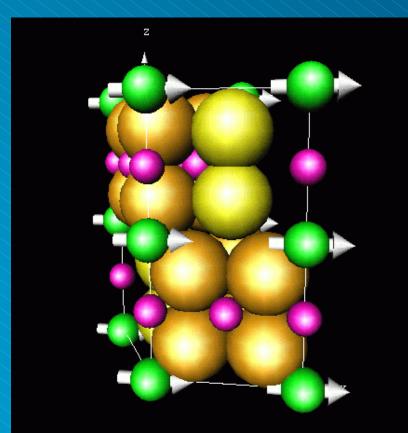
30 Years of Rietveld Refinement I.U.Cr. Microsyposium, 10:00 Monday 5th August 1999

H.M.Rietveld The Rietveld Method • A.W.Hewat Neutron Powder Diffraction • F. I zumi Applications to Inorganic materials **D.Louer** Laboratory X-rays • A.Fitch Synchrotron Radiation

ILL Grenoble

But more than 50 years of Neutron Powder Diffraction

 1948 - First Neutron Crystallography
 with Powders !!


Shull,CG. Wollan,EO. Morton,GA.Davidson,WL (1948) Phys.Rev. 73 842 Neutron Diffraction Studies of NaH and NaD

 1952 - First Neutron Single Crystal Work

ILL Grenoble

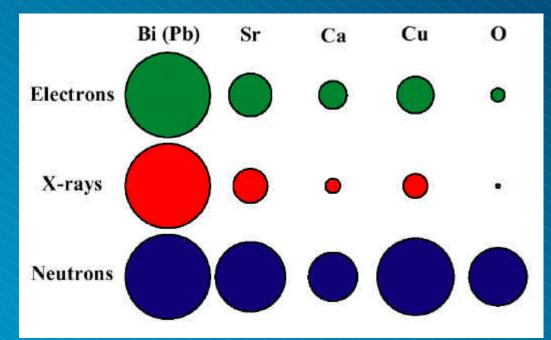
1967-69 H.M. Rietveld - "Neutron Profile Refinement"

MnTa₄S₈ H.M. Rietveld (1969) RCN -104

What was Achieved ?
Exciting new science ?

Why Neutrons ?
Why not X-rays ?

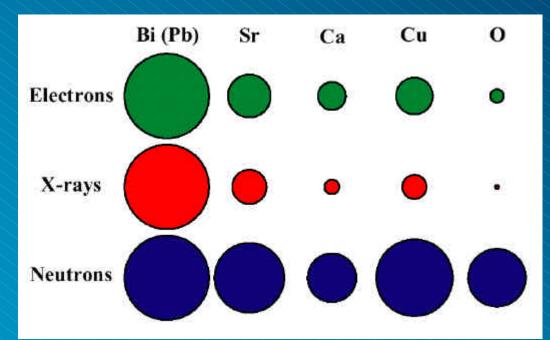
Why Powders ?
Why not crystals ?


Why Rietveld ?
Why not F-extraction ?

Why Neutrons ?

ILL Grenoble

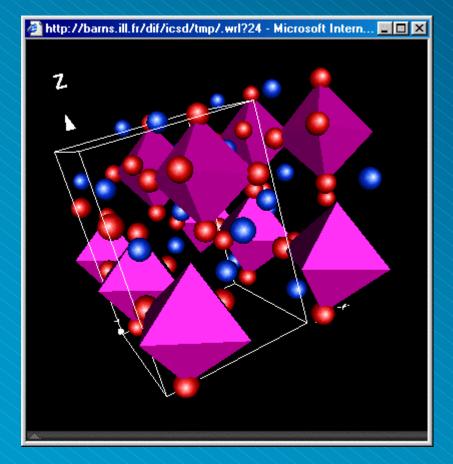
• Relative Scattering Powers of the Elements


• Neutrons scatter strongly from light elements (Because neutron scattering is a nuclear interaction)

Why Neutrons ?

ILL Grenoble

• Relative Scattering Powers of the Elements

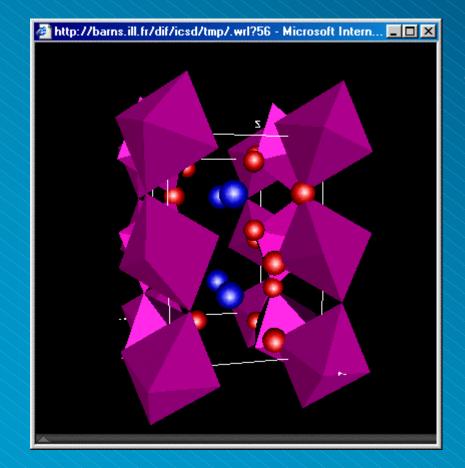


This was indeed why Rietveld invented RR
 (At a Nuclear Lab. he worked on heavy metal oxides)

ILL Grenoble

First Applications of Rietveld Refinement

• H.M. Rietveld


Structure of Heavy Metal salts

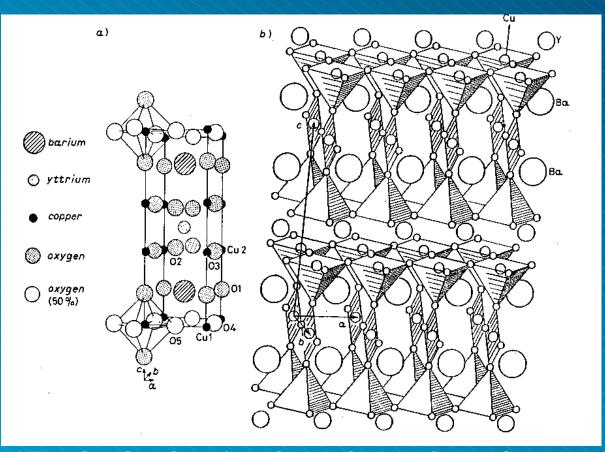
 Rietveld, HM. (1966) Acta Cryst. 20 508.
 The Crystal Structure of some Alkaline Earth Metal Uranates of the Type M₃UO₆

ILL Grenoble

First Applications of Rietveld Refinement

• H.M. Rietveld

Structure of Heavy Metal salts

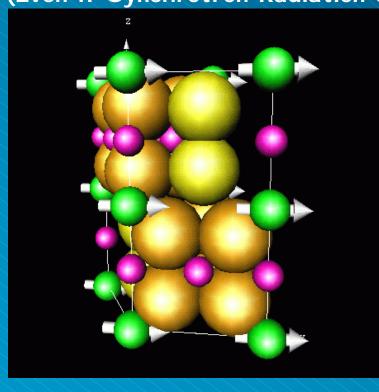

 Loopstra, BO. Rietveld, HM. (1969) Acta Cryst., B25 787.

The Structure of Some Alkaline-Earth Metal Uranates

ILL Grenoble

Heavy metal oxides are still with us - Superconductors, GMR

- Structure of the 90K high Tc superconductor
 - Left -by X-rays
 (Bell labs & others)
 - Right -by Neutrons (many neutron labs)
- The neutron picture gave a very different idea of the structure -important in the search for similar materials.


YBa₂Cu₃O₇ drawing from Capponi et al 1987

Why Neutrons ?

ILL Grenoble

• Neutrons are unique for Magnetic Structures (Even if Synchrotron Radiation can be used for some things)

• H.M. Rietveld

Structure of Magnetic Materials

• Report RCN -104

 $MnTa_4S_8$ - the famous example given in the original Rietveld manual

Why Powders ?

ILL Grenoble

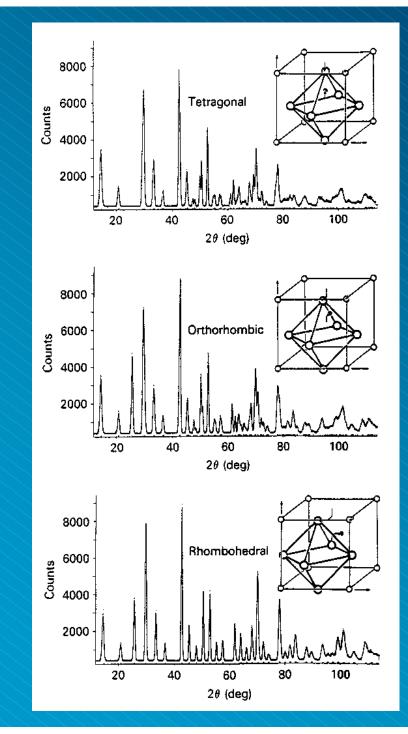
...Well, if you don't <u>have</u> a single crystal...
 If you do have a single crystal, then use it !

 For many <u>new</u>, <u>interesting</u> materials, single crystals are not available
 Zeolites, Superconductors, GMR materials...

 And many other materials are <u>not really</u> single crystals

• At least not at 0 K, the most important temperature

Why Powders ?



ILL Grenoble

Rietveld Refinement at Harwell, UK (1972)
 Already 3 years after Rietveld's paper !
 Work for B.T.M Willis and W. Cochran on soft vibrational modes in perovskite ferro-electrics.

These materials break up with the ferro-electric transition difficult to obtain precise structure - small displacements of light atoms.

 Visit to Hugo Rietveld in Petten & he provided his program - the basis of all of the others -GSAS (Bob von Dreele then at Oxford) FullProf via the original Wiles and Young program...etc

Why Powders ?

ILL Grenoble

Destructive Phase T/Ns

- Classical Perovskite structure transitions
 Small displacements of light (oxygen) atoms
- Subtle changes in the powder 'profile' – interest of "Profile Refinement"
- Then, <u>no single crystals</u>

Microsymposium Wed 11 10:00
P.Attfield, E.Suard et al

Why Rietveld Refinement ?

ILL Grenoble

 Strongly overlapping reflections • Previously at Harwell, integrated intensities were obtained for groups of overlapping reflections. • (Controversy about validity of Rietveld Refinement) • Key to success of RR inclusion of all the information refinement of physically meaningful parameters (reduction of correlation between parameters)

Spread of Rietveld Refinement

ILL Grenoble

 Harwell was the first "User Laboratory" Users came from many Universities, and this meant that new techniques spread very quickly Proximity of chemists at Oxford – Cheetham et al. 1967–1972 only a handful of RR papers 1972-1977 an explosion of the use of RR • 1987 impact of high Tc superconductors **Giant Magneto-Resistive materials** • 1997

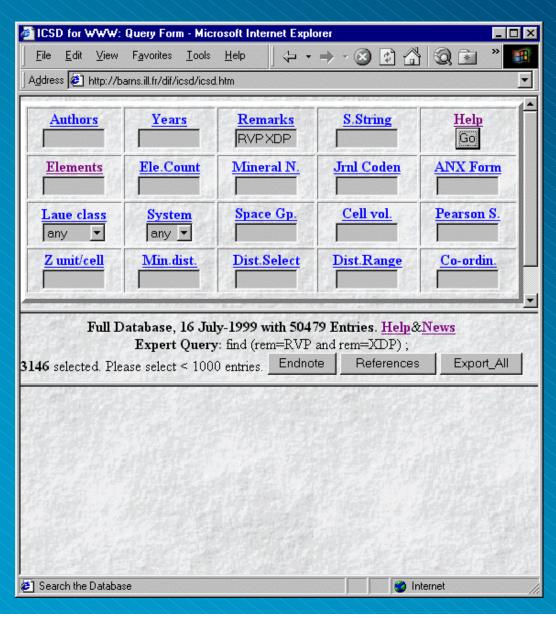
Numbers of Studies using RR

ILL Grenoble

• 3804 Structures with Neutron RR

(According to the Inorganic Crystal Structure Database http://barns.ill.fr)

🚈 ICSD for WWW: Query Form - Microsoft Internet Explorer 📃 🗵 🗙				
∫ <u>F</u> ile <u>E</u> dit ⊻iew	F <u>a</u> vorites <u>T</u> ools	Help	🔿 - 🐼 🔂 🐔	i 🔕 🖭 👋 🌆
Address 🛃 http://barns.ill.fr/dif/icsd/icsd.htm				
Authors	Years	RVP NDP	S.String	Help Go
Elements	Ele.Count	Mineral N.	Jrnl Coden	ANX Form
Laue class any	any 💌	Space Gp.	Cell vol.	Pearson S.
Z unit/cell	Min.dist.	Dist.Select	Dist.Range	Co-ordin.
Full Database, 16 July-1999 with 50479 Entries. <u>Help</u> & <u>News</u> Expert Query: find (rem=RVP and rem=NDP); 3804 selected. Please select < 1000 entries. Endnote References Export_All				
Search the Database				

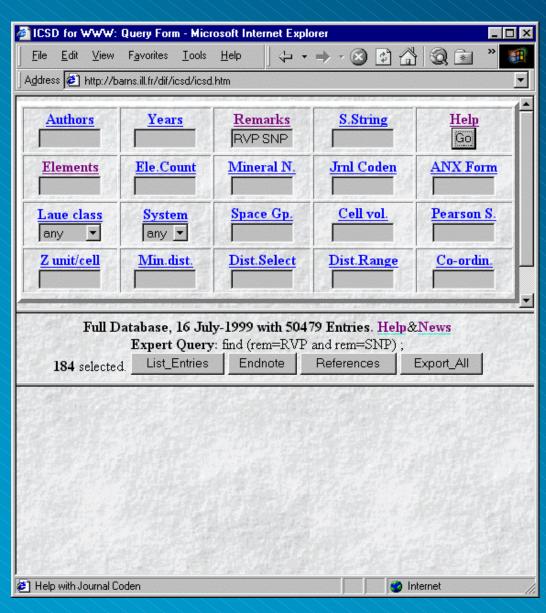

Numbers of Studies using RR

ILL Grenoble

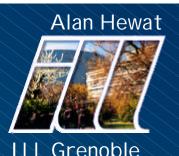
• 3804 Structures with Neutron RR

 3146 Structures with X-ray RR

Numbers of Studies using RR



ILL Grenoble


• 3804 Structures with Neutron RR

 3146 Structures with X-ray RR

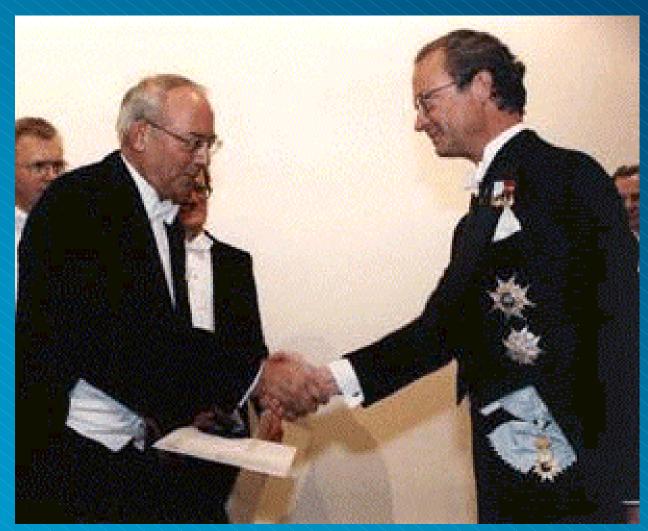
• 184 Structures with Synchrotrons

Numbers of Rietveld Refinements Total in ICSD = 7089

(This includes refinements at multiple temperatures)

Total numbers
 3804 Neutron RR
 3146 X-ray RR
 184 Synchrotron RR

Total numbers in last 5 years (1994-1998)
 1874 Neutron RR
 2007 X-ray RR
 143 Synchrotron RR


 More than HALF in the last 5 years – and almost all Synchrotron Rietveld Refinements

Refinement of Rietveld ?

(Semantic question of Ray Young & Terry Sabine)

ILL Grenoble

1995 - Aminoff Prize presented to Hugo Rietveld by King Carl Gustaf of Sweden

Early Days at ILL Grenoble (1972)

(Less refined)

ILL Grenoble

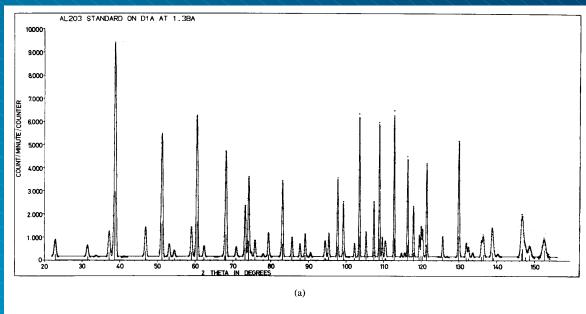
First ILL Powder
 Diffractometers D1A, D2

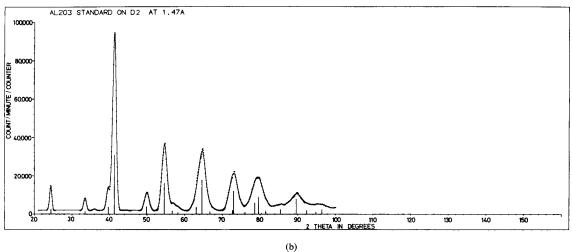
- Single detector
- Small soller collimator
- Shared monochromator

High Resolution, BUT
 Very Low Intensity

Early Days at ILL Grenoble (1974)

ILL Grenoble




Orders of Magnitude
 Improvement – D1A

- Multiple detectors
- Large efficient collimators
- Focussing Monochromator

• Exponential growth in the application of RR.

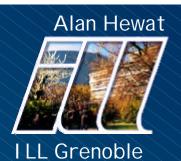
Comparison of D1A with old D2 at ILL

ILL Grenoble

 The same AI2O3 sample on D1A (top) and the old D2 at ILL.

Early Days at ILL Grenoble (1973)

ILL Grenoble



New types of PSD's

- Position Sensitive Detector used for the first time
- Very Fast machine (Faster than X-rays)
- Moderate Resolution

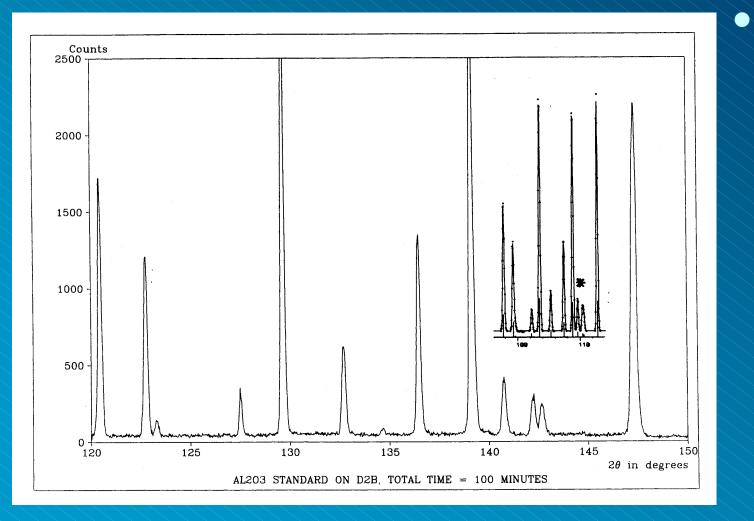
In-situ Chemistry with RR (Convert, Riekel ...)

Early Days at ILL Grenoble (70's)


Christian Riekel doing chemistry in-situ on D1B

• Real-Time Chemistry on D1B at ILL (Riekel, Pannetier)

The Second Generation (80's)

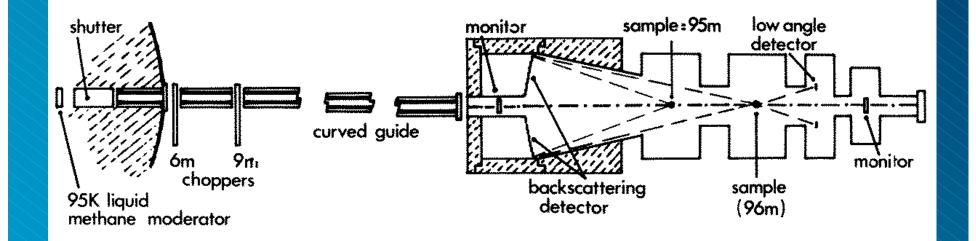

ILL Grenoble

• High Resolution with Very Large Detector banks (D2B, ILL)

Comparison of D2B with old D1A

• Al2O3 standard IUCr intercomparison sample

ILL Grenoble


*Note the splitting of Al2O3 peaks

The Second Generation (80's)

ILL Grenoble

- New Time-of-flight diffractometers (E.Steichele, Munich)
 - J. Jorgensen, Argonne (SEPD, GPPD)
 - B. Fender et al., Rutherford; W. David et al. ISIS (HRPD)

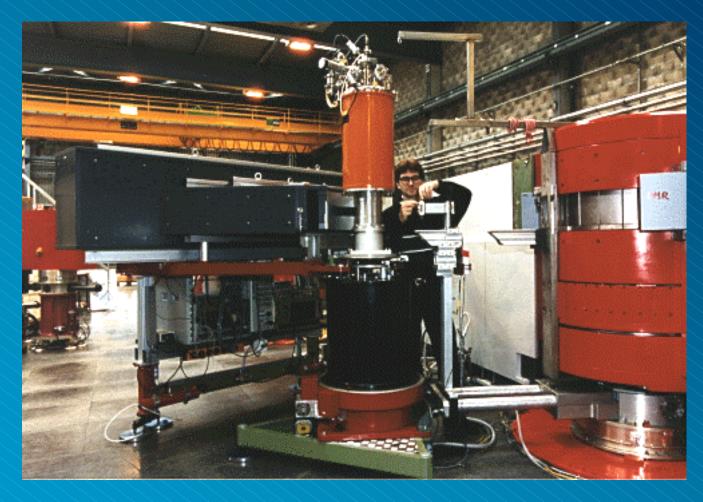
• HRPD ISIS (High Resolution Powder Diffractometer) W. David et al.

The Second Generation (80's)

• GPPD Argonne (General Purpose Powder Diffractometer) J. Jorgensen et al.

ILL Grenoble

HRPD "Outstation" at ISIS


ILL "Outstation" at ESRF ?

The Second Generation (80's)

ILL Grenoble

DMC high efficiency PSD powder diffractometer PSI (Zurich)
 P. Fischer et al.

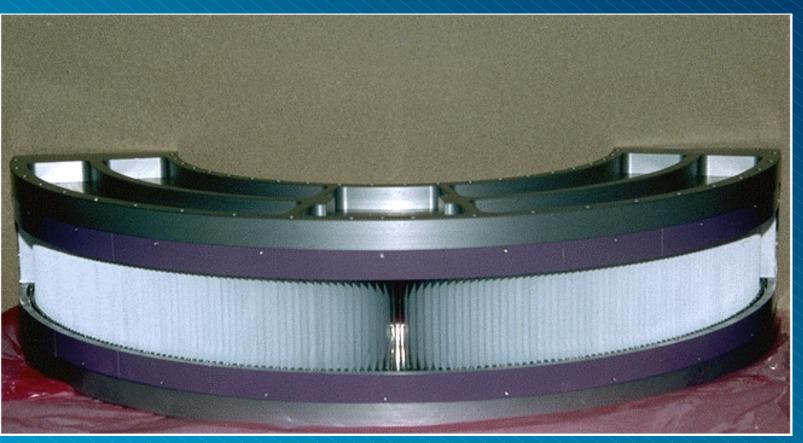
ILL Grenoble

• HRPD ISIS

 New scintillator detector element.

 Project for new 90° (medium resolution) detector bank

ILL Grenoble


• GEM ISIS

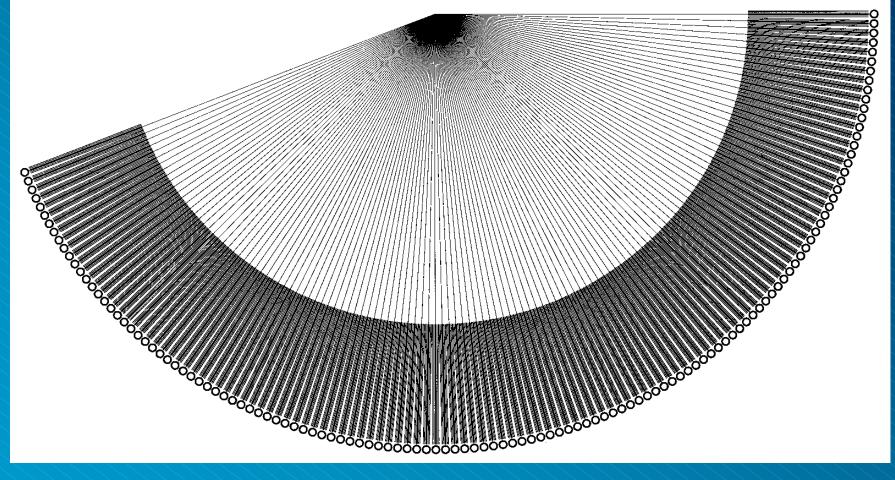
Element of an array of detectors for a very fast medium resolution machine

1600 wire PSD on a continuous neutron source

ILL Grenoble

 Radial Collimator for new HRPT diffractometer at PSI Zurich (Fast, medium-high resolution machine) Peter Fischer et al.

ILL Grenoble


1600 element microstrip PSD on a continuous neutron source

 Large 1600 element microstrip detector, D20 at ILL Grenoble (Fast medium-high resolution machine) Pierre Convert et al.

Large detector array on a continuous neutron source

ILL Grenoble

Super-D2B at ILL Grenoble, very large high resolution detector

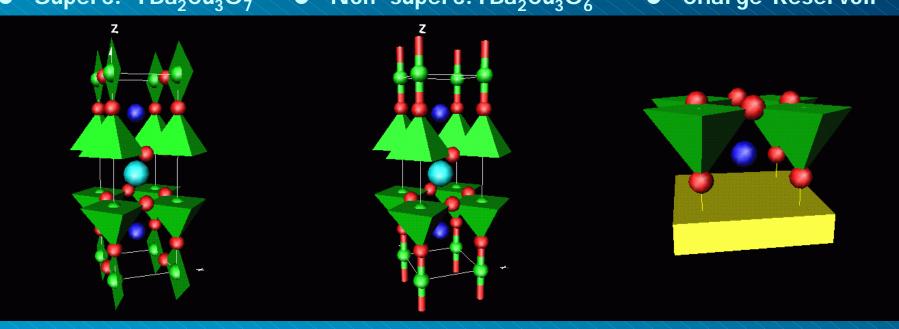
RR & most cited Neutron Papers

RR has had the biggest impact of any neutron technique

ILL Grenoble

Magnetism, Phase T/Ns, I onic conductors, Zeolites, and especially High-Tc superconductors

- Beno,MA. Soderholm,L. Capone,DWII. Hinks,DG. Jorgensen,JD. Grace,JD. Schuller,IK. Segre,CU. Zhang,K. (1987) Appl.Phys.Lett. 51 57-59
 Structure of the single-phase high-temperature superconductor Y Ba2 Cu3 O7-delta
- Capponi,JJ. Chaillout,C. Hewat,AW. Lejay,P. Marezio,M. Nguyen,N. Raveau,B. Soubeyroux,JL. Tholence,JL. Tournier,R. (1987) Europhysics Letters 3 1301-1307
 Structure of the 100 K Superconductor Ba2 Y Cu3 O7 between (5-300)K by Neutron Powder Diffraction
- Greedan, JE. O'Reilly, AH. Stager, CV. (1987) Phys.Rev.B, Condens.Mat. 35 8770-8773
 Oxygen ordering in the crystal structure of the 93-K superconductor Y Ba2 Cu3 O7 using powder neutron diffraction at 298 and 79.5 K
- David, WI F. Harrison, WTA. Gunn, JMF. Moze, O. Soper, AK. Day, P. Jorgensen, JD. Hinks, DG. Beno, MA. Soderholm, L. Capone, DW. Schuller, IK. Segre, CU. Zhang, K. Grace, JD. (1987) Nature (London) 327 310-312
 Structure and crystal chemistry of the high Tc superconductor Y Ba2 Cu3 O7-x
- Hazen,RM. Finger,LW. Angel,RJ. Prewitt,CT. Ross,NL. Mao,HK. Hadidiacos,CG. Hor,PH. Meng,RL. Chu,CW. (1987) Phys.Rev.B,Condens.Mat. 35 7238-7241
 Crystallographic description of phases in the Y-Ba-Cu-O superconductor.
- I zumi, F. Asano, H. I shigaki, T. (1987) Japanese Journal of Applied Physics, Part 2 26 L617-L618
 A Revised Structural Model for the Ba-Y-Cu-O Superconductor
- Francois, M. Walker, E. Jorda, JL. Yvon, K. Fischer, P. (1987) Solid State Commun. 63 1149-1153
 Structure of the high-temperature superconductor Ba2 Y Cu3 O7 by X-ray and neutron powder diffraction.

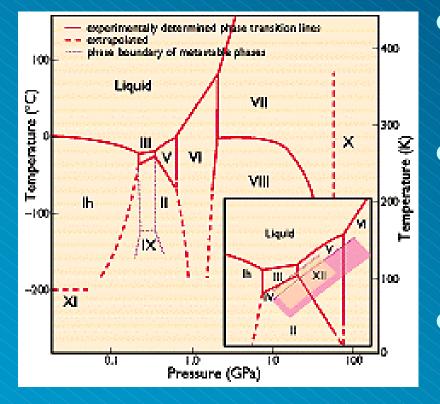

RR & most cited Neutron Papers

RR has had the biggest impact of any neutron technique

ILL Grenoble

Most cited contribution – "charge reservoir" concept in oxide superconductors • Superc. $YBa_2Cu_3O_7$ • Non-superc. $YBa_2Cu_3O_6$ • Charge Reservoir

Cava, R. J. et al. (1990). Physica C. 165: 419 (Bell labs/CNRS/ILL)


Jorgensen, .D. et al. (1990) Phys. Rev. B41, 1863 (Argonne)

High Pressure Powder Diffraction

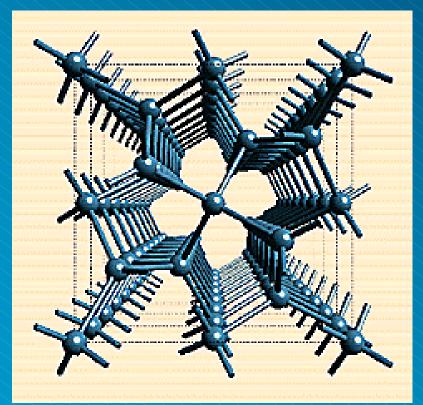
New phases of I ce discovered by neutron diffraction

ILL Grenoble

 Ice-XII - densest form of ice without interpenetration

 Ice-IV - auto-clathrate interpenetration of H-bonds for even higher density

Ice-He clathrate like Ice II


Lobban, Finney, Kuhs (1998) Nature 391, 268. Kuhs, Lobban, Finney (1999) Rev.High Press.Sci.& Tech. 7.

High Pressure Powder Diffraction

New phases of I ce discovered by neutron diffraction

ILL Grenoble

 Mixture of 5- and 7membered rings of Ice XII.

 Delicate balance between compting ice phases tests water potential functions in chemicl & biological systems

Model metastable structures

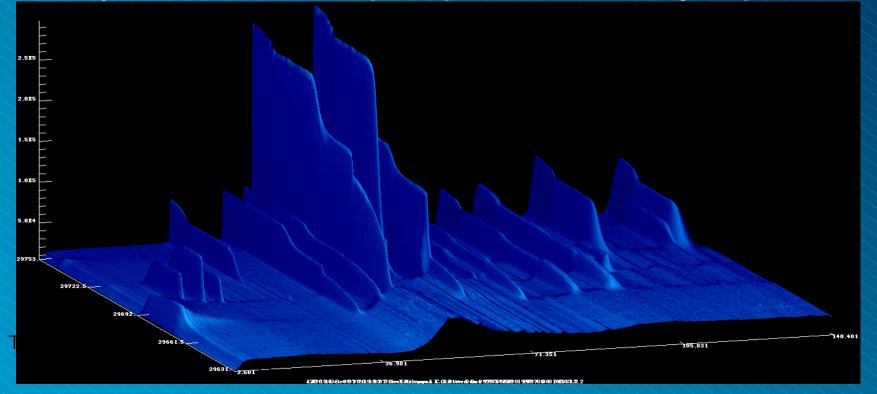
Lobban, Finney, Kuhs (1998) Nature 391, 268. Kuhs, Lobban, Finney (1999) Rev.High Press.Sci.& Tech. 7.

High Pressure Powder Diffraction

Paris-Edinburgh pressure cell for neutron diffraction

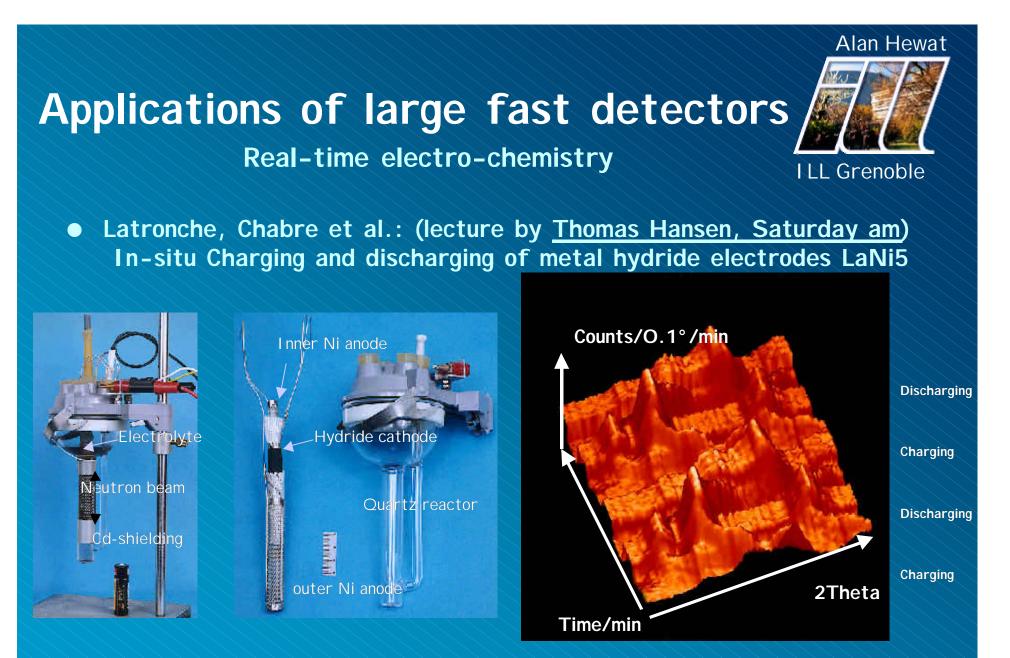
ILL Grenoble

- Compact high pressure cell which allows pressures ~50 kbar and eventually ~200 kbar.
- X-ray and especially synchrotron pressure cells can go much higher, but neutrons needed for many interesting model systems containing hydrogen r light atoms - ice, ammonium salts etc
- Microsyposium Sunday 8th 10:00, Monday 9th 14:45
 High Pressure Structure & Phase T/Ns (S.Hull, J.Parise et al)
 High Pressure Data Acquisition & Analysis (powder)


Applications of large fast detectors

Real-time Phase Diagrams (eg D20, future GEM)

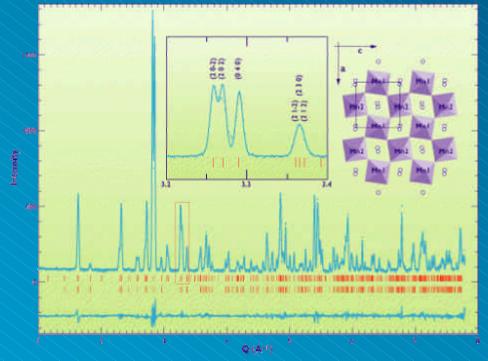
Alan Hewat


ILL Grenoble

• Kilcoyne et al.: (see lecture by <u>Thomas Hansen</u>, <u>Saturday am</u>) Crystallisation from amorphous pases with increasing temperature

• Complete diffraction pattern in seconds, scan through temperature

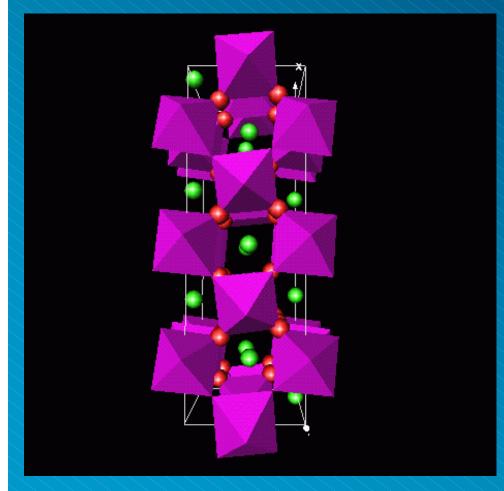
Microsymposium Saturday 7th 10:00 "In Situ studies using Powders"


Follow chemical changes with battery charge/dischage cycle

Microsymposium Sunday 8th 10:00 (Advanced Batteries & Fuel Cells)

Giant Magneto-Resistive Ceramics La _{0.333}Ca _{0.667}MnO₃

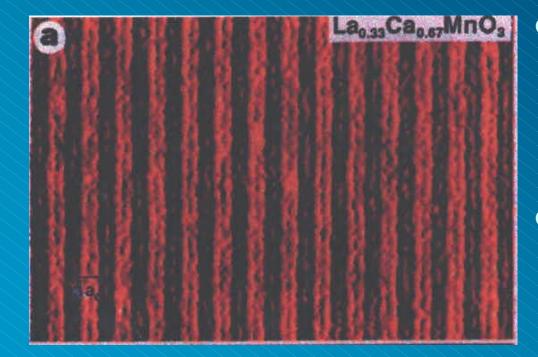
ILL Grenoble


 Caignaert, Suard, Maignan, Simon, Raveau (1996) J.Mag.Mag.Mat.153,L260
 Radaelli, Cox, Capogna, Cheong, Marezio (1998)
 Fernandez-Diaz, Martinez, Alonso, Herrero (1999)

Phys.Rev.B59,1277

Giant Magneto-Resistive Ceramics La _{0.333}Ca _{0.667}MnO₃

ILL Grenoble

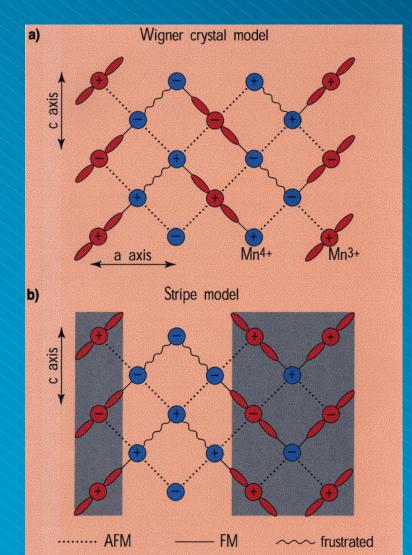

- Very large changes in electrical resistivity with temperature
- cf oxide superconductors
- mixed valence chargeordering Mn³⁺/Mn⁴⁺
- GMR effect near room temperature
- applications to magnetic storage of data (new high density IBM hard disks)

Stripes and Charge Ordering

1D-ordering ? Dimensionality important for theory.

ILL Grenoble

Mori et al. Nature (1998) 392,473 Other papers in Phys. Rev. Letters Remarkable electron microscope images of 1D stripe pattern in GMR La_{0.33}Ca_{30.67}MnO₃

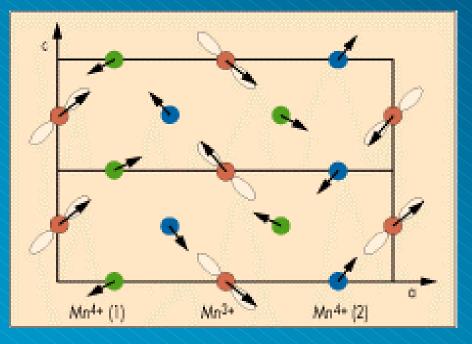

 Evidence also for 1D ordering in high-Tc superconductors (Cu³⁺ stripes, spin-ladders etc)

Stripes and Charge Ordering

1D-ordering ? Dimensionality important for theory.

ILL Grenoble

 Expect instead Mn³⁺/Mn⁴⁺ to be uniformly distributed (2D Wigner crystal model of Goodenough)


 The 1D-stripe model would have very important consequences for the theory of superconductors and GMR oxides

Stripes in GMR oxides ?

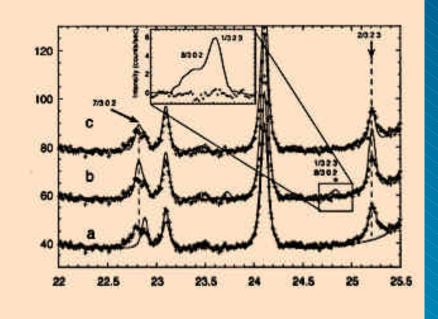
Magnetic+Oxide+T/N - Neutron powder diffraction

ILL Grenoble

Fernandez-Diaz et al. (1999) Phys. Rev B59, 1277. Neutron work on D1B+D2B (ILL) A classical problem for RR of neutron powder data

- magnetic structure
- details of oxygen structure
- destructive phase transition

 Magnetic structure of La_{0.33}Ca_{30.67}MnO₃


> consistent with the Wigner model, symmetry difficult to reconcile with a stripe model

Stripes in GMR oxides ?

Neutron + Synchrotron Powder Diffraction

ILL Grenoble

Radaelli et al. (1999) Phys. Rev B X-ray work on X7A (BNL) Neutron work on D2B (LL)

- High resolution synchrotron powder data (Brookhaven) reveals true symmetry and superstructure
- High resolution neutron powder data (ILL Grenoble) allows refinement of the real structure
- The stripe structure is not supported
 - P. Radaelli,
 - J.Rodriguez, D.Argyriou et al
 - Thursday 12th

30 Years of Rietveld Refinement Neutron Powder Diffraction

ILL Grenoble

What was Achieved ? Exciting new science ?
 High impact even outside the crystallographic community
 Magnetism, Superconductors, Giant Magneto-Resistance
 Keynote Lecture Friday 6th D. Cox

- Why Neutrons ? Why not X-rays ?
 - Neutrons+X-rays complementary
 - Solution of structures with X-rays (C. Baerlocher Thur 12th)
 - Refinement of important details with neutrons
- Why Powders ? Why not crystals ?
 - Crystals are use when available
 - Much new work started with powders high Tc, GMR...
- Why Rietveld ?

• Friday 6th "Challenging Rietveld" B. von Dreele et al.