.000 -1 0 0 0 0 0 O O O O O O
01 0 0 0 0OOO O O OO
0 001 0O OO0OOTO0OOTO 0O
0 0-1 0 000 0 0 O0O0TUWO
0 000 0 0 O0OOTUO0OOTU O 1
0 000 0O O0OOOUOT1O
0 000 0 O0O1O0O0O0TO0O
0 000 0 0 O0O-1 0000
0 000 0 0 O0O0OTO0O-1 0 0
0 0 0 6 00 0 01 0 0O
0 0 0 0601 0600 O OO
0 0001 0 O0OTO0OTUO0OTO0OO

*

The set of matrices onto which the irrep maps elements of the space group is called the
image of the irrep. Among the irreps for k points of symmetry, there are only 132
distinct images. These have been identified and labeled by Stokes and Hatch. For
example, the image onto which the irrep W5 maps space group elements is

*CANCEL SHOW ALL
*SHOW IRREP

*SHOW IMAGE
*DISPLAY IRREP
Irrep (ML) Image
W5 G1536a
*

The letter at the beginning of the symbol indicates the dimension of the image (G for
12-dimensional image). The numbers represent the number of distinct matrices in the
image (in this case, 1536 matrices), and the trailing letter distinguishes the different
12-dimensional images with 1536 matrices. Among the 132 images, there are actually
four of these, G1536a, G1536b, G1536¢, and G1536d. We can display all of the matrices
in an image. Let us display one with four two-dimensional matrices:

*VALUE IMAGE B4A
*CANCEL SHOW IRREP
*SHOW ELEMENTS
*DISPLAY IMAGE
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Image Elements
B4da 1 0
0 1

-1 0
0 -1

0 -1
1 0

0 1
-1 0
*

We can also show the generating matrices of an image:

*CANCEL SHOW ELEMENTS
*SHOW GENERATORS
*DISPLAY IMAGE
Image Generators
B4a 0 1

-1 0
*

For irreps at non k points of symmetry, one or more of the parameters, a, 3, (denoted
by a,b,c in the program), must be selected. For example, the irrep A; is on a k line of
symmetry and requires a value for a. We select the value oo = i using VALUE KVALUE
1,1/4. The 1 in front of the 1/4 tells ISOTROPY that the value for one parameter will
follow.

*CANCEL SHOW ALL
*CANCEL VALUE IMAGE
*VALUE IRREP DT1
*VALUE KVALUE 1,1/4
*SHOW MATRIX

*VALUE ELEMENT C4Z+ 0 0 O
*DISPLAY IRREP
Element Matrix
(C4z+0,0,0) 0O O

o O O~ O

|

[
O O O O O =
o O O O~ O
O O O O O
=, O O O O O
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Compatibility relations can also be shown. For example,

*CANCEL SHOW ALL
*VALUE KPOINT GM
*VALUE COMPATIBILITY DT
*SHOW COMPATIBILITY
*DISPLAY IRREP
Compat (ML)

GM1i+: DT1

GM2+: DT2

GM3+: DT1 DT2

GM4+: DT4 DTS

GM5+: DT3 DTS

GM1-: DT4

GM2-: DT3

GM3-: DT3 DT4

GM4-: DT1 DTS

GM5-: DT2 DTS

*

These relations show what happens as the k vector moves along the A line to the I'
point: each A irrep becomes a I' representation which can be decomposed into one or
more I irreps. For example, the six-dimensional A; irrep at the I' point can be
decomposed into the one-dimensional I'] irrep, the two-dimensional I‘; irrep, and the
three-dimensional I'y— irrep. These same relations show what happens to the irreps of
the “little group of k” as the k vector moves from the I point along the A line: each T’
irrep of the little group becomes a A representation of the little group which can be
decomposed into one or more A irreps of the little group. For example, the
three-dimensional I', irrep of the little group splits into the one-dimensional Aj irrep of
the little group and the two-dimensional Ay irrep of the little group. These compatibility
relations are useful when labeling phonon dispersion curves and electron band structures.

Irreps are classified as type 1, type 2, and type 3. A type-1 irrep can be brought to real
form by a similarity transformation. A type-2 irrep cannot be brought to real form, but
it can be brought to its complex conjugate by a similarity transformation. A type-2 irrep
is equivalent to its own complex conjugate. Its characters are real. A type-3 irrep cannot
be brought to real form and cannot be brought to its complex conjugate. Some of its
characters are complex. In phase transformation theory, we use real matrices. For type-2
and -3 irreps, we form real matrices by forming the direct sum of the matrix with its
complex conjugate and then bringing the resulting matrix to real form by a similarity
transformation. This resulting reducible representation is said to be physically
irreducible, i.e., irreducible with respect to real numbers. For example, there are three
irreps at the H point for space group #184: Hq, Hy are type 3, and Hj3 is type 2. Hs is
the complex conjugate of Hy, and Hj is equivalent to its own complex conjugate.

*VALUE PARENT 184
*VALUE KPOINT H
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*CANCEL SHOW ALL
*SHOW IRREP
*SHOW TYPE
*DISPLAY IRREP
Irrep (ML) Type
H1H2 3

H3H3 2
*

15

The program lists the physically irreducible representations, Hy & Hy and Hs @ Hgz. The

program displays the matrices of these representations in real form:

*CANCEL VALUE KVALUE
*VALUE IRREP H1H2

*VALUE ELEMENT SGV1 0 0 1/2
*SHOW MATRIX

*DISPLAY IRREP

Irrep (ML) Type Element Matrix

H1H2 3 (SGv1]0,0,1/2)  0.000 0.000
0.000 0.000
-0.500 -0.866
-0.866 0.500

*

0.500 0.866
0.866 -0.500
0.000 0.000
0.000 0.000

This is the end of this tutorial. You may exit the program.

*QUIT
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If you have been running ISOTROPY, quit the program and start it again.

A great majority of solid-solid phase transitions can be described by the Landau theory
of phase transitions. In this theory, the free energy of a crystal is expanded in powers of
the order parameter, an n-dimensional vector in representation space. A phase transition
takes place when the minimum of the free energy occurs at a nonzero value of the order
parameter. Symmetry is lost in the transition, and the space-group symmetry is now a
subgroup of the parent group and consists of all space-group elements which leave the
order parameter invariant. This is called an isotropy subgroup.

As an exar_nple, let us consider the isotropy subgroups for the I', irrep of space group
#221 Pm3m (O;).

*VALUE PARENT 221

*VALUE IRREP GM4-

*SHOW SUBGROUP

*SHOW BASIS

*SHOW ORIGIN

*DISPLAY ISOTROPY

Subgroup Basis Vectors Origin
99 P4mm (0,1,0),(0,0,1),(1,0,0) (0,0,0)
38 Amm2 (0,0,1),(1,-1,0),(1,1,0) (0,0,0)
160 R3m (1,-1,0),(0,1,-1),(1,1,1) (0,0,0)

6 Pm (0,1,0),(0,0,1),(1,0,0) (0,0,0)
8 Cm (1’1’0)’(_1’1’0)’(050’1) (anso)
1P1 (1,0,0),(0,1,0),(0,0,1)  (0,0,0)

*

The coordinates of the origin as well as each basis vector of the lattice are given in terms
of the basis vectors of the lattice of the parent space group. For example, the basis
vectors @; of the lattice of the isotropy subgroup R3m are given by

ay = do — d3,
ﬁg=ﬁ1+ﬁ2+53,
where @; are basis vectors of the lattice of the parent space group Pm3m. The irrep I';

is three dimensional so that in this case the order parameter is a three-dimensional
vector. We can display the direction of the order parameter for each isotropy subgroup:

*CANCEL SHOW BASIS
*CANCEL SHOW ORIGIN
*SHOW DIRECTION VECTOR
*DISPLAY ISOTROPY

17
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Subgroup Dir

99 P4dmm P1 (a,0,0)
38 Amm2 P2 (a,a,0)
160 R3m P3 (a,a,a)
6 Pm ¢l (a,b,0)
8 Cm c2 (a,a,b)
1P1 S1 (a,b,c)
*

The symbols, P3,P1,P3,C2,C1,S1, for the directions of the order parameters were chosen
by Stokes and Hatch. The symbols, a,b,c, in the components of the order parameters
represent arbitrary real numbers. Let us consider the isotropy subgroup P4mm. We can
select this subgroup with either the VALUE SUBGROUP 99 or the VALUE DIRECTION P1
command. Let us display the elements of the subgroup:

*VALUE DIRECTION P1

*SHOW ELEMENTS

*DISPLAY ISOTROPY

Subgroup Dir Elements

99 P4mm P1 (a,0,0) (E|0,0,0), (C2x]0,0,0), (C4x+|0,0,0), (C4x-10,0,0),
(8Gyl0,0,0), (86z|0,0,0), (8Gdf[0,0,0), (SGdd|0,0,0)

%

These are elements of the parent space group Pm3m which belong to the isotropy

subgroup P4mm. We see that the four-fold rotation axis points in the cubic x direction,
the same direction as the third basis vector of the lattice of P4mm (see above, where we
displayed the basis vectors). In the setting of P4mm, these both become the z direction.

The irrep I'y maps each element of the space group onto a three-dimensional matrix. An
element operates on an order parameter via multiplication by these matrices. The
elements in the subgroup P4mm are mapped onto matrices which leave the order
parameter (a,0,0) invariant. For example, the matrix for {C}]0,0,0} is

*SHOW MATRIX
*VALUE ELEMENT C4X+ 0 0 O
*DISPLAY IRREP

Element Matrix

(C4x+10,0,0) 1 0 O
0O 0 -1
0 1 0

*

Thus, when {C}]0,0,0} operates on (a,0,0), we obtain

o O =
_ o o
I
—
)

I
)
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and, as we can see, the order parameter is left invariant by this operation. We can also
show the generating elements of the subgroup:

*CANCEL SHOW MATRIX

*CANCEL SHOW ELEMENT

*SHOW GENERATOR

*DISPLAY ISOTROPY

Subgroup Dir Generators

99 P4mm P1 (a,0,0) (C4x+/0,0,0), (SGyl0,0,0)
sk

It is sometimes useful to obtain a mapping of points in the parent group to points in the
subgroup:

*CANCEL SHOW GENERATOR
*SHOW XYZ

*DISPLAY ISOTROPY

Subgroup Dir New xyz
99 P4mm P1 (a,0,0) (y,z,x)
%

This means that a point (z,y, z) in Pm3m becomes (y, z,z) in P4mm. For example, an
atom at (0.681, %, 0) in Pm3m is at (%, 0,0.681) in P4mm. Perhaps an even more useful
function of ISOTROPY is to identify the Wyckoff positions in the subgroup. For example,

in Pm3m, an atom at (0.681, %, 0) is at Wyckoff position h (z, %, 0) with = 0.681.

*CANCEL SHOW XYZ

*SHOW WYCKOFF SUBGROUP

*VALUE WYCKOFF H

*SHOW WYCKOFF VECTOR ALL

*DISPLAY PARENT

Wyckoff Points Coordinates

h (x,1/2,0), (-x,1/2,0), (1/2,0,x), (1/2,0,-x), (0,x,1/2),
(0,-x,-1/2), (-1/2,-x,0), (-1/2,x,0), (-x,0,-1/2), (x,0,1/2),
(0,-1/2,-x), (0,1/2,x)

*DISPLAY ISOTROPY

Subgroup Dir Wyckoff New Wyckoff
99 Pdmm P1 (a,0,0) h c, z’=x
c, z’=-x

e, x’=-x, z’=1/2
f, x’=x, z’=0

*VALUE PARENT 99

*VALUE WYCKOFF C

*DISPLAY PARENT

Wyckoff Points Coordinates

c (1/2,0,z), (0,1/2,z)

*VALUE WYCKOFF E
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*DISPLAY PARENT

Wyckoff Points Coordinates

e (x,0,z), (-x,0,z), (0,x,z), (0,-x,z)

*VALUE WYCKOFF F

*DISPLAY PARENT

Wyckoff Points Coordinates

f (x,1/2,z), (-x,-1/2,z), (-1/2,x,z), (1/2,-x,2z)
*VALUE PARENT 221

sk

We see that the 12 atoms at Wyckoff position kA in Pm3m become, in P4mm, 2 atoms at
Wyckoff position ¢, 2 more atoms at a different Wyckoff position ¢, 4 atoms at Wyckoft
position e, and 4 atoms at Wyckoff position f. The symbols 2/, 2z’ above denote variables
in the Wyckoff positions in P4mm. For example, the Wyckoff position ¢ in P4mm is

(%, 0, 2'). Since x = 0.681 in our example, the atom is at (%, 0,0.681) in P4mm, the same
atom we mapped above using (y, z, ).

Now let us show some additional information about each subgroup. For this purpose, we
look at the isotropy subgroups for the irrep X; .

*CANCEL SHOW WYCKOFF SUBGROUP

*VALUE IRREP X1+

*SHOW SIZE

*SHOW INDEX

*SHOW MAXIMAL

*CANCEL VALUE DIRECTION

*DISPLAY ISOTROPY

Subgroup Max Index Size Dir

123 P4/mmm yes 6 2 P1 (a,0,0)

123 P4/mmm yes 12 4 P2 (a,a,0)
221 Pm-3m yes 8 8 P3 (a,a,a)
47 Pmmm no 24 4 c1 (a,b,0)
123 P4/mmm no 24 8 c2 (a,a,b)
47 Pmmm no 48 8 S1 (a,b,c)

*

In the column labeled “Max” we find out whether or not the subgroup is maximal with
respect to the other isotropy subgroups for this irrep. (A maximal isotropy subgroup is
not a subgroup of any of the other isotropy subgroups.)

In the column labeled “Size” is given the size of the primitive unit cell of the subgroup
relative to the size of the primitive unit cell of the parent group. For example, consider
the subgroup P4/mmm in direction P1. Its lattice vectors are given by:

*VALUE DIRECTION P1
*SHOW BASIS
*DISPLAY ISOTROPY
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Subgroup Max Index Size Dir Basis Vectors
123 P4/mmm yes 6 2 P1 (a,0,0) (0,0,1),(1,0,0),(0,2,0)
sk

i.e., @y = a3, ay = d1, and @5 = 2d,. The size of the unit cell of Pm3m is a3, where a is
the lattice parameter. The size of the unit cell of P4/mmm is 2a3, twice as large.

In the column labeled “Index” is given the index of the subgroup with respect to the
parent group. For example, the index of subgroup P4/mmm in direction P1 is 6. The
point group of Pm3m is m3m, which contains 48 elements. The point group of
P4/mmm is 4/mmm, which contains 16 elements. There are 3 times as many elements
in m3m as there are in 4/mmm. Also, as shown above, the size of the unit cell in
P4/mmm is 2 times as large as the unit cell in Pm3m. Thus the index is 3 X 2 = 6.

Since the size of the unit cell in P4 /mmm is twice as large as the unit cell in Pm3m, half
of the lattice points in Pm3m are no longer lattice points in P4/mmm. We can obtain a
list of these points:

*CANCEL SHOW BASIS
*CANCEL SHOW MAXIMAL
*CANCEL SHOW INDEX
*SHOW NEWFRACTIONAL

*SHOW XYZ
*DISPLAY ISOTROPY
Subgroup Size Dir New xyz New Fractionals

123 P4/mmm 2 P1 (a,0,0) (z,x,1/2y) (0,0,0), (0,1,0)
*

In the column labeled “New Fractionals” are given points in the unit cell of P4/mmm
which were lattice points in Pm3m. The coordinates of these points are given in terms of
the basis vectors of the lattice of Pm3m. For example, the lattice point (0,1,0) in
Pm3m becomes a non-lattice point (0,0, 3) in P4/mmm.

We can obtain information about the nature of the possible phase transitions.

*CANCEL SHOW SIZE

*CANCEL SHOW XYZ

*CANCEL SHOW NEWFRACTIONAL

*CANCEL VALUE DIRECTION

*SHOW LANDAU

*SHOW LIFSHITZ

*SHOW ACTIVE

*SHOW CONTINUQUS

*DISPLAY ISOTROPY

Subgroup Cont Active Lan Lif Dir

123 P4/mmm RG yes 0 O Pl (a,0,0)
123 P4/mmm no yes O 0 P2 (a,a,0)
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221 Pm-3m RG yes 0 0 P3 (a,a,a)
47 Pmmm no yes O O C1 (a,b,0)
123 P4/mmm no yes O O C2 (a,a,b)
47 Pmmm no yes 0 0 S1 (a,b,c)

*

In the column labeled “Lan” is shown the number of independent third-degree invariant
polynomials in the free energy expansion for this irrep. If this number is not zero, the
phase transition cannot be continuous. This is called the Landau condition.

In the column labeled “Lif” is shown the number of times that the vector representation
is contained in the antisymmetrized cube of the irrep. If this number is not zero, the
phase transition cannot be continuous. This is called the Lifshitz condition.

If both the Landau and Lifshitz conditions are met, the irrep is said to be active, as
shown in the column labeled “active”.

Finally, in Landau theory, a phase transition can be continuous only if it is possible for
the minimum of the free energy expanded to fourth degree to occur at the direction of
the order parameter. This is indicated by yes or no in the column labeled “Cont”.

RG indicates that the transition is allowed to be continuous in renormalization-group
theory, as well as in Landau theory. In the case above, when we minimize the free energy
expanded to fourth degree, we find that, depending on the value of the coefficients in the
expansion, the minimum can occur only at (a,0,0) or (a,a,a). Thus, a phase transition
from Pm3m to P4/mmm in direction P1 or to Pm3m in direction P3 may be continuous,
but a phase transition to any of the other isotropy subgroups cannot be continuous.

Searches for isotropy subgroups with particular properties are facilitated by various
VALUE commands: VALUE CONTINUQOUS, VALUE PARENT, VALUE SUBGROUP, VALUE
LATTICE, VALUE LATTICE PARENT, VALUE POINTGROUP, VALUE IRREP, VALUE
KPOINT, VALUE IMAGE, VALUE DIMENSION, VALUE ACTIVE, VALUE CONTINUOUS,
VALUE LANDAU, VALUE LIFSHITZ, VALUE DIRECTION, VALUE SIZE, VALUE MAXIMAL.
You can read more about them in the user’s manual.

In a phase transition where symmetry is lost, the crystal often becomes divided into
domains, each with the same space-group symmetry of the subgroup but oriented in
different directions. As an example, we generate the domains for the isotropy subgroup
in direction P1 for irrep T'; of space group Pm3m.

*CANCEL SHOW ALL
*CANCEL VALUE ALL
*VALUE PARENT 221
*VALUE IRREP GM4-
*VALUE DIRECTION P1
*SHOW SUBGROUP

*SHOW DIRECTION VECTOR
*SHOW GENERATOR

*SHOW DOMAIN

*SHOW DOMAIN GENERATOR
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*SHOW DISTINCT
*DISPLAY ISOTROPY

Domain Distinct Gen Subgroup Dir Generators

1 1 (E10,0,0) 99 PAmm P1 (a,0,0) (C4x+/0,0,0), (SGyl0,0,0)
2 1 (€2y10,0,0) 99 P4mm (-2,0,0) (C4x-10,0,0), (SGyl0,0,0)
3 2 (C31-10,0,0) 99 P4mm (0,0,a) (C4z+|0,0,0), (8Gx|0,0,0)
4 2 (C32-10,0,0) 99 P4mm (0,0,-a) (C4z-10,0,0), (8Gx|0,0,0)
5 3 (C31+10,0,0) 99 P4mm (0,a,0) (C4y+|0,0,0), (8Gz!0,0,0)
6 3 (C34+10,0,0) 99 P4mm (0,-a,0) (C4y-10,0,0), (8Gz!0,0,0)
sk

We see six domains, numbered 1 through 6, each with a domain generator (in the column
labeled “Gen”). Let g;, 77;, and G; denote the generator, order parameter, and isotropy
subgroup, respectively, of the ith domain. We then have 7; = g;71 and G; = g;G;g; L
For example, {C3;0,0,0} generates the third domain by operating on the first domain.
Since {C}.|0,0,0} is one of the elements of the isotropy subgroup in the first domain,
{C10,0,0} = {C5;10,0,0}{C-]0,0,0}{C5,]0,0,0} 1 is an element of the isotropy
subgroup in the third domain. The irrep I'y maps {C5;/0,0,0} onto the matrix:

*VALUE ELEMENT C31- 0 0 O
*SHOW MATRIX
*DISPLAY IRREP

Generators Element Matrix
(C31+10,0,0), (C4x+|0,0,0), (110,0,0) (C31-10,0,0) 0 1 0
0O 0 1
1 0 O
sk
so that,
0 1 0 a 0
0 0 1 0]1=10
1 0 0 0 a

is the direction of the order parameter in the third domain. We can see that some of the
domains are not distinct. For example, the isotropy subgroups in domains 1 and 2 have
the same elements. In the column labeled “Distinct” is shown a numbering of distinct
isotropy subgroups. Since both domains 1 and 2 are numbered 1 in the “Distinct”
column, their isotropy subgroups contain the same elements.

See the tutorial on domains to learn more about additional features in ISOTROPY that
deal with domains.

There are primary and secondary order parameters associated with any phase transition.
The distortions due to the primary order parameter completely determine the
space-group symmetry of the subgroup. The distortions due to the secondary order
parameters are consistent with that space-group symmetry but usually exhibit higher
symmetry. For example, we list the secondary order parameters associated with the
isotropy subgroup in direction P2 for the irrep X of space group Pm3m.
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*CANCEL VALUE ALL

*CANCEL SHOW ALL

*VALUE PARENT 221

*VALUE IRREP X1+

*VALUE DIRECTION C1

*SHOW SUBGROUP

*SHOW DIRECTION VECTOR

*SHOW FREQUENCY DIRECTION

*DISPLAY ISOTROPY

Subgroup Dir Frequency

47 Pmmm C1 (a,b,0) 1 GM1+ P1(1), 1 GM2+ P1(1), 2 GM3+ C1(1), 2 X1+ C1(1), 2
X2+ C1(1), 1 Mi+ P1(3), 1 M2+ P1(3)

*

Technically speaking, we see here all of the irreps which subduce Pmmm. The number in
front of the irrep symbol is the subduction frequency. Following the irrep symbol is
direction of the order parameter for the isotropy subgroup (and domain) which is a
supergroup of Pmmm. As an example, consider the third domain of the isotropy
subgroup with direction P1 for irrep M.

*CANCEL SHOW FREQUENCY

*SHOW BASIS

*SHOW GENERATOR

*DISPLAY ISOTROPY

Subgroup Dir Basis Vectors Generators

47 Pmmm C1 (a,b,0) (1,0,0),(0,2,0),(0,0,2) (C2z|0,0,0), (C2x|0,0,0), (I]0,0,0)

*VALUE IRREP M1+

*VALUE DIRECTION P1

*VALUE DOMAIN 3

*DISPLAY ISOTROPY

Domain Subgroup Dir Basis Vectors Generators

3 123 P4/mmm P1 (0,a,0) (0,1,1),(0,-1,1),(1,0,0) (C4x+|0,0,0),
(€2d10,0,0), (110,0,0)

%

We can see that P4/mmm is a supergroup of Pmmm. Every element of Pmmm is also
an element of P4/mmm, including the translations. A distortion with P4/mmm
symmetry may be present without changing the symmetry Pmmm of the crystal. The
order parameter (a,b,0) for irrep X 1‘" is the primary order parameter. It determines the
symmetry Pmmm of the crystal. The order parameter (0, a, 0) for irrep M is a
secondary order parameter. It is allowed to be present in a crystal with Pmmm
symmetry. The same is true of all of the other secondary order parameters listed in the
column labeled “Frequency”. Note that the primary order parameter, X1+ C1(1), is also
listed for completeness. Any space group is its own supergroup.
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The data base which ISOTROPY uses contains isotropy subgroups only for irreps at
k points of symmetry. Isotropy subgroups for other irreps must be calculated as needed.
As an example, consider an irrep along the A line in the first Brillouin zone.

*CANCEL SHOW ALL
*CANCEL VALUE ALL
*VALUE PARENT 221
*SHOW KPOINT
*DISPLAY KPOINT
k vector
GM (0,0,0)
DT (0,a,0)
LD (a,a,a)
SM (a,a,0)
(1/2,1/2,1/2)
(0,1/2,0)
(1/2,1/2,0)
(a,1/2,a)
(1/2,1/2,a)
(a,1/2,0)
(a,a,b)
(a,b,0)
(a,1/2,b)
(a,b,c)

WweE QNAHWn =R XD

[}
v}

*

We see that points on the A line (abbreviated DT) are given by (27/a)(0, c, 0). Let
a = %, a point half-way to the X point.

*VALUE KPOINT DT
*SHOW IRREP
*DISPLAY IRREP
Irrep (ML) k vector

DT1 (0,a,0)
DT2 (0,a,0)
DT3 (0,a,0)
DT4 (0,a,0)
DT5 (0,a,0)

*
There are five irreps. Let’s choose A; (DT1) and display the isotropy subgroups.

*VALUE IRREP DT1
*VALUE KVALUE 1,1/4
*CANCEL SHOW KPOINT
*CANCEL SHOW IRREP
*SHOW SUBGROUP
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*SHOW DIRECTION VECTOR

*DISPLAY ISOTROPY

You have requested information about isotropy subgroups for:
irrep: DT1 space group: Oh-1

The data base for these isotropy subgroups cannot be found.

Should the data base be added?

Enter RETURN to continue. Enter any character to stop

Adding data base...

Subgroup Dir

123 P4/mmm P1 (a,0,0,0,0,0)
123 P4/mmm P2 (a,-2,0,0,0,0)
123 P4/mmm P3 (a,0,a,0,0,0)
123 P4/mmm P4 (a,-a,a,-a,0,0)
221 Pm-3m P5 (a,0,a,0,a,0)
221 Pm-3m P6 (a,-a,a,-a,a,-a)
99 P4mm ¢l (a,b,0,0,0,0)

47 Pmmm c2 (a,0,b,0,0,0)

47 Pmmm c3 (a,-a,b,0,0,0)
47 Pmmm c4 (a,-a,b,-b,0,0)
38 Amm2 ¢5 (a,b,a,-b,0,0)
123 P4/mmm C6 (a,0,a,0,b,0)
123 P4/mmm C7 (a,0,a,0,b,-b)
123 P4/mmm C8 (a,-a,a,-a,b,0)
123 P4/mmm C9 (a,-a,a,-a,b,-b)
160 R3m C10 (a,b,a,b,a,b)

25 Pmm2 st (a,b,c,0,0,0)

25 Pmm?2 s2 (a,b,c,-c,0,0)
47 Pmmm s3 (a,0,b,0,c,0)

47 Pmmm sS4 (a,0,b,0,c,-c)
47 Pmmm 85 (a,-a,b,0,c,-c)
47 Pmmm s6 (a,-a,b,-b,c,-c)
Enter RETURN to continue. Enter any character to stop.X
Quit display

*

ISOTROPY assumes that the height of the screen is 22 lines. So, after displaying 22 lines,
it pauses and waits for the user to indicate whether or not to display the next screen of
data. We terminated the display by entering an X instead of a return. The number of
lines to be displayed at a time can be changed with the PAGE command. Also, this
feature can be turned off with the PAGE NOBREAK command.

Some of the features available for isotropy subgroups for irreps at k points of symmetry

are not, presently implemented for those at non k points of symmetry. Also note that the
labeling of order parameter directions are arbitrary here. For example, the meaning of P1
here is different than its meaning for the six-dimensional images already in the data base.
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The labels for the directions are merely given for convenience so that we can refer to a
particular isotropy subgroup using it.

*VALUE DIRECTION P6
*DISPLAY ISOTROPY
Subgroup Dir
221 Pm-3m P6
*

(a,-a,a,-a,a,-a)

Sometimes, the list of isotropy subgroups for a particular irrep may be very long and
may require an unreasonable amount of time for ISOTROPY to calculate them. A shorter
list can be generated by using only one arm of the star. You can do that by using VALUE
DIRECTION ONEARM. Sometimes only the kernel is needed. (The kernel is the isotropy
subgroup for a general direction of the order parameter.) This can be generated using
VALUE DIRECTION KERNEL.

ISOTROPY also generates isotropy subgroups for coupled order parameters. For example,
consider the coupling of order parameters for the M3Jr and R irreps of space group
Pm3m.

*CANCEL VALUE ALL
*CANCEL SHOW ALL
*VALUE PARENT 221
*VALUE IRREP M3+ R4+
*SHOW SUBGROUP
*SHOW DIRECTION VECTOR
*SHOW IRREP
*DISPLAY ISOTROPY COUPLED
Data base for these coupled subgroups does not exist
Should the data base be added?
Enter RETURN to continue.
Adding coupled isotropy subgroups...

Enter any character to stop.

Irrep (ML) Subgroup Dir

M3+R4+ 148 R-3 P3(1)P3(1) (a,a,a,b,b,b)
M3+R4+ 127 P4/mbm P1(1)P1(1) (a,0,0,b,0,0)
M3+R4+ 63 Cmcm P1(1)P1(2) (2,0,0,0,0,b)
M3+R4+ 137 P4_2/nmc P2(1)P1(2) (a,a,0,0,0,b)
M3+R4+ 59 Pmmn s1(1pr1(1) (a,b,c,d,0,0)
M3+R4+ 62 Pnma P1(1)P2(5) (a,0,0,0,b,b)
M3+R4+ 63 Cmcm pP2(1)pP2(1) (a,a,0,b,b,0)
M3+R4+ 14 P2_1/c P1(1)Cc2(9) (a,0,0,c,b,b)
M3+R4+ 15 C2/c p2(1)c2(1) (a,a,0,b,b,c)
M3+R4+ 12 C2/m P1(1)Cc1(1) (a,0,0,b,c,0)
M3+R4+ 11 P2_1/m Pi1(1)c1(5) (a2,0,0,0,b,c)
M3+R4+ 11 P2_1/m si(1)ci(1) (a,b,c,d,e,0)
M3+R4+ 2 P-1 P1(1)s1(1) (a,0,0,b,c,d)
M3+R4+ 2 P-1 s1(1)s1(1) (a,b,c,d,e,f)
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*

ISOTROPY generates a file containing information about these isotropy subgroups. In this
case, the file was named s4550_01.iso. In the future, when we ask about these
subgroups, ISOTROPY will find this file and will not need to generate the data again.

These isotropy subgroups actually belong to the six-dimensional reducible representation
M ® Rf, the direct sum of M, and Rj. The first three components of the order
parameter belong to M;' and the last three components belong to R;". For example, the
first subgroup in the list contains all of the elements that keep the direction (a,a, a) of
the order parameter for M;r invariant, and, at the same time, keep the direction (b, b, b)
of the order parameter for R} invariant. It is actually the intersection of the isotropy
subgroup in direction P3 for M3+ and the isotropy subgroup in direction P3 for R} . That
is the meaning of the symbol for the direction: P3(1)P3(1). The numbers in parentheses
refer to domains. In this case, the two isotropy subgroups are those of the first domain.
The third subgroup in the list, however, is an intersection of the first domain (a,0,0) of
the isotropy subgroup in direction P1 for M;™ and the second domain (0,0, b) of the
isotropy subgroup in direction P1 for RI. We can select one of these isotropy subgroups
using the symbol for the direction of the order parameter exactly as it appears in the list.

*VALUE DIRECTION P1(1)P1(2)

*DISPLAY ISOTROPY COUPLED

Irrep (ML) Subgroup Dir

M3+R4+ 63 Cmcm P1(1)P1(2) (a,0,0,0,0,b)
%

What do you do if you know the structure of the subgroup but do not know which irrep
drives the transition? 1ISOTROPY has a very useful feature for finding the primary and
secondary order parameters if the group-subgroup relation is known.

As an example, consider a monoclinic subgroup of Pm3m. Suppose that we know its
space-group symmetry is P2/m, the basis vectors of its lattice is (1,1, 1), (1, 1,0),

(0,0,1), and its origin is at the same point as the origin of the parent group Pm3m.

*VALUE SUBGROUP 10

*VALUE BASIS 1,-1,11,1,0 0,0,1
*VALUE ORIGIN 0,0,0

*SHOW KPOINT

*DISPLAY DIRECTION

Irrep (ML) k vector Dir

GM1+ (0,0,0) (a)

GM3+ (0,0,0) (a,0)
GM4+ (0,0,0) (a,a,0)
GM5+ (0,0,0) (a,b,-b)
Mi+ (1/2,1/2,0) (a,0,0)
M4+ (1/2,1/2,0) (a,0,0)

M5+ (1/2,1/2,0) (a,a,0,0,-a,a)
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This is a complete list of order parameters that drive this phase transition.
The primary order parameter will completely determine the symmetry P2/m
of the subgroup. Let’s look for it.

*CANCEL VALUE SUBGROUP
*CANCEL SHOW IRREP

*VALUE IRREP Mb+

*CANCEL VALUE DIRECTION
*VALUE FREQUENCY 1

*SHOW SUBGROUP

*SHOW DIRECTION VECTOR
*DISPLAY ISOTROPY

Subgroup Dir

140 14/mcm P1 (a,0,0,0,0,0)
67 Cmma p2 (a,a,0,0,0,0)
166 R-3m P6 (a,0,a,0,a,0)
140 I4/mcm P9 (a,a,a,-a,0,0)
53 Pmna P10 (a,a,0,0,a,-a)
206 Ia-3 P11 (a,a,a,a,a,a)
*SHOW DOMAIN

*CANCEL VALUE FREQUENCY
*VALUE DIRECTION P10
*DISPLAY ISOTROPY

Domain Subgroup Dir

1 53 Pmna P10 (a,a,0,0,a,-a)
2 53 Pmna (a,a,0,0,-a,a)
3 53 Pmna (0,0,a,-a,a,a)
4 53 Pmna (0,0,a,-a,-a,-a)
5 53 Pmna (a,-a,a,a,0,0)
6 53 Pmna (-a,a,a,a,0,0)
7 53 Pmna (-a,-a,0,0,-a,a)
8 53 Pmna (-a,-a,0,0,a,-a)
9 53 Pmna (0,0,-a,a,-a,-a)
10 53 Pmna (0,0,-a,a,a,a)
11 53 Pmna (-a,a,-a,-a,0,0)
12 53 Pmna (a,-a,-a,-a,0,0)

*CANCEL SHOW DOMAIN
*CANCEL VALUE DIRECTION
*VALUE IRREP M4+
*DISPLAY ISOTROPY

Subgroup

Dir

123 P4/mmm P1
229 Im-3m P3
139 I4/mmm C2

(a,0,0)
(a,a,a)
(a,a,b)
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71 Immm

S1 (a,b,c)

*VALUE IRREP M1+

*DISPLAY IS
Subgroup
123 P4/mmm
229 Im-3m
139 I4/mmm
71 Immm

0TROPY
Dir
P1
P3
Cc2
S1

(a,0,0)
(a,a,a)
(a,a,b)
(a,b,c)

Session 3: Isotropy Subgroups

We see that the order parameters for the M irreps are P1 for M;",
P1 for M;", and P10 (domain 2) for Mg . The isotropy subgroups

determined by these order parameters are P4/mmm, P4/mmm, and Pmna,
respectively. None of these order parameters alone

determine the P2/m symmetry of the subgroup. There is no single primary
order parameter. There must be a coupled primary order parameter.

*VALUE IRREP M1+ Mb+

*SHOW IRREP

*DISPLAY ISOTROPY COUPLED
Data base for these coupled subgroups does not exist
Should the data base be added?

Enter RETURN to continue.
Adding coupled isotropy subgroups...

Enter any character to stop.

Irrep (ML) Subgroup Dir

M1+M5+ 12 C2/m pi1(1)p2(1) (a,0,0,b,b,0,0,0,0)
M1+M5+ 74 Imma P1(1)pP2(3) (a,0,0,0,0,b,b,0,0)
M1+M5+ 10 P2/m pi1(1)p10(1) (a,0,0,b,b,0,0,b,-b)
M1+M5+ 2 P-1 pi(1)c13(1) (a,0,0,b,b,0,0,c,-c)
M1+M5+ 166 R-3m p3(1)p6(1) (a,a,a,b,0,b,0,b,0)
M1+M5+ 69 Fmmm P1(1)P1(3) (a,0,0,0,0,b,0,0,0)
M1+M5+ 140 I4/mcm P1(1)P9(2) (a,0,0,b,-b,0,0,b,b)
M1+M5+ 69 Fmmm c2(1)prP9(3) (a,a,b,0,0,c,c,c,-c)
M1+M5+ 87 I4/m c2(1)po(6) (a,a,b,0,0,-c,-c,c,-c)
M1+M5+ 148 R-3 P3(1)c23(1) (a,a,a,b,c,b,c,b,c)
M1+M5+ 12 C2/m Pi1(1)c1(3) (a,0,0,0,0,b,c,0,0)
M1+M5+ 72 Ibam P1(1)c12(2) (a,0,0,c,-c,0,0,b,b)
M1+M5+ 12 C2/m si1(1)c12(1) (a,b,c,d,d,e,-e,0,0)
M1+M5+ 12 C2/m c2(1)s812(9) (a,a,b,e,0,c,d,c,-d)
M1+M5+ 15 C2/c P1(1)4D3(5) (a,0,0,d,e,b,b,c,c)
M1+M5+ 2 p-1 s1(1)6D1(1) (a,b,c,d,e,f,g,h,i)

*CANCEL SHOW DIRECTION

*SHOW BASIS
*SHOW ORIGI
*VALUE SUBG

N
ROUP 10
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*DISPLAY ISOTROPY COUPLED

Irrep (ML) Subgroup Dir

M1+M5+
*CANCEL SHO
*CANCEL SHO

W BASIS
W ORIGIN

*CANCEL VALUE SUBGROUP
*SHOW DIRECTION VECTOR
*VALUE IRREP M4+ M5+
*DISPLAY ISOTROPY COUPLED
Data base for these coupled subgroups does not exist
Should the data base be added?

Enter RETURN to continue.

Enter

Basis Vectors
10 P2/m P1(1)P10(1) (1,1,0),(-1,1,0),(0,0,1) (0,0,0)

any character to stop.

Adding coupled isotropy subgroups...

Irrep (ML)
M4+M5+
M4+M5+
M4+M5+
M4+M5+
M4+M5+
M4+M5+
M4+M5+
M4+M5+
M4+M5+
M4+M5+
M4+M5+
M4+M5+
M4+M5+
M4+M5+
M4+M5+
M4+M5+

Subgroup
12 C2/m
74 Imma
10 P2/m
2 P-1
166 R-3m
140 I4/mcm
69 Fmmm
87 I4/m
69 Fmmm
148 R-3
72 Ibam
12 C2/m
12 C2/m
12 C2/m
15 C2/c
2 P-1

Dir
P1(1)P2(1)
P1(1)P2(2)
P1(1)P10(1)
P1(1)C13(1)
P3(1)P6(1)
P1(1)P1(3)
C2(1)P1(1)
C2(1)P1(4)
P1(1)P9(2)
P3(1)C23(1)
P1(1)C1(3)
S1(1)C1(1)
P1(1)C12(2)
€2(1)812(9)
P1(1)4D3(3)
S1(1)6D1(1)

*CANCEL SHOW DIRECTION

*SHOW BASIS
*SHOW ORIGI

N

*VALUE SUBGROUP 10
*DISPLAY ISOTROPY COUPLED
Irrep (ML) Subgroup Basis Vectors

M4+Mb5+
*

We see that M may couple with either M;™ or M, to produce the P2/m symmetry.
This result would have been rather difficult to obtain without this very useful DISPLAY

10 P2/m

DIRECTION feature of ISOTROPY.

(a,0,0,b,b,0,0,0,0)
(a,0,0,0,0,0,0,b,b)
(a,0,0,b,b,0,0,b,-b)
(2,0,0,b,b,0,0,c,-c)
(a,a,a,b,0,b,0,b,0)
(a,0,0,0,0,b,0,0,0)
(a,a,b,c,0,0,0,0,0)
(a,a,b,0,c,0,0,0,0)
(a,0,0,b,-b,0,0,b,b)
(a,a,a,b,c,b,c,b,c)
(a,0,0,0,0,b,c,0,0)
(a,b,c,d,e,0,0,0,0)
(a,0,0,c,-¢,0,0,b,b)
(a,a,b,e,0,c,d,c,-d)
(a,0,0,c,c,d,e,b,b)
(a,b,c,d,e,f,g,h,i)

Origin

(13190)3(_19190) 9(03091) (0,0,0)

This is the end of this tutorial. You may exit the program.

*QUIT
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If you have been running ISOTROPY, quit the program and start it again.

There are two different kinds of distortions in a crystal: macroscopic and microscopic.
Macroscopic distortions are tensor quantities like strain which involve the crystal as a
whole. Microscopic distortions involve individual atoms. They include atomic
displacements and molecular rotations.

Macroscopic distortions are always associated with irreps at k=0 (T irreps). We will
consider here the most common type of macroscopic distortion: strain, which is a
symmetrized tensor of rank 2. We specify this kind of tensor with the command, RANK
[12]. (See the description of the VALUE RANK command in the user’s manual for more
information.) For example, let us look at the possible macroscopic strains in a cubic
crystal.

*VALUE PARENT 221

*VALUE KPOINT GM

*VALUE RANK [12]

*SHOW MACROSCOPIC

*SHOW IRREP

*DISPLAY DISTORTION

Irrep (ML) Mode Basis Functions

GM1+ 1 Xx+yy+zz
GM3+ 1 xx+yy-2zz,1.732xx-1.732yy
GMb5+ 1 Xy,yZ,XZ

*

We see here that €11 + €29 + €33 transforms like the basis function of the one-dimensional
irrep Ff, that €11 + €33 — 2€33 and v/3e11 — V/3eaa transform like basis functions of the
two-dimensional irrep 1";, and that €12, €23, €13 transform like basis functions of the
three-dimensional irrep I'}.

Suppose there is a phase transition which results in the isotropy subgroup in the
direction P1 for irrep X;'.

*VALUE IRREP X1+

*VALUE DIRECTION P1

*SHOW FREQUENCY GAMMA

*SHOW FREQUENCY DIRECTION

*SHOW SUBGROUP

*DISPLAY ISOTROPY

Irrep (ML) Subgroup Frequency
X1+ 123 P4/mmm 1 GM1+ P1(1), 1 GM3+ P1(2)
*CANCEL SHOW FREQUENCY

*SHOW GENERATOR

*DISPLAY ISOTROPY

33
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Irrep (ML) Subgroup Generators
X1+ 123 P4/mmm (C4y+|0,0,0), (€2z|0,0,0), (I10,0,0)
*

We see that both P1 (domain 1) for irrep I'} and P1 (domain 2) for irrep I's are
secondary order parameters. Both of these irreps allow strains. The irrep F;r allows a
strain where €17 = €33 = €33. This is simply a change in volume of the crystal. For the
irrep I‘;{, we have

*VALUE IRREP GM3+

*VALUE DOMAIN 2

*DISPLAY DISTORTION

Irrep (ML) Domain Mode Basis Functions
GM3+ 2 1 XX-2yy+zz

%

which is a strain where €17 = —2¢59 = €33. This is a tetrahedral strain where the sides of
the unit cell in the cubic z and z directions remain equal. This is consistent with the
tetrahedral space group symmetry P4/mmm with the four-fold axis in the cubic y
direction. The direction of the order parameter P1 in the second domain is given by:

*CANCEL SHOW GENERATOR

*SHOW DIRECTION VECTOR

*DISPLAY ISOTROPY

Irrep (ML) Domain Subgroup Dir

GM3+ 2 123 P4/mmm P1 (-0.500a,0.866a)
*

The distortion is obtained by a dot product of the order parameter and the basis
functions: —ia(zz + yy — 222) + 2v3a(V3zz — V3yy) = a(zz — 2yy + 2z). This result
was automatically calculated when we displayed the distortion because we had selected
the direction and domain. Let’s do one more example:

*VALUE IRREP M5-

*VALUE DIRECTION C15

*CANCEL VALUE DOMAIN

*CANCEL SHOW DOMAIN

*SHOW GENERATOR

*DISPLAY ISOTROPY

Irrep (ML) Subgroup Dir Generators
M5- 12 ¢2/m C15 (a,b,a,-b,0,0) (C2fl0,1,1), (I10,1,1)
*CANCEL SHOW DIRECTION

*CANCEL SHOW GENERATOR

*SHOW FREQUENCY GAMMA

*SHOW FREQUENCY DIRECTION

*DISPLAY ISOTROPY
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Irrep (ML) Subgroup Frequency

M5- 12 €2/m 1 GM1+ P1(1), 1 GM3+ P1(3), 1 GM4+ P2(11), 2 GM5+ C2(5)
*VALUE IRREP GM5+

*VALUE DIRECTION C2

*VALUE DOMAIN 5

*DISPLAY DISTORTION

Irrep (ML) Dir Domain Mode Basis Functions

GM5+ C2 b5 1 Xy+XZ,yZ

*CANCEL SHOW FREQUENCY

*SHOW DIRECTION VECTOR

*SHOW GENERATOR

*DISPLAY ISOTROPY

Irrep (ML) Domain Subgroup Dir Generators

GM5+ 5 12 ¢2/m C2 (a,b,a) (C2£10,0,0), (I10,0,0)
*

Note that in this case, the secondary order parameter for irrep FgL is in the direction
(a,b,a), so that the distortion is given by azy + byz + axz = a(xy + xz) + byz. Since a,b
are arbitrary parameters in the order parameter, there are two independent distortions,
xy + xz and yz.

Now let us consider microscopic distortions. ISOTROPY can display information about
distortions in a very general way. (Fortunately, for our convenience, ISOTROPY also
implements three specific kinds of distortions which we also describe below.) A global
distortion is induced from a local distortion about a particular Wyckoff position in the
crystal. As an example, consider Wyckoff position ¢ in cubic space group Pm3m. The
point group symmetry of that position is 4/mmm.

*CANCEL VALUE ALL

*CANCEL SHOW ALL

*VALUE PARENT 221

*VALUE WYCKOFF C

*SHOW WYCKOFF POINTGROUP

*LABEL POINTGROUP INTERNATIONAL
*DISPLAY PARENT

Wyckoff Points, Point Groups

¢ 4/mmm

sk

The irreps of the point group 4/mmm are the same as the irreps of the space group
P4/mmm at the I point. We can make a list of them. By using the command, SHOW
IRREP POINTGROUP, we can also obtain the labeling of these point-group irreps, which is
different from their labeling in the space group.

*VALUE PARENT P4/MMM
*SHOW IRREP POINTGROUP
*VALUE KPOINT GM
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*DISPLAY IRREP

Irrep (ML)

GM1+ Alg
GM2+ Big
GM3+ A2g
GM4+ B2g
GM5+ Eg
GM1- Alu
GM2- Biu
GM3- A2u
GM4- B2u
GM5- Eu

*

Suppose we are considering the space group irrep X;". We want to obtain global
distortions that belong to this irrep. We can induce such distortions from local
distortions that belong to point group irreps of the Wyckoff ¢ position.

*VALUE PARENT 221

*VALUE IRREP X1+

*SHOW FREQUENCY

*DISPLAY IRREP

Irrep (ML) Frequency

X1+ c 1 Alg, 1 Eu
*

We see here that at Wyckoff position ¢, only local distortions that belong to point group
irreps, A14 and E,, will induce global distortions that belong to the space group irrep
Xi". Let us consider a local distortion that belongs to F,.

*VALUE WYCKOFF IRREP EU

*SHOW MICROSCOPIC

*DISPLAY DISTORTION

Irrep (ML) Wyckoff Point Operation Mode Projected Basis Functions

X1+ C (0,1/2,1/2) (E[0,0,0) 1 f1+£f2, -f1+£f2, 0
(0,1/2,3/2) (El0,0,1) 1 f1+f2, f1-f2, 0
(0,3/2,1/2) (E|0,1,0) 1 -f1-f2, -f1+f2, 0
(0,3/2,3/2) (E|0,1,1) 1 -f1-f2, f1-f2, 0
(1,1/2,1/2) (E|1,0,0) 1 f1+f2, -f1+f2, 0
(1,1/2,3/2) (El|1,0,1) 1 f1+f2, f1-£f2, 0
(1,3/2,1/2) (El1,1,0) 1 -f1-f2, -f1+f2, 0
(1,3/2,3/2) (El1,1,1) 1 -f1-f2, f1-f2, 0
(1/2,1/2,0) (€31-10,0,0) 1 -f1+f2, 0, f1+f2
(1/2,1/2,1) (C31-]0,0,1) 1 -f1+f2, 0, f1+f2
(1/2,3/2,0) (C31-10,1,0) 1 f1-f2, 0, f1+£f2
(1/2,3/2,1) (C31-10,1,1) 1 f1-f2, 0, f1+f2

(3/2,1/2,0) (C31-]1,0,0) 1 -f1+f2, 0, -f1-f2
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*

(3/2,1/2,1)
(3/2,3/2,0)
(3/2,3/2,1)
(1/2,0,1/2)
(1/2,0,3/2)
(1/2,1,1/2)
(1/2,1,3/2)
(3/2,0,1/2)
(3/2,0,3/2)
(3/2,1,1/2)
(3/2,1,3/2)

(C31-11,0,1)
(C31-11,1,0)
(C31-11,1,1)
(C31+10,0,0)
(C31+/0,0,1)
(C31+]0,1,0)
(C31+]0,1,1)
(C31+]1,0,0)
(C31+1]1,0,1)
(C31+]1,1,0)
(C31+]1,1,1)

[ T = e T =G SOy S S =
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-f1+£f2, 0, -f1-£f2
f1-f2, 0, -f1-f2
f1-f2, 0, -f1-f2
f1+£f2, -f1+£f2
-f1-£f2, -f1+£2
fi1+f2, -f1+£2
-f1-£f2, -f1+£f2
fi1+£2, f1-£2
-f1-f2, f1-£2
fi1+£2, f1-£2
-f1-f2, f1-£2

- - -

-

-

-

O O O O O O O O

-

In the column labeled “Point” are the positions of the atoms inside the unit cell of the

kernel of X;". f1 and f, are local distortions at (0

11
12072

) which transform like the basis

functions of the two-dimensional point group irrep F,. The projected basis functions are
the global distortions at each point that transform like the basis functions of the
three-dimensional space-group irrep X;". In the column labeled “Operation” are elements

of the space group which take the first point (0
row. For example, {C570,1,0}(0

1252

11

1
1272
) = (%, 1, %) Each local distortion in the projected

) to the point on the corresponding

basis functions must be operated on by the point operator in that element. For example,
the projected basis functions at (1,1, 1) are actually 0,C5; (f1 + f2), C51 (= f1 + f2).

If we want the distortions specific to a particular isotropy subgroup, we simply take the
dot product of the order parameter with the projected basis functions. ISOTROPY does

this for us.

*VALUE DIRECTION P1
*DISPLAY DISTORTION

Irrep (ML) Wyckoff Point

X1+ c

*

(0,1/2,1/2)
(0,3/2,1/2)
(1/2,1/2,0)
(1/2,3/2,0)
(1/2,0,1/2)
(1/2,1,1/2)

Operation
(E10,0,0)
(E10,1,0)
(€31-10,0,0)
(€31-10,1,0)
(€C31+]0,0,0)
(€C31+10,1,0)

Mode Projected Basis Functions

1
1
1
1
1
1

f1+£f2
-f1-f2
-f1+£2
f1-f2
0

0

Since the direction P1 is (a,0,0), the global distortions are simply the first basis function
for each point. Also, only points inside the unit cell for the isotropy subgroup in direction

P1 are listed.

Now let us treat specific kinds of microscopic distortions. First of all, we consider the

most common type: atomic displacements. These can occur in a phase transition. They
also occur in vibrational modes. ISOTROPY can be very useful for putting the dynamical
matrix into block-diagonal form.
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As an example of atomic displacements, consider a phase transition in a perovskite
crystal. The parent space group is the cubic Pm3m, and the irrep is I'; . The atoms are
at Wyckoff positions a, b, c. The direction of the order parameter is P2.

*CANCEL VALUE ALL
*CANCEL SHOW ALL
*VALUE PARENT 221
*VALUE IRREP GM4-
*VALUE DIR P2

*VALUE WYCKOFF A B C
*SHOW DIRECTION VECTOR
*SHOW SUBGROUP

*SHOW BASIS

*DISPLAY ISOTROPY

Subgroup Dir
38 Amm2 P2

Basis Vectors

(a,a,O) (09031) ,(1 9_190) s (19130)

*SHOW WYCKOFF
*SHOW MICROSCOPIC VECTOR
*DISPLAY DISTORTION

Dir Wyckoff Point
P2 a

P2 b

P2

P2

*

C

(0,0,0)
(1/2,1/2,1/2)
(0,1/2,1/2)
(1/2,1/2,0)
(1/2,0,1/2)
(0,1/2,1/2)
(1/2,1/2,0)
(1/2,0,1/2)

e e

(1,1,0)
(1,1,0)
(1,0,0)
(0,0,0)
(0,1,0)
(0,2,0)
(2,2,0)
(2,0,0)

Mode Projected Vectors

The isotropy subgroup is orthorhombic. Global distortions are induced by a local
distortion at Wyckoff position a and at position b and by two different local distortions
at position c. We do not need to specify the point group irreps. ISOTROPY tries all of
them and finds the ones that induce global distortions that belong to I'; . We can also
display the atomic positions and displacements in cartesian coordinates:

*VALUE LATTICE PARAMETER 3.88 3.88 3.88 90 90 90
*VALUE WYCKOFF XYZ 0 0 O
*SHOW CARTESIAN

*DISPLAY DISTORTION

Dir Wyckoff Point

P2 a

P2 b

P2

C

(0.00000, 0.00000,
(1.94000, 1.94000,
(0.00000, 1.94000,
(1.94000, 1.94000,
(1.94000, 0.00000,

0.00000)
1.94000)
1.94000)
0.00000)
1.94000)

Mode Projected Vectors

1

1
1
1
1

(3.88000, 3.88000,
(3.88000, 3.88000,
(3.88000, 0.00000,
(0.00000, 0.00000,
(0.00000, 3.88000,

0.00000)
0.00000)
0.00000)
0.00000)
0.00000)
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P2 ¢ (0.00000, 1.94000, 1.94000) 1 (0.00000, 7.76000, 0.00000)
(1.94000, 1.94000, 0.00000) 1 (7.76000, 7.76000, 0.00000)

(1.94000, 0.00000, 1.94000) 1 (7.76000, 0.00000, 0.00000)
*

These are atomic displacements due to the primary order parameter. Let us look for
atomic displacements due to secondary order parameters.

*CANCEL SHOW CARTESIAN
*CANCEL VALUE WYCKOFF XYZ
*CANCEL SHOW BASIS

*SHOW FREQUENCY DIRECTION
*DISPLAY ISOTROPY

Subgroup Dir Frequency
38 Amm2 P2 (a,a,0) 1 GMi+ P1(1), 1 GM3+ P1(1), 1 GM5+ P1(1), 1 GM4- P2(1), 1
GM5- P2(10)

*VALUE IRREP GM1+

*VALUE DIRECTION P1

*DISPLAY DISTORTION

*VALUE IRREP GM3+

*DISPLAY DISTORTION

*VALUE IRREP GMb+

*DISPLAY DISTORTION

*VALUE IRREP GM5-

*VALUE DIRECTION P2

*VALUE DOMAIN 10

*DISPLAY DISTORTION

Dir Domain Wyckoff Point Mode Projected Vectors

P2 10 C (0,1/2,1/2) 1 (0,-2,0)
(1/2,1/2,0) 1 (2,2,0)
(1/2,0,1/2) 1 (-2,0,0)

sk

We first find that secondary order parameters occur for irreps I'f, I's, I's, I's;. We try
them one at a time. If there is no data displayed in response to the DISPLAY DISTORTION
command, then no local atomic displacements can induce a global distortion for that
space group irrep. We see that the only secondary order parameter that produces atomic
displacement distortions is P2 (domain 10) for irrep I'; . This global distortion involves
only displacements of the atoms at Wyckoff position c.

The collection of primary and secondary modes is called a “bush” of modes. We can
display the entire bush with one command.

*VALUE IRREP GM4-
*VALUE DIRECTION P2
*CANCEL VALUE DOMAIN
*SHOW MODES
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*DISPLAY BUSH

Irrep (ML) Dir(dom) Wyckoff Point

GM4- P2(1) a
GM4- P2(1) b
GM4- P2(1) C
GM5- P2(10) C

*

(0,0,0)
(1/2,1/2,1/2)
(0,1/2,1/2)
(1/2,1/2,0)
(1/2,0,1/2)
(0,1/2,1/2)
(1/2,1/2,0)
(1/2,0,1/2)

Displacement
(1,1,0)

(1,1,0)

(1,0,0), (0,2,0)
(0,0,0), (2,2,0)
(0,1,0), (2,0,0)
(0,-2,0)

(2,2,0)

(-2,0,0)
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We can illustrate some additional features available by considering an atom at Wyckoff
position e and the order parameter P1 for irrep M;".

*VALUE IRREP M1+
*VALUE DIRECTION P1
*VALUE WYCKOFF E

*SHOW BASIS

*CANCEL SHOW DOMAIN
*CANCEL SHOW FREQUENCY
*DISPLAY ISOTROPY
Subgroup Dir

Basis Vectors

123 P4/mmm P1 (a,0,0) (1,1,0),(-1,1,0),(0,0,1)

*DISPLAY DISTORTION

Dir Wyckoff Point

Pl e (x,0,0)
(x,1,0)
(-x,0,0)
(-x,1,0)
(0,0,x)
(0,1,x)
(0,0,-x)
(0,1,-x)
(0,x,0)

(0,x+1,0)

Mode Projected Vectors

1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2

(1,0,0)
(0,0,0)
(-1,0,0)
(0,0,0)
(-1,0,0)
(0,0,0)
(1,0,0)
(0,0,0)
(0,0,0)
(0,0,1)
(0,0,0)
(0,0,-1)
(0,0,0)
(0,0,-1)
(0,0,0)
(0,0,1)
(0,1,0)
(0,0,0)
(0,-1,0)
(0,0,0)
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(0,-x,0)

(0,-x+1,0) 1

*

1 (0,-1,0)
2 (0,0,0)

(0,1,0)

2 (0,0,0)
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We note that there are two modes. Each corresponds to a different global distortion.
These arise from different local distortions that belong to the same point group irrep.
Also, we can assign a value to the parameter x in Wyckoff position.

*VALUE WYCKOFF XYZ 0.156 0 O

*DISPLAY DISTORTION
Dir Wyckoff Point
P1 e (0.15600,

(0.15600,

0.00000, 0.00000)

1.00000, 0.00000)

(-0.15600, 0.00000, 0.00000)

(-0.15600, 1.00000, 0.00000)

(0.00000,
(0.00000,
(0.00000,
(0.00000,
(0.00000,
(0.00000,
(0.00000,
(0.00000,

*

0.00000, 0.15600)

1.00000, 0.15600)
0.00000, -0.15600)
1.00000, -0.15600)
0.15600, 0.00000)
1.15600, 0.00000)
-0.15600, 0.00000)

0.84400, 0.00000)

Mode Projected Vectors
1 (1,0,0)
2 (0,0,0)
1 (-1,0,0)
2 (0,0,0)
1 (-1,0,0)
2 (0,0,0)
1 (1,0,0)
2 (0,0,0)
1 (0,0,0)
2 (0,0,1)
1 (0,0,0)
2 (0,0,-1)
1 (0,0,0)
2 (0,0,-1)
1 (0,0,0)
2 (0,0,1)
1 (0,1,0)
2 (0,0,0)
1 (0,-1,0)
2 (0,0,0)
1 (0,-1,0)
2 (0,0,0)
1 (0,1,0)
2 (0,0,0)

Next, consider an atom at Wyckoff position c.

*CANCEL VALUE WYCKOFF XYZ

*VALUE WYCKOFF C
*DISPLAY DISTORTION
Dir Wyckoff Point
P1 ¢

(0,1/2,1/2) 1
(0,3/2,1/2) 1

Mode Projected Vectors

(0,2,0)
(0,-2,0)
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*

(1/2,1/2,0)
(1/2,3/2,0)
(1/2,0,1/2)
(1/2,1,1/2)

Session 4: Distortions

1 (0,0,0)
1 (0,0,0)
1 (2,0,0)
1 (-2,0,0)

We can control which points are displayed. By default, the points inside the unit cell of
the isotropy subgroup are displayed. All other points can be obtained by translations
using lattice vectors of the isotropy subgroup. It may sometimes be more convenient,
though, to display more points. We can define a cell containing the points to be

displayed.

*VALUE CELL 2,0,0 0,2,0 0,0,2
*DISPLAY DISTORTION
Dir Wyckoff Point

P1 ¢

*

(0,1/2,1/2)
(0,1/2,3/2)
(0,3/2,1/2)
(0,3/2,3/2)
(1,1/2,1/2)
(1,1/2,3/2)
(1,3/2,1/2)
(1,3/2,3/2)
(1/2,1/2,0)
(1/2,1/2,1)
(1/2,3/2,0)
(1/2,3/2,1)
(3/2,1/2,0)
(3/2,1/2,1)
(3/2,3/2,0)
(3/2,3/2,1)
(1/2,0,1/2)
(1/2,0,3/2)
(1/2,1,1/2)
(1/2,1,3/2)
(3/2,0,1/2)
(3/2,0,3/2)
(3/2,1,1/2)
(3/2,1,3/2)

Mode Projected Vectors
(0,2,0)
(0,2,0)
(0,-2,0)
(0,-2,0)
(0,-2,0)
(0,-2,0)
(0,2,0)
(0,2,0)
(0,0,0)
(0,0,0)
(0,0,0)
(0,0,0)
(0,0,0)
(0,0,0)
(0,0,0)
(0,0,0)
(2,0,0)
(2,0,0)
(-2,0,0)
(-2,0,0)
(-2,0,0)
(-2,0,0)
(2,0,0)
(2,0,0)

el e e e e e i T I e S e S S S S N o

Now let us consider another kind of microscopic distortion: rotations. These are
pseudovectors. Consider the order parameter P1 for irrep Ry and atoms at Wyckoff
positions a, b, c. The atomic displacements are

*CANCEL VALUE CELL
*VALUE IRREP R5-
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*VALUE DIRECTION P1
*VALUE WYCKOFF A B C
*DISPLAY DISTORTION

Dir Wyckoff Point Mode Projected Vectors

P1 ¢ (0,1/2,1/2) 1 (0,2,0)
(0,1/2,3/2) 1 (0,-2,0)
(1/2,1/2,0) 1 (0,0,0)
(1/2,1/2,1) 1 (0,0,0)
(1/2,0,1/2) 1 (-2,0,0)
(1/2,0,3/2) 1 (2,0,0)

These displacements can be view as a rotation of octahedra about Wyckoff position b.

*SHOW MICROSCOPIC VECTOR PSEUDO
*DISPLAY DISTORTION
Dir Wyckoff Point Mode Projected Pseudo Vectors
P1 b (1/2,1/2,1/2) 1 (0,0,1)
(1/2,1/2,3/2) 1 (0,0,-1)
*

Indeed this is a simpler way of viewing it: rotations about the z axis which alternate in
sign as we move along the z axis.

The last type of microscopic distortion featured in ISOTROPY is order-disorder. Consider
an alloy on a bcc lattice. An order-disorder phase transition could occur which causes the
occupation at center of the cubic unit cell to be different from that at the corners. The
parent space group is Im3m. The order parameter is P1 of irrep H; .

*VALUE PARENT 229

*VALUE IRREP H1+

*VALUE DIRECITON P1

*DISPLAY ISOTROPY

Subgroup Dir Basis Vectors

221 Pm-3m P1 (a) (1,0,0),(0,1,0),(0,0,1)
*VALUE WYCKOFF A

*SHOW MICROSCOPIC SCALAR

*DISPLAY DISTORTION

Dir Wyckoff Point Mode Projected Order Functions
P1 a (0,0,0) 1 f

*
We see that the ordering at (0,0, 0) is opposite to the ordering at (%, %, %), as expected.
This is the end of this tutorial. You may exit the program.

*QUIT
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If you have been running ISOTROPY, quit the program and start it again.

In the Landau theory of phase transitions, the free energy of a crystal is expanded in
terms of components of the order parameter. From symmetry, certain monomials in this
expansion can be shown to vanish. Similarly, certain monomials can be combined to form
invariant polynomials.

As an example, consider the irrep I'; of space group Pm3m.

*VALUE PARENT 221

*VALUE IRREP GM4-

*DISPLAY INVARIANT

Deg Invariants

2 nl"2 +n2°2 +n3°2

4 ni"4 +2n1"2n2°2 +2n1°2n3"2 +n2"4 +2n2°2n3"2 +n3"4
4 ni1~4 +n2°4 +n3"4
sk

There is a second-degree invariant polynomial (n? + 72 + 73) = n? and two fourth-degree
invariant polynomials, n* and (n{ + n3 + n3). Since ISOTROPY did not display any
first-degree or third-degree invariant polynomials, there are none. By default, ISOTROPY
displays invariant polynomials up to fourth degree. However, we can override the default:

*VALUE DEGREE 1 6

*DISPLAY INVARIANT

Deg Invariants

2 nl1"2 +n2°2 +n3°2

4 nl"4 +2n1"2n2°2 +2n1"2n3"2 +n2"4 +2n2°2n3"2 +n3"4

4 nl~4 +n2°4 +n3°4

6 nl"6 +3n1"4n2"2 +3n1"4n3"2 +3n1"2n2"4 +6n1"2n2"2n3"2 +3n1°2n3"4 +n2"6
+3n2"4n3"2 +3n2°2n3"4 +n3"6

n1"4n2°2 +n1"4n3"2 +n1°2n2°4 +3n1"2n2°2n3"2 +n1"2n3"4 +n2°4n3"2 +n2"2n3"4
nl"6 +n2°6 +n3°6

[e) TN e>)

*
and we can also display invariant polynomials for a single degree:

*VALUE DEGREE 6

*DISPLAY INVARIANT

Deg Invariants

6 nl1"6 +3n1"4n2°2 +3n1"4n3"2 +3n1"2n2°4 +6n1"2n2"2n3"2 +3n1°2n3"4 +n2"6
+3n2"4n3"2 +3n2°2n3"4 +n3"6

6 n174n2"2 +n1"4n3"2 +n1"2n2"4 +3n1"2n2°"2n3"2 +n1"2n3"4 +n2°4n3"2 +n2"2n3"4

nl"6 +n2°6 +n3°6

45
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We can display invariant polynomials for coupled order parameters as well:

*VALUE DEGREE 1 4

*VALUE IRREP GM5- GM4-

*SHOW IRREP

*DISPLAY INVARIANT

Irrep (ML) Deg Invariants

GM5-,GM4- 2 nl"2 +n272 +n372
2 1n4°2 +nb"2 +n6"2

4 ni~4 +2n1"2n2°2 +2n1°2n3"2 +n2°4 +2n2°2n3"2 +n374

4 ni~4 +n2°4 +n3"4

4 nl1~2n2n4 -n1"2n3n5 -nin2°2n6 +nin3"2n6 +n2°2n3n5 -n2n3"2n4

4 n1~2n4"2 +n1°2n5"2 +n1°"2n6"2 +n2°2n4"2 +n2"2n5"2 +n2"2n6"2
+n3°2n4"2 +n3"2n5"2 +n3"2n6"2

4 n1~2n4"2 +n1°2n5"2 +n2°2n5"2 +n2°2n6"2 +n3"2n4"2 +n3"2n6"2

4 nin2n4n6 +nin3n5n6 +n2n3n4nb5

4 nin4"2n6 -nin5"2n6 +n2n4n5°2 -n2n4n6~2 -n3n4"2n5 +n3nbn6"2

4 n4d~4 +2n4"2n5°2 +2n4"2n6"2 +n57"4 +2n5°2n6"2 +n674

4 n4"4 +n5"4 +n6"4

Here the order parameter for I'y is (11,72, 73) and
the order parameter for I'; is (14, 75, 76)

ISOTROPYcCan display invariant polynomials containing spatial derivatives. For
example, consider the irrep M; of space group P4/n. Its Lifshitz frequency

is 1, so there exists a single second-degree invariant polynomial containing
first derivatives with respect to x, v, z.

*VALUE PARENT 85

*VALUE IRREP M1

*VALUE GRADIENT 1

*VALUE DEGREE 2

*DISPLAY INVARIANT

Irrep (ML) Deg Invariants
M1 2 nln2z -n2niz
*

The invariant polynomial is 11 (9n2/0z) — n2(0n1/0%).

ISOTROPY can evaluate invariant polynomials at a certain direction of the order
parameter. As an example, consider the irrep X5 of space group Pm3m. This is a
six-dimensional irrep. There are five invariant polynomials of fourth-degree. If we
evaluate these polynomials at order parameter direction C1, 7 = (a, b,0,0,0,0), we
obtain polynomials with only two variables (a, b, which we rename 7;,72). We find that
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these five polynomials are now no longer independent. ISOTROPY automatically removes
the polynomials that are not independent.

*VALUE PARENT 221

*VALUE IRREP Xb-

*CANCEL VALUE GRADIENT

*VALUE DEGREE 1 4

*CANCEL SHOW IRREP

*DISPLAY INVARIANT

Deg Invariants

2 nl"2 +n2°2 +n3°2 +n4"2 +n5"2 +n6"2

4 nl"4 +2n1°2n2°2 +2n1"2n3"2 +2n1"2n4"2 +2n1"2n5"2 +2n1°2n6"2 +n2°4 +2n2°2n3"2
+2n2°2n4"2 +2n2°2n5"2 +2n2"2n6"2 +n3"4 +2n3"2n4"2 +2n3"2n5"2 +2n3"2n6"2
+n4~4 +2n4°"2n5°2 +2n4"2n6"2 +nb"4 +2n5"2n6"2 +n6°4

4 nl"4 +n2°4 +n3"4 +n4"4 +n5"4 +n6"4

nl172n2"2 +n3"2n4"2 +n5°"2n6"2

4 n172n3n4 -n172n5n6 -nin2n3°2 -nin2n4°"2 +nin2n5°2 +nin2n6°2 +n2°2n3n4
-n2°2n5n6 +n3"2n5n6 -n3n4n5°2 -n3n4n6°"2 +n4~2nbn6

4 nin2n3n4 +nin2n5n6 +n3n4nbn6

*VALUE DIRECTION C1

*DISPLAY INVARIANT

Deg Invariants

2 nl1°2 +n2°2

4 nl1°4 +2n1"2n2"2 +n2"4

4 nl1"4 +n274

*

S

We can also display invariant polynomials associated with a bush of vibrational modes.
These polynomials would be terms in the potential energy. Consider a primary order
parameter P2 for irrep I, , space group Pm3m.

*VALUE IRREP GM4-

*VALUE DIRECTION P2

*VALUE WYCKOFF C

*SHOW MODES

*SHOW INVARIANT

*DISPLAY BUSH

Irrep (ML) Dir(dom) Wyckoff Point Displacement

GM4- P2(1) c (0,1/2,1/2) (1,0,0), (0,2,0)
(1/2,1/2,0) (0,0,0), (2,2,0)
(1/2,0,1/2) (0,1,0), (2,0,0)

GM5- P2(10) ¢ (0,1/2,1/2) (0,-2,0)
(1/2,1/2,0) (2,2,0)
(1/2,0,1/2) (-2,0,0)

Irrep (ML) Dir(dom) Wyckoff Mode Variables

GM4- P2(1) c ni,n2
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GM5- P2(10) ¢ n3
Deg Invariants
nil~2
nin2
n2°2
n3~2
ni~4
nl~3n2
nl~2n2°2
nin2~3
n2~4
nl1~2n3"2
nin2n3°2
n2~2n3"2
n3~4
nl1~3n3
nl1~2n2n3
nin2°2n3
nin3~3
n2~3n3
n2n3"3

B N N N N N N N N N N N N N NS VS

There are three modes, two for irrep I'; (primary order parameter or root mode) and one
for 'y (secondary order parameter or secondary mode).

This is the end of this tutorial. You may exit the program.

*QUIT
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If you have been running ISOTROPY, quit the program and start it again.

When a crystal undergoes a phase transition, a collection of coherent domains usually
appear. These domains are symmetrically and energetically equivalent structures
differing only in their orientation and possibly position.

More details about domain pairs and twins and their symmetry groups can be found in
D. M. Hatch and W. Cao, “Determination of Domain and Domain Wall Formation at
Ferroic Transitions,” Ferroelectrics 222, 1-10 (1999) and R. A. Hatt and D. M. Hatch,
“Order-Parameter Profiles in Ferroic Phase Transitions,” Ferroelectrics 226, 61-78
(1999).

In this session, we consider as an example the space group R3m and subgroup P2;/c.
This subgroup is obtained from irrep F;~ with order parameter direction P1.

*VALUE PARENT 166

*VALUE IRREP F2+

*VALUE DIRECTION P1

*SHOW SUBGROUP

*SHOW BASIS

*SHOW ELEMENTS

*DISPLAY ISOTROPY

Subgroup Basis Vectors Elements

14 p2.1/c (-1/3,-2/3,1/3),(1,0,0),(1/3,2/3,2/3) (E|0,0,0), (C21°’|2/3,1/3,1/3),
(110,0,0), (sGv1|2/3,1/3,1/3)

*

There are six single domain states (SDS’s) that occur at this transition, and they
correspond to the cosets in R3m which can be formed with respect to P21/c. The
prototype of the transition shown above is always chosen to be the first domain state,
and the symmetry group elements that leave that domain invariant are given above. To
obtain the SDS’s, R3m is decomposed into cosets with respect to the subgroup P2;/c of
the first domain. In this case, there are six cosets. The elements of the ith coset take the
first domain state into the ith domain state. One element from each coset is chosen to be
a domain state generator. The symmetry elements of the ith domain state are

F; =giFhg; 1. where g; is the generator, and F; is the set of space group elements for the
1th domain. We obtain the generators for each domain state and the elements of each
symmetry group below.

*CANCEL SHOW SUBGROUP

*CANCEL SHOW BASIS

*SHOW DOMAIN GENERATOR

*DISPLAY ISOTROPY

Domain Gen Elements

1 (El0,0,0) (El0,0,0), (c21°°|2/3,1/3,1/3), (110,0,0),
(SGv112/3,1/3,1/3)

49
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2 (C3+|0,0,0) (El0,0,0), (Cc22°’|-1/3,1/3,1/3), (1]0,0,0),
(sGv2|-1/3,1/3,1/3)

3 (€3-10,0,0) (El0,0,0), (C23°’|-1/3,-2/3,1/3), (110,0,0),
(sGv3|-1/3,-2/3,1/3)

4 (El2/3,1/3,1/3) (El0,0,0), (Cc21°°|1,1,1), (I|4/3,2/3,2/3),
(sGv1|5/3,1/3,1/3)

5 (C3+1-1/3,1/3,1/3) (E|0,0,0), (C22’’|-1,0,1), (I|-2/3,2/3,2/3),

(8Gv2|-1/3,4/3,1/3)
(¢3-1-1/3,-2/3,1/3) (E|0,0,0), (C23’’|0,-1,1), (I1-2/3,-4/3,2/3),
(8Gv3|-4/3,-5/3,1/3)

(2]

*

Note that the space group symmetry of each domain is P2;/c. Only the orientation
and/or position of its origin is different.

*CANCEL SHOW DOMAIN GENERATORS

*CANCEL SHOW ELEMENTS

*SHOW SUBGROUP

*SHOW BASIS

*SHOW ORIGIN

*DISPLAY ISOTROPY

Domain Subgroup Basis Vectors Origin

14 P2.1/c (-1/3,-2/3,1/3),(1,0,0),(1/3,2/3,2/3)  (0,0,0)

14 P2.1/c (2/3,1/3,1/3),(0,1,0),(-2/3,-1/3,2/3)  (0,0,0)

14 p21/c (-1/3,1/3,1/3),(-1,-1,0),(1/3,-1/3,2/3) (0,0,0)

14 p2.1/c (-1/3,-2/3,1/3),(1,0,0),(1/3,2/3,2/3) (2/3,1/3,1/3)
14 P2.1/c (2/3,1/3,1/3),(0,1,0),(-2/3,-1/3,2/3)  (-1/3,1/3,1/3)
14 p2.1/c (-1/3,1/3,1/3),(-1,-1,0),(1/3,-1/3,2/3) (-1/3,-2/3,1/3)

*¥ OO O b W N =

In the above list, we see that domains 1 and 4 both have the same basis vectors but a
different origin. These two domains do have, in fact, the same space group elements.
This can be seen from the directions of the order parameters in each domain.

*CANCEL SHOW BASIS
*CANCEL SHOW ORIGIN
*SHOW DIRECTION VECTOR
*DISPLAY ISOTROPY
Domain Subgroup Dir

1 14 P2.1/c P1 (a,0,0)
2 14 P21/c (0,a,0)
3 14 P2.1/c (0,0,a)
4 14 P2.1/c (-a,0,0)
5 14 P2.1/c (0,-a,0)
6 14 P2_1/c (0,0,-a)
*
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Since the value of a in the order parameter is arbitrary, (a,0,0) and (—a,0,0) are
actually identical directions. Similarly, domains 2 and 5 have the same space group
elements, and domains 3 and 6 do also. There are three distinct domains for this
transition. The distinct domains can be shown explicitly.

*SHOW DISTINCT
*DISPLAY ISOTROPY
Domain Distinct Subgroup Dir

1 1 14 P2.1/c P1 (a,0,0)
2 2 14 P2_1/c (0,a,0)
3 3 14 P2_1/c (0,0,a)
4 1 14 P2_1/c (-a,0,0)
5 2 14 P2_1/c (0,-a,0)
6 3 14 P2_1/c (0,0,-a)
*

The next simplest structure to consider is a domain pair. This is an idealization of two
superimposed single domains in the same space but otherwise not interacting. The entire
set of possible pairs (S;,S;) is 62 = 36 pairs. Pairs are equivalent if there is some element
g of the parent group such that (S;, S;) = g(Sk, Si) = (9Sk, 951). In our example this
reduces the number of distinct classes of domain pairs to 3. ISOTROPY shows us which
pairs (1,j) [shorthand for (Si,S;)] are equivalent.

*CANCEL SHOW DISTINCT
*CANCEL SHOW SUBGROUP
*CANCEL SHOW DIRECTION
*SHOW PAIRS

*DISPLAY ISOTROPY
Domain Pairs

1

*¥ O O b W N -
W W NN Www

Here we see 3 distinct classes of domain pairs (the number in the column labeled Pairs).
Domain pair (1,1) is in a class by itself (which we call class 1), domain pair (1,4) is also
in a class by itself (class 2), and domain pairs (1,2), (1,3), (1,5), and (1,6) are all
equivalent and are in class 3.

The pair symmetry group consists of two types of operations that leave the domain pair
invariant: (1) operations that simultaneously leave both SDS’s unchanged and
(2) operations, if they exist, that interchange (switch) the two SDS’s. We can write this
Symmetry group as

Jij = Fay N Figy + GigFay 0 Figy,s
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where F(;) is the space group of the ith domain and jZ{j is an element that switches the
two SDS’s. The first term, F(;) N F{;), is called the pair intersection group. For example,
we obtain the pair intersection group for the domain pair (1,2):

*VALUE DOMAIN PAIR 1 2
*SHOW PAIRS INTERSECT
*DISPLAY ISOTROPY

Domain Pairs Pair intersect
(1,2) S1

sk

The pair intersection group is always one of the other isotropy subgroups. In this case, it
is the isotropy subgroup with the order parameter in the direction S1. We display the
elements, basis vectors of the lattice, and origin of this pair intersection group:

*CANCEL SHOW ALL

*VALUE DIRECTION S1

*SHOW SUBGROUP

*SHOW ELEMENTS

*DISPLAY ISOTROPY

Subgroup Elements

2 P-1  (El0,0,0), (110,0,0)

*CANCEL SHOW ELEMENTS

*SHOW BASIS

*SHOW ORIGIN

*DISPLAY ISOTROPY

Subgroup Basis Vectors Origin
2 P-1 (-4/3,-2/3,1/3),(2/3,-2/3,1/3),(2/3,4/3,1/3) (0,0,0)
sk

We can also obtain the element ji, that switches the two SDS’s.

*CANCEL SHOW ALL

*VALUE DIRECTION P1

*VALUE DOMAIN PAIR 1 2

*SHOW PAIRS SWITCH

*DISPLAY ISOTROPY

Domain Pairs Pair switch

(1,2) (C23771-1/3,1/3,1/3)
*

Finally, we obtain the pair group:

*CANCEL SHOW PAIRS SWITCH
*SHOW PAIRS GROUP

*SHOW PAIRS ELEMENTS
*DISPLAY ISOTROPY
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Domain Pairs Pair group Elements

(1,2) 12 C2/m (El10,0,0), (C23°’|-1/3,1/3,1/3), (112/3,4/3,1/3),
(8Gv311,1,0)

*CANCEL SHOW PAIRS ELEMENTS

*SHOW PAIRS BASIS

*SHOW PAIRS ORIGIN

*DISPLAY ISOTROPY

Domain Pairs Pair group Basis Origin

(1,2) 12 C2/m (-2/3,2/3,2/3),(2,2,0),(0,0,-1) (1/3,2/3,1/6)

%

The next more complicated structure to be considered is a domain twin. A domain twin
can be viewed as two domains, each occupying a half space separated by a specified plane
wall. The wall is specified by a direction 7 normal to the wall and a point P through
which the wall passes. The symmetry group of the twin group consists of four parts and
can be denoted as A R A A

Jij = Fij + E;jFij + EijFij + S;jFij.

All four parts leave P invariant. In addition, (1) ﬁ’ij contains those elements that leave
Si, Sj, and 7 invariant (we refer to ﬁ’ij as the twin intersection group), (2) é;jﬁ’ij contains
those elements that interchange S; and S; and reverses 7 (we refer to t;; as the switch
both element), (3) L’jﬁz’j contains those elements that leave S; and S; invariant and

reverses 7 (we refer to r;; as the switch normal element), (4) s;jﬁ’ij contains those
elements that interchange S; and S; and leave 7 invariant (we refer to s}; as the switch

side element). Note that both the twin intersection group Fij and the twin group J;; are
diperiodic space groups. The lattice for these groups is two-dimensional, and therefore
only two basis vectors of the lattice are given.

As an example, we consider a domain wall between S; and Sy with position P= (0,0,0)
and Miller indices (1,1,0). First, we obtain the twin intersection group Fis.

*CANCEL SHOW ALL

*VALUE DOMAIN PAIR 1 2

*VALUE POSITION O O O

*VALUE NORMAL 1 1 0

*SHOW TWIN INTERSECT GROUP

*SHOW TWIN INTERSECT BASIS

*SHOW TWIN INTERSECT ORIGIN

*SHOW TWIN INTERSECT ELEMENTS

*DISPLAY ISOTROPY

Domain Pairs Twin intersect Basis Origin Elements
1,2) 1P1 (-2/3,2/3,-1/3),(0,0,-1) (0,0,0) (E|0,0,0)
*
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We also obtain the switch normal element r;,, the switch side element s/, and the
switch both element ¢/,.

*CANCEL SHOW TWIN

*SHOW TWIN SWITCH NORMAL

*SHOW TWIN SWITCH SIDE

*SHOW TWIN SWITCH BOTH

*DISPLAY ISOTROPY

Domain Pairs Twin switch normal Twin switch side Twin switch both
(1,2) (I1-2/3,2/3,2/3) (c23°°[-1/3,1/3,1/3) (SGv3[-1/3,1/3,1/3)
%

And finally we obtain the twin symmetry group Jio. Notice that it is a diperiodic space
group.

*CANCEL SHOW TWIN

*SHOW TWIN GROUP

*SHOW TWIN ELEMENTS

*DISPLAY ISOTROPY

Domain Pairs Twin group Elements

(1,2) 7 P2/b11  (El0,0,0), (C23°’|-1/3,1/3,-2/3), (110,0,0),
(sGv3|-1/3,1/3,-2/3)

*CANCEL SHOW TWIN ELEMENTS

*SHOW TWIN BASIS

*SHOW TWIN ORIGIN

*DISPLAY ISOTROPY

Domain Pairs Twin group Basis Origin

(1,2) 7 P2/b11  (-2/3,2/3,-1/3),(-2/3,2/3,-4/3) (0,0,0)

sk

Of course, if the position or orientation of the domain wall is changed, the twin group
will change. Physical properties of materials such as fatigue, polarization switching
voltage, etc. depend on domain wall formation, i.e., placement and orientation.

This is the end of this tutorial. You may exit the program.

*QUIT



Case Study: Octahedral Tilting in Perovskites

This case study explains how ISOTROPY was used in the research which resulted in the
publication, Christopher J. Howard and Harold T. Stokes, “Group Theoretical Analysis
of Octahedral Tilting in Perovskites,” Acta Cryst. B, 54, 782789 (1998).

The perovskites ABX3 have a cubic structure: space group #221 Pm3m with atom A at
Wyckoff position b, (2, %, %), atom B at Wyckoff position a, (0,0,0), and atom X at
Wyckoff position d, (3,0,0), (0,3,0), (0,0,1). The X atoms lie on vertices of octahedra
BXg, centered about each B atom. These octahedral are linked, since each X atom is at
the vertex of two adjacent octahedra. We want to find possible phase transitions which

involve tilting of these octahedra.

There are two constraints on this problem. The first constraint is due to the linking of
the octahedra. If the octahedron centered at (0,0,0) tilts about the x axis, then
neighboring octahedra at (0,+1,0) and (0,0, +1) must also tilt about the z axis, but in
the opposite direction. In fact, every octahedron in the yz plane must be tilted about the
x axis, half of them in one direction and the other half in the other direction. There is a
similar constraint for tilting about the y and z axes.

The other constraint is one of our own making in order to restrict the scope of our
search. If the octahedron centered at (0,0,0) tilts about the = axis, then, as we saw
above, the tilting of every octahdron in the yz plane is determined. However, we have the
freedom to choose the tilting of octahedra about the x axis in adjacent yz planes. We
will consider two different tilt patterns: (1) the tilting about the z axis in adjacent yz
planes is the same, and (2) the tilting about the z axis in adjacent yz planes is opposite.
Thus, as we move along the z axis, we find tilt patterns which are either ++ + + + + ...
or +— + — + — ... We use a similar constraint for tilting about the y and z axes as well.

Now let us first find the irreps for which these tilt patterns are basis functions. We find
all possible distortions caused by tilts (pseudovectors) at Wyckoff position a. We

consider only irreps at k points of symmetry.

*VALUE PARENT 221

*VALUE WYCKOFF A

*VALUE KDEGREE 0O

*VALUE CELL 2,0,0 0,2,0 0,0,2

*SHOW IRREP

*SHOW MICROSCOPIC VECTOR PSEUDO

*DISPLAY DISTORTION

Irrep (ML) Point Mode Projected Pseudo Vectors

GM4+ (0,0,0) 1 (1,0,0), (0,1,0), (0,0,1)
(0,0,1) 1 (1,0,0), (0,1,0), (0,0,1)
(0,1,0) 1 (1,0,0), (0,1,0), (0,0,1)
(0,1,1) 1 (1,0,0), (0,1,0), (0,0,1)
(1,0,0) 1 (1,0,0), (0,1,0), (0,0,1)
(1,0,1) 1 (1,0,0), (0,1,0), (0,0,1)
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(1,1,0) 1 (1,0,0), (0,1,00, (0,0,1)
(1,1,1) 1 (1,0,0), (0,1,0), (0,0,1)
R4+ (0,0,0) 1 (0,0,1), (1,0,0), (0,1,0)
(0,0,1) 1 (0,0,-1), (-1,0,0), (0,-1,0)
(0,1,0) 1 (0,0,-1), (-1,0,0), (0,-1,0)
(0,1,1) 1 (0,0,1), (1,0,0), (0,1,0)
(1,0,0) 1 (0,0,-1), (-1,0,0), (0,-1,0)
(1,0,1) 1 (0,0,1), (1,0,0), (0,1,0)
(1,1,0) 1 (0,0,1), (1,0,0), (0,1,0)
(1,1,1) 1 (0,0,-1), (-1,0,0), (0,-1,0)
X3+ (0,0,0) 1 (0,-1,0), (0,0,-1), (1,0,0)
(0,0,1) 1 (0,-1,0), (0,0,1), (1,0,0)
(0,1,0) 1 (0,1,0), (0,0,-1), (1,0,0)
(0,1,1) 1 (0,1,0), (0,0,1), (1,0,0)
(1,0,0) 1 (0,-1,0), (0,0,-1), (-1,0,0)
(1,0,1) 1 (0,-1,0), (0,0,1), (-1,0,0)
(1,1,0) 1 (0,1,0), (0,0,-1), (-1,0,0)
(1,1,1) 1 (0,1,0), (0,0,1), (-1,0,0)
X5+ (0,0,0) 1 1,0,1), (1,0,-1), (1,1,0), (-1,1,0), (0,1,1), (0,-1,1)
(0,0,1) 1 (1,0,1), (1,0,-1), (-1,-1,0), (1,-1,0), (0,1,1),
(0,-1,1)
(0,1,0) 1 (-1,0,-1), (-1,0,1, (1,1,0), (-1,1,00, (0,1,1),
(0,-1,1)
(0,1,1) 1 (-1,0,-1), (-1,0,1), (-1,-1,00, (1,-1,0), (0,1,1),
(0,-1,1)
(1,0,0) 1 (1,0,1), (1,0,-1), (1,1,0), (-1,1,0), (0,-1,-1),
(0,1,-1)
(1,0,1) 1 (1,0,1), (1,0,-1), (-1,-1,0), (1,-1,0), (0,-1,-1),
(0,1,-1)
(1,1,0) 1 (-1,0,-1), (-1,0,1), (1,1,0), (-1,1,0), (0,-1,-1),
(0,1,-1)
(1,1,1) 1 (-1,0,-1), (-1,0,1), (-1,-1,00, (1,-1,0), (0,-1,-1),
(0,1,-1)
M3+ (0,0,0) 1 (0,0,1), (1,0,0), (0,1,0)
(0,0,1) 1 (0,0,1), (-1,0,0), (0,-1,0)
(0,1,0) 1 (0,0,-1), (-1,0,0), (0,1,0)
(0,1,1) 1 (0,0,-1), (1,0,0), (0,-1,0)
(1,0,0) 1 (0,0,-1), (1,0,0), (0,-1,0)
(1,0,1) 1 (0,0,-1), (-1,0,0), (0,1,0)
(1,1,0) 1 (0,0,1), (-1,0,0), (0,-1,0)
(1,1,1) 1 (0,0,1), (1,0,0), (0,1,0)
M5+ (0,0,0) 1 1,0,-1), (1,0,1), (-1,1,0), (1,1,0), (0,-1,1), (0,1,1)
(0,0,1) 1 (1,0,1), (1,0,-1), (1,-1,0), (-1,-1,0), (0,-1,-1),

(0,1,-1)
(0,1,0) 1 (_1,0,1), (_1,0,_1), (_1,_110)3 (1’_1’0)’ (0’1’1)’
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(0,-1,1)

(0,1,1) 1 (-1,0,-1), (-1,0,1), (1,1,0), (-1,1,0), (0,1,-1),
(0,-1,-1)

(1,0,0) 1 (-1,0,-1), (-1,0,1, (1,1,0), (-1,1,00, (0,1,-1),
(0,-1,-1)

(1,0,1) 1 (-1,0,1), (-1,0,-1), (-1,-1,0), (1,-1,0), (0,1,1),
(0,-1,1)

(1,1,00 1 (1,0,1), (1,0,-1), (1,-1,0), (-1,-1,0), (0,-1,-1),
(0,1,-1)

(1,1,1) 1 (1,0,-1), (1,0,1), (-1,1,0), (1,1,0), (0,-1,1), (0,1,1)

*

We find 24 tilt patterns, three from each of the three-dimensional irreps, I'S, RS, X,
MgL and six from each of the six-dimensional irreps, X ;— , M, 5+ . Most of these tilt patterns
violate the constraint due to linking of the octahedra. We find the tilt patterns of
interest by inspection of the projected pseudo vectors above. The + ++ + ++ ...
pattern belongs to M;r, and the + — 4+ — 4+ — ... pattern belongs to R, . These are both
three-dimensional irreps. By inspection, we also see that the tilts for the three basis
functions are about the z, z, and y axes, respectively.

Now we find the isotropy subgroups. First of all, we find the subgroups for the uncoupled
order parameters.

*SHOW DIRECTION VECTOR
*SHOW BASIS

*SHOW ORIGIN

*SHOW SUBGROUP

*VALUE IRREP M3+
*DISPLAY ISOTROPY

Irrep (ML) Subgroup Dir Basis Vectors Origin
M3+ 127 P4/mbm P1 (a,0,0) (1,1,0),(-1,1,0),(0,0,1) (0,0,0)
M3+ 204 Im-3 P3 (a,a,a) (2,0,0),(0,2,0),(0,0,2) (1/2,1/2,1/2)
M3+ 139 I4/mmm P2 (a,a,0) (0,0,2),(2,0,0),(0,2,0) (3/2,1/2,1/2)
M3+ 71 Immm st (a,b,c) (2,0,0),(0,2,0),(0,0,2) (1/2,1/2,1/2)

*VALUE IRREP R4+
*DISPLAY ISOTROPY

Irrep (ML) Subgroup Dir Basis Vectors Origin
R4+ 167 R-3¢  P3 (a,a,a) (-1,1,0),(0,-1,1),(2,2,2) (0,0,0)
R4+ 140 14/mcm P1 (a,0,0) (1,1,0),(-1,1,0),(0,0,2) (0,0,0)
R4+ 74 Imma P2 (a,a,0) (1,0,1),(0,2,0),(-1,0,1) (0,0,0)
R4+ 15 C2/c c2 (a,a,b) (-1,2,-1),(-1,0,1),(1,0,1) (0,1/2,1/2)
R4+ 12 C2/m ¢1 (a,b,0) (0,0,-2),(0,2,0),(1,0,1) (0,1/2,1/2)
R4+ 2 P-1 st (a,b,c) (0,1,1),(1,0,1),(1,1,0) (0,0,0)

*

Let us consider the interpretation of this data. The subgroup in direction P1 (a,0,0)
involves tilting about the z axis only. The subgroup in direction P2 (a, a, 0) involves
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tilting about both the z and x axes. Since the first two components of the order
parameter 77 are equal, the tilts about the z and = axes are equal. On the other hand, the
subgroup in direction C1 (a, b, 0) involves tilts about the z and x axes that are unequal.

Let us next find the isotropy subgroups for the coupled order parameters.

*VALUE IRREP M3+ R4+
*CANCEL SHOW IRREP
*DISPLAY ISOTROPY COUPLED

Subgroup Dir Basis Vectors Origin

148 R-3 P3(1)P3(1) (a,a,a,b,b,b) (-2,0,2),(2,-2,0),(2,2,2) (0,0,0)

127 P4/mbm  P1(1)P1(1) (a,0,0,b,0,0) (1,1,0),(-1,1,0),(0,0,2) (0,0,0)

63 Cmcm P1(1P1(2) (a,0,0,0,0,b) (2,0,0),(0,2,0),(0,0,2) (1/2,-1/2,0)
137 P4_2/nmc P2(1)P1(2) (a,a,0,0,0,b) (0,0,2),(2,0,0),(0,2,0) (0,-1,0)

59 Pmmn si(1)p1(1) (a,b,c,d,0,0) (2,0,0),(0,2,0),(0,0,2) (0,0,0)

62 Pnma p1(1)p2(5) (a,0,0,0,b,b) (1,1,0),(0,0,2),(1,-1,0) (0,0,0)

63 Cmcm P2(1)P2(1) (a,a,0,b,b,0) (2,0,2),(2,0,-2),(0,2,0) (0,0,0)

14 P2_1/c P1(1)C2(9) (a,0,0,c,b,b) (0,0,2),(1,-1,0),(1,1,0) (0,0,0)

15 C2/c p2(1)c2(1) (a,a,0,b,b,c) (2,0,2),(-2,0,2),(0,-2,0) (0,0,0)

12 C2/m P1(1)C1(1) (a,0,0,b,c,0) (2,0,0),(0,2,0),(0,0,2) (1/2,1/2,0)

11 P2_1/m p1(1)c1(5) (a,0,0,0,b,c) (-1,1,0),(0,0,2),(1,1,0) (0,0,0)
11 P2_1/m si(1)ci(1) (a,b,c,d,e,0) (2,0,0),(0,2,0),(0,0,2) (0,0,0)
2 P-1 P1(1)s1(1) (a,0,0,b,c,d) (0,0,2),(1,1,0),(-1,1,0) (0,0,0)
2 P-1 s1(1)s1(1) (a,b,c,d,e,f) (0,0,2),(0,2,0),(-2,0,0) (0,0,0)
*

We now use our second constraint to eliminate some of these. A superposition of a
++++++...and a + -+ —+ — ... tilt pattern (around the same axis) yeilds a
pattern where adjacent planes contain tilts which are neither the same nor opposite.
These are tilt patterns beyond the scope of our present interest. This means that if any
component of the order parameter for M;r is nonzero, then that component of the order
parameter for RI must be zero, and vice versa. We thus obtain the following list of
allowable isotropy subgroups for the coupled order parameters:

Subgroup Dir Basis Vectors Origin

63 Cmcm P1(1P1(2) (a,0,0,0,0,b) (2,0,0),(0,2,0),(0,0,2) (1/2,-1/2,0)
137 P4_2/nmc P2(1)P1(2) (a,2,0,0,0,b) (0,0,2),(2,0,0),(0,2,0) (0,-1,0)

62 Pnma P1(1)P2(5) (a,0,0,0,b,b) (1,1,0),(0,0,2),(1,-1,0) (0,0,0)

11 P2_1/m pi1(1)c1(5) (a,0,0,0,b,c) (-1,1,0),(0,0,2),(1,1,0) (0,0,0)

As an example of how to interpret these tilt patterns, we see that

the subgroup in direction P1(1)P1(2) involves tilting about the z axis with the
4+ 4+ + + + + ... pattern superimposed on tilting about the y axis with

the + — 4+ — 4+ — ... pattern.

This is the end of this case study. You may exit the program:
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*QUIT
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