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1. Introduction

symsearch is a computer program which �nds the space-group symmetry of a crystal,
given the dimensions of a unit cell and the positions of atoms inside that unit cell.
symsearch does not require the unit cell to be primitive. It �nds the primitive unit cell.

symsearch was speci�cally written for use with molecular dynamics simulations,
where we often want to �nd the space-group symmetry of the crystal. Here, however, the
data is often \noisy". The atomic positions are not known exactly, and sometimes even
the dimensions of the unit cell are not known exactly. The space-group symmetry is only
approximate. In order for the crystal to exhibit a given space-group symmetry exactly,
we may need to move some of the atoms a little and even introduce some long-range
strain. symsearch does this automatically, looking for space-group symmetries which
meet some predetermined criteria of how well the data should �t the symmetry.

2. Conventional unit cell

The conventional unit cell is chosen so that axes of rotation are parallel to its edges, and
planes of reection are parallel to its faces. The lattice which de�nes this cell is called the
conventional lattice and is not necessarily primitive.

Let a1;a2;a3 be the basis vectors of the conventional lattice. These vectors are
usually de�ned by six lattice parameters: a; b; c; �; �; , where a; b; c are the lengths of
a1;a2;a3, respectively, and � is the angle between a2 and a3, � is the angle between a1
and a3, and  is the angle between a1 and a2. We can de�ne a cartesian coordinate
system such that

a1 =a �̂;

a2 =b cos  �̂ + b sin  �̂;

a3 =c cos� �̂ + c
cos�� cos  cos�

sin
�̂+ c

"
sin2 � �

�
cos�� cos  cos�

sin 

�2
#1=2

k̂;

(1)

chosen so that
ja1j = a;

ja2j = b;

ja3j = c;

a2 � a3 = bc cos�;

a1 � a3 = ac cos �;

a1 � a2 = ab cos : (2)
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We put the cartesian components of a1;a2;a3 into a matrix,

ai =
X
�

ê�TCX�i; (3)

where ê1; ê2; ê3 are �̂; �̂; k̂, respectively, the unit vectors along the three cartesian
coordinate axes. As a convention, we will use greek subscripts �; � for cartesian
components of vectors.

An atomic position is de�ned by a vector r from the origin. This vector can be
written both in terms of the cartesian coordinate system and in terms of the basis vectors
of the conventional lattice:

r =
X
�

x�ê� =
X
i

x0iai: (4)

Using Eq. (3), we have

X
i

x0iai =
X
i;�

x0iê�TCX�i =
X
�

ê�
X
i

TCX�i x
0

i; (5)

so that we obtain
x� =

X
i

TCX�i x
0

i: (6)

TCX is a transformation matrix that takes vector components in terms of the basis
vectors of the conventional lattice to cartesian components, i.e., x = TCXx

0. Conversely,
we also have x0 = TXCx where TXC = T�1

CX .

3. Unit cell

We de�ne a unit cell of the crystal which may be smaller than the conventional unit cell
but still may not be primitive. We give the position ri of every atom in the unit cell. The
lattice which de�nes the unit cell is determined by three basis vectors which we call the
basis vectors of the unit cell. We write the basis vectors of the unit cell in terms of the
basis vectors of the conventional lattice:

ti =
X
j

ajTPCji: (7)

TPC is the transformation matrix which takes vector components in terms of the basis
vectors of the unit cell to components in terms of the basis vectors of the conventional
lattice. Also, TPX = TCXTPC is the transformation matrix which takes vector
components in terms of the basis vectors of the unit cell to cartesian components. Note
that since the conventional lattice points are a subset of the unit cell lattice points, every
element of the matrix TCP = T�1

PC is an integer.
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4. Primitive lattice

Now, suppose that the lattice de�ned by t1; t2; t3 is not primitive. If this is the case,
then there must be one or more lattice vectors which cannot be written as an integer
combination of t1; t2; t3. If such a lattice vector v exists, then for each atom at ri, there
must exist an atom of the same type at ri + v. We can �nd these additional lattice
vectors using the following method. We choose any atom i. We then form vectors from
this atom to every other atom of the same type, i.e. v = rj � ri for all j 6= i where atoms
i and j are of the same type. We test each of these vectors v to determine whether or not
it is a lattice vector by adding v to the position rk of each atom k in the unit cell and
then looking to see if there is an atom of the same type at rk + v.

We must also take noise into account. The position of each atom may only be
approximate. This means that v is only approximate, and, even if it were exact, the
position of an atom relative to rk + v is also only approximate. We therefore look for the
atom nearest to the position of rk + v. This means that we try every atom m in the unit
cell which is the same type as atom k and choose the atom for which the value of

d =
��[rk + v� rm]min

�� (8)

is the smallest. The function [r]min is obtained by adding a lattice vector to r so that the
result is as close to the origin as possible. This is done by �rst obtaining the coordinates
of r in terms of the basis vectors of the unit cell, then adding an integer to each
coordinate so that the result is between �0:5, and �nally obtaining the cartesian
coordinates of the resulting vector. We must perform this operation since rk + v may
actually be near atom m in another unit cell. The lattice vector

uk = rk + v � rm � [rk + v� rm]min (9)

points to the unit cell containing atom m near rk + v so that

rk + v � rm + uk: (10)

We also de�ne a mapping function M(k) = m, i.e., the action of the translation v

maps atom k onto atom m. We test the properties of the mapping functions. If we
examine the series, M(k);M2(k);M3(k); : : :, where M2(k) =M(M(k)),
M3(k) =M(M2(k)), etc., we �nd that Mn(k) = k for some minimum value of n. This
de�nes a period of a cycle. All cycles among the atoms must have the same period. Also,
the inverse mapping function M�1(k) must be single-valued.

The atoms k;M(k);M2(k); : : : ;Mn�1(k) are all connected by the new lattice vector
v. Since after n applications of v we return to the original atom k (but in a di�erent unit
cell), nv must be a vector of the original primitive lattice. We can now �nd the exact
value of v:

v =
1

n

n�1X
i=0

uM i(k): (11)
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Now let us adjust the atomic positions so that rk + v = rM(k) + uk exactly. The
atoms can be divided into cycles of n atoms so that the atoms within a single cycle are
connected by the new lattice vector v. Only a single cycle of atoms need to be considered
at a time. To simplify the notation, let us rearrange the numbering of the atoms so that
the atoms in the cycle under consideration are numbered 1 through n such that

M(k) =

�
k + 1; if k < n,
1; if k = n.

(12)

Let �rk be the adjustment to rk so that

rk +�rk + v = rk+1 +�rk+1 + uk: (13)

We thus have
�r2 =�r1 + r1 + v� r2 � u1;

�r3 =�r2 + r2 + v� r3 � u2

=�r1 + r1 + 2v� r3 � u1 � u2:

�rk =�r1 + r1 + (k � 1)v� rk �

k�1X
i=1

ui:

(14)

We note that �r1 is an independent variable in the above equations. Its value is
arbitrary. We choose its value so that the rms average of the adjustments to the atomic
positions is a minimum. In other words, we move the atoms as little as possible. The rms
average is given by

�rrms =
1

n

�X
i�

�r2i�

�1=2

: (15)

Setting d�rrms=d�r1� = 0, we obtain

�r1� +
nX
k=2

�
�r1� + r1� + (k � 1)t� � rk� �

k�1X
i=1

ui�

�
= 0 (16)

for � = 1; 2; 3. Rearranging terms, we obtain the adjusted position of atom 1,

r1 +�r1 =
1

n

nX
k=1

�
rk � (k � 1)v+

k�1X
i=1

ui

�
; (17)

which is simply the average position of each atom brought back to the position of atom 1.
Once we have the adjusted position of atom 1, we �nd the adjusted position of each

of the other atoms from Eqs. (14). Then we calculate �rrms from Eq. (15). If its value is
less than some predetermined maximum allowed value, we accept v as a member of the
primitive lattice. We repeat the above test for every possible candidate v = rj � ri,
where, as stated above, ri is the position of some �xed atom i, and rj is the position of
every other atom in the unit cell of the same type as atom i. To make this search as brief
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as possible, we choose atom i to be the least abundant type of atom. When we are
�nished with this search, we have a set of vectors v1;v2; : : : ;vn which represent n points
of the primitive lattice. (For completeness, we add v1 = 0 to the list.)

The set of vectors t1; t2; t3;v1;v2; : : : ;vn (the basis vectors of the unit cell plus each
of the new lattice vectors found) generate the complete set of primitive lattice vectors of
the crystal. We �nd the basis vectors p1;p2;p3 of the primitive lattice by trying any
three vectors from the generating set and then testing them for the following property.
We must be able to write each vector from the generating set as an integer combination
of the basis vectors. Let us de�ne a matrix TPX by

pi =
X
j

ê�TPX�i (18)

and its inverse, TXP = T�1
PX . Then we must require that every element of TXP ti and

TXPvi be an integer. (Here, the notation ti and vi means a column matrix containing
the cartesian components of the vector.)

The atoms in the unit cell can be grouped into sets of n atoms. Let Mj (i) be the
atom onto which vj maps atom i, i.e.,

ri + vj � rMj(i) modulo t: (19)

Then atoms i;M2(i);M3(i); : : : ;Mn(i) form a set of n atoms closed with respect to these
mapping functions. If atom k is a member of the set, then atom Mj(k) is also a member
of the set. Let us adjust the atomic positions in each set so that

ri +�ri + vj = rMj(i) +�rMj(i) modulo t (20)

exactly for every atom i in the set and for every primitive lattice vector vj . To simplify
the notation, let us rearrange the numbering of the atoms so that the atoms in the set
under consideration are numbered 1 through n such that Mj(1) = j. Then the condition
becomes

r1 +�r1 + vj = rj +�rj modulo t (21)

or
�rj = �r1 + [r1 + vj � rj ]min; (22)

where the function [r]min minimizes r with respect to vectors of the primitive lattice.
This gives us n� 1 equations (j = 2; 3; : : : ; n). Similar to Eqs. (14), we see that �r1 is an
independent variable in the above equations. We choose its value so that the rms average
of the adjustments to the atomic positions is a minimum. We obtain

�r1 = �
1

n

nX
j=2

[r1 + vj � rj ]min: (23)

We repeat this for every set of n atoms in the unit cell.
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When �nished, we have a set of atomic positions which exactly exhibit the
translational symmetry required by vectors of the primitive lattice. Each set of n atoms
can be mapped onto a single atom in the primitive unit cell. The N atoms in the unit
cell are mapped onto N=n atoms in the primitive unit cell. To simplify notation, we will
now let N be the number of atoms in the primitive unit cell, and ri be the adjusted
position of one of the atoms in the ith set.

5. Space group elements

Each element of the space group consists of a point operation R followed by a translation
f, usually denoted by fRjfg. The translation f is often called the \fractional." The point
operation is represented by a matrix such that when R operates on a vector
r = r1ê1 + r2ê2 + r3ê3, the result is r0 = r01ê1 + r02ê2 + r03ê3, where

r0� =
X
�

R��r� : (24)

There are 48 possible point operations in a cubic crystal and 24 in a hexagonal
crystal. Since 8 of these are in common (eg., identity operation, 2-fold rotation about the
z axis, etc.), the total number of di�erent point operations is 64. Note that the x; y; z
axes are de�ned by the basis vectors of the conventional unit cell. We will only try the 64
point operations de�ned with respect to these axes. This means that the conventional
unit cell must be chosen carefully so that all possible symmetry elements of the crystal
will be found.

We test each of the 64 point operations, �rst with respect to the primitive lattice.
Any point operation which is a part of a space-group element must bring the primitive
lattice back into itself again. These means that Rpi must be an integer combination of
p1;p2;p3, i.e., every element of TXPRTPX must be an integer. Because of noise, this
may not be exactly satis�ed. (The lattice parameters of the conventional unit cell may
not be known exactly.) In general, then, some strain will be required for the primitive
lattice to exhibit exactly the symmetry required by R.

Let us de�ne R0 = TXPRTPX . R0 is the point operation matrix with respect to the
basis vectors of the primitive lattice, i.e.,

Rpi =
X
j

pjR
0

ji: (25)

We want to make a small adjustment �pi to each basis vector pi of the primitive lattice
so that every element of R0 is an integer. When this adjustment is made, every element
in R0 will be replaced by its nearest integer. We thus obtain

R(pi +�pi) =
X
j

(pj +�pj)[R
0

ji]nint; (26)
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where [x]nint is the nearest integer to x. Writing the �th cartesian component of the
equation, we have

X
�

(R���pi� �
X
j

[R0

ji]nint�pj� = �
X
�

R��TPX�i +
X
j

TPX�j [R
0

ji]nint: (27)

There are 9 equations (all possible pairs of integers i; �) and 9 variables �pi�. However,
the equations are not likely to be linearly independent, so we need an additional
condition: the rms average of the fractional adjustments �pi=jpi to the basis vectors is
minimized (see Appendix).

The unit basis vectors of the cartesian coordinates can be written in terms of the
basis vectors of the primitive lattice:

ê� =
X
i

piTXPi�: (28)

Therefore the strain tensor is given by

��� =
X
j

TXPj��pj� : (29)

We symmetrize � (to remove pure rotations), diagonalize the result, and calculate the
rms average of the diagonal elements. This gives us a single number which characterizes
the amount strain necessary for the primitive lattice to exhibit the symmetry required
by R. If the value of this number is less than some predetermined maximum allowed
value, we accept R as a possible symmetry element of the lattice. We adjust the basis
vectors of the primitive lattice so that they now have the symmetry required by R, i.e.,
we use new basis vectors p0i = pi +�pi and new matrices T 0

PX and T 0

XP . We also adjust
the cartesian coordinates of each atom, r0i = T 0

PXTXP ri, so that the strain is uniform
throughout the primitive unit cell.

Now we try to �nd an element fRjfg of the space group. If such an element exists,
then for each atom at r0i, there must exist an atom of the same type at Rr0i + f. We can
�nd the translational part f using the following method. We choose any atom i. We then
form vectors from Rr0i to every atom the same type (including atom i itself), i.e.
f = r0j �Rr0i for every atom j of the same type as atom i. We test each of these vectors f
by adding it to Rr0k of each atom k in the unit cell and then looking to see if there is an
atom of the same type at Rr0k + f.

Again, we must take noise into account. There may not be an atom at exactly
Rr0k + f. We therefore �nd the atom nearest to the position of Rr0k + f. This means that
we try every atom m in the unit cell which is the same type as atom k and choose the
atom for which the value of

d =
��[Rr0k + f� r0m]min

�� (30)

is the smallest. The lattice vector

uk = Rr0k + f� r0m � [Rr0k + f� r0m]min (31)
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points to the unit cell containing atom m near Rr0k + f so that

Rr0k + f � r0m + uk: (32)

We also de�ne a mapping function M(k) = m, i.e., the action of fRjfg maps atom k
onto atom m. We test the properties of the mapping functions. If Rn = E, the identity
operation, then Mn(i) = i for each atom i. Also, M�1(k) must be single-valued. If we
examine the series, M(k);M2(k);M3(k); : : :, where M2(k) =M(M(k)),
M3(k) =M(M2(k)), etc., we �nd that Mn(k) = k for some minimum value of n. (This
value of n may be less than the value for which Rn = E.) This de�nes a period of a cycle.

Now, we adjust the position of every atom and also the fractional f so that the
crystal has the exact symmetry required of fRjfg:

R(r0k +�r0k) + f+�f = r0M(k) +�r0M(k) + uk: (33)

The �th cartesian component of that equation is

X
�

R��(r
0

k� +�r0k�) + f� +�f� = r0M(k)� +�r0M(k)� + uk�: (34)

This gives us 3N equations (all possible pairs of values for k; �) for the 3N + 3 variables,
�r0k� and f�. We �nd the solution for which the rms average adjustment to the atomic
positions is a minimum (see Appendix). Then we calculate this rms average. If its value
is less than some predetermined maximum allowed value, we accept fRjfg as a element of
the space group. (We use the adjusted value of f for the translational part.) If not, we
try another value for f. We try every candidate f = Rr0j � r0i, where, as stated above, r0i is
the position of some �xed atom i, and r0j is the position of every atom in the unit cell of
the same type as atom i.

After trying to form space-group elements from each of the 64 point operations, we
�nally obtain a list of n space-group elements, fR1jf1g, fR2jf2g, : : :, fRnjfng, where
R1 = E and f1 = 0. Each element fRijfig maps atom k onto atom Mi(k). The mapping
must obey the same multiplication table as the space-group elements, i.e., if RiRj = Rm,
then Mi(Mj (k)) =Mm(k) for every atom k.

Now, the basis vectors of the primitive lattice must exhibit the symmetry of every
point operation Ri which is part of some space-group element. We obtain an equation
similar to Eq. (27),

X
�

(Rm���pi� �
X
j

[R0

mji]nint�pj� = �
X
�

Rm��TPX�i +
X
j

TPX�j [R
0

mji]nint; (35)

where R0

m = TXPRmTPX . We only need to include the equations involving the point
operation part of the generating elements of the the space group. We solve these
equations under the condition that the rms average of the fractional adjustments �pi=jpi
to the basis vectors be a minimum (see Appendix). We adjust the basis vectors of the
primitive lattice so that they now have the symmetry required by R, i.e., we use new
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basis vectors p0i = pi +�pi and new matrices T 0

PX and T 0

XP . We also adjust the
cartesian coordinates of each atom, r0i = T 0

PXTXPri, so that the strain is uniform
throughout the primitive unit cell.

Now, we adjust the position of every atom and also the translational part fi of every
space group element so that the crystal has the exact symmetry required of the space
group.

Rm(r
0

k +�r0k) + fm +�fm = r0Mm(k) +�r0Mm(k) modulo p0: (36)

The �th cartesian component of that equation is

X
�

Rm���r
0

k� ��r0Mm(k)� +�f 0m� = �

�X
�

Rm��r
0

k� � r0Mm(k)� + fm�

�
min

: (37)

We only need to include the equations involving the generating elements of the the space
group. We �nd the solution for which the rms average adjustment to the atomic
positions is a minimum (see Appendix). We make the adjustments to the atomic
positions and to the translational parts of the space-group elements.

We next adjust the origin of the space group so that the translational part of each
space-group element is as simple as possible. If we move the origin to the position �, then
each space-group element fRijfig becomes fRijfi � �+Ri�g. Thus we have for the new
translational parts,

f 0i = fi � �+Ri�: (38)

The �th cartesian component of this equation is

f 0i� + �� �
X
�

Ri���� = fi�: (39)

We only need to include the equations involving the generating elements of the the space
group. We solve these equations under the conditions that we set as many of the values
of f 0ij to zero as possible. The adjusted fractionals f 0 can be written as linear
combinations of the basis vectors of the primitive lattice with coe�cients which are
simple rational fractions, i.e., every element of TXP f 0i is a simple rational fraction. The
denominators of these fractions are probably restricted to the values, 2,3,4,6,8.

With each space-group element written in simple form, we can now identify the
space group in the International Tables for Crystallography. This process has been
described elsewhere [D. M. Hatch and H. T. Stokes, Phys. Rev. B 31, 2908 (1985)]. The
identi�cation will include the space-group number, the new conventional basis vectors,
and the new origin.

6. Subgroups

When the data is noisy, it is sometimes useful to see how well we can �t the data to
subgroups of the space group found above. For example, we may �nd that certain
space-group elements �t the data much worse than others, and certain subgroups may
therefore �t the data much better than the space group found above.
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Let us start with the lattice points found inside the unit cell. These are represented
by a set of vectors V = fv1;v2; : : : ;vn(V )g, where n(V ) is the number of lattice points
found. We include the point at the origin, v1 = 0, so that we can form translation groups
from these vectors. Group multiplication is de�ned to be vector summation modulo t, a
lattice vector of the unit cell. Note that it is possible that V itself is not a group. (For
example, maybe two vectors barely meet the criteria to be included but the sum of these
two vectors does not.) We can however, form all subsets of V which are groups. We will

call these sublattices and denote them by Vi = fv
(i)
1 ;v

(i)
2 ; : : : ;v

(i)
ni(V )g, where ni(V ) is the

number of elements in the sublattice. Each sublattice is closed under group

multiplication, i.e., if v
(i)
j and v

(i)
k are elements of Vi, then v

(i)
j + v

(i)
k modulo t is also an

element of Vi.
We consider each sublattice at a time. We consider the sublattice to be the primitive

lattice of the crystal. We �nd the basis vectors p1;p2;p3 of this primitive lattice using
the method described in a previous section. We also �nd coset representatives sj of the
largest supergroup V 0 of Vi in V with respect to Vi, i.e.

V 0 = s1Vi + s2Vi + � � �+ sn0

i
(V )Vi; (40)

where no two cosets sjVi; skVi have any common elements and where every element of
each coset sjVi is in V . n0i(V ) is the number of cosets, where n

0

i(V )ni(V ) � n(V ). If V is
a group, then V 0 = V and n0i(V ) = n(V )=ni(V ).

Given this primitive lattice, we proceed to �nd possible space-group elements using
the same methods described in a previous section. We obtain a set of such operators:
W =

�
fR1jf1g, fR2jf2g, : : :, fRn(W )jfn(W )g

	
, where n(W ) is the number of elements in

the set. Note that there is one element for each point operation. We only look for one
fraction fj for each point operation Rj. However, if fRjjfjg is a possible symmetry
element, then fRj jfj + vkg is also, where vk is some element of V . These additional
forms of the space-group element only become signi�cant when vk is not an element
of Vi, since elements of Vi are just vectors of the primitive lattice. We can cover all
unique possibilities if we add each of the coset representatives sm to fj .

We thus combine the set W with the coset representatives sm to form the following
set:

G =
�
fEj0g;

fR2jf2g; fR2jf2 + s2g; : : : ; fR2jf2 + sn0

i
(V )g;

fR3jf3g; fR3jf3 + s2g; : : : ; fR3jf3 + sn0

i
(V )g;

: : :

fRn(W )jfn(W )g; fRn(W )jfn(W ) + s2g; : : : ; fRn(W )jfn(W ) + sn0

i
(V )g

	
(41)

Note that we have excluded any elements of the form fEjsjg for j 6= 1. We form all
subsets of G which are groups. In the group multiplication, vectors are always considered
modulo b, vectors of the primitive lattice. Each group will contain no more than one
element containing a particular point operation. The elements of each group form the
coset representatives of a space group with respect to the translation group of the
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primitive lattice. As described in a previous section, we �nd the strain and atomic
displacements required so that the crystal exhibits the exact symmetry of the space
group. We compare the rms averages of these values to predetermined maximum values.
If they passes the test, we identify this space group and list it in the output. We repeat
this procedure for every subgroup of G and for every subgroup of V .

Appendix: Minimization of variables

Suppose we have n linearly independent equations. The ith equation has the
following form:

xi +
mX
j=1

Aijyj = Bi: (42)

y1; y2; : : : ; ym are independent variables, and x1; x2; : : : ; xn are dependent variables. Aij
and Bi are constants. We want to �nd a solution to these equations for which the rms
average of the �rst n0 dependent and m0 independent variables is a minimum. We
minimize

S =
n0X
i=1

x2i +
m0X
j=1

y2j

=
n0X
i=1

�
Bi �

mX
j=1

Aijyj

�2

+
m0X
j=1

y2j :

(43)

Minimizing with respect to each of the independent variables,

n0X
i=1

Aikxi =

�
yk; 1 � k � m0;
0; m0 + 1 � k �m:

(44)

This adds m equations to the set of equations, so that we now have n+m equations and
n+m variables. Each variable can now be uniquely determined.
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