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ABSTRACT

The results of Rietveld refinements of a series of simulated patterns is presented. We have studied

the effect of systematic errors (in the profile function) and the resolution in the quality of the refined

structural parameters. The behaviour of the common R-factors as a function of counting time

(statistics) for refinement with the exact model and with the wrong profile function is analysed. The

profile R-factors depend on both the quality of the data and the adequacy of the structural and

profile model. A way for getting the “ expected R-factors ” for the best structural model is

proposed. We have also studied the limits of the Rietveld method for complex structures as a

function of resolution. Finally we introduce some concepts and prescriptions helping to asses the

“ accuracy ” of the structural parameters obtained by the Rietveld method.



Introduction

The Rietveld Method [1] (RM) is now widely accepted as the natural way of refining crystal

structures from powder diffraction data. However, the common practice concerning the standard

deviations (σ’s) of the obtained structural parameters is to ignore the problems related with their

significance.

In 1979 arose a strong criticism concerning the nearly systematic underestimation of the standard

deviations of the structural parameters [2]. Prince clarified the problem stating that, in presence of

systematic errors, “ uncertainties in parameters estimates cannot be evaluated by statistical method ”

[3]. An important work was published by Scott [4] who clearly distinguished between accuracy and

precision and gave a method for giving a “ corrected ” set of standard deviations. Hill and co-

workers [5-9] have provided new insight into the above and related problems of the Rietveld

method by using different experimental conditions and studying the behaviour of the parameters of

interest. Some authors [4, 10-12] have proposed different methods to modify the σ’s multiplying the

obtained values by a factor greater than 1, in order to take into account the “ correlation of

residuals ” [11, 12], or to distinguish the effect of the heterogeneous set of parameters in the RM [4,

10].

Another important point that will be addressed in this article is the significance of the R-factors used

in the RM. Recently some proposal and prescriptions concerning R-factors have been given [13,

14], we will show that profile R-factors cannot be used as indicators of the goodness of structural

parameters if the “ expected ” R-factors for the best structural model are not known.

We have undertaken a simulation work for studying the effect of “ known systematic errors ” in

structural parameters, their corresponding standard deviations, and R-factors. The ultimate goal is to

find a method for assessing the true accuracy of the refined structural parameters that is still lacking.

In this article we will present some aspects our work and we will also discuss the behaviour of R-

factors and other indicators against statistical accuracy (counting time). Finally we introduce some

definitions, as the “ effective number of reflections ”, and new indicators helping in the assessment of

the quality of a Rietveld refinement.



The Rietveld Method, R-Factors And Standard Deviations

The model used for describing the powder pattern profile is based in the following

expression:

yical =  Σφ SφΣh
 Iφh

[ßI] Ω(Ti -Tφh
)[ßP] + Bi[ßB] (1)

where h labels the Bragg reflections, the subscript φ labels the “phase” and vary from 1 up to the

number of “phases” existing in the model. Ω(Ti -Tφh) is the value of the function Ω(x), normalised to

unit area, selected to describe the peak shape, at the position Ti due to the reflection centred at Tφh.

Finally, Sφ is a scale factor and Bi is the background at Ti.

In the RM, the functions I[ßI], Ω[ßP] and B[ßB], are calculated using a model that depends on a

series of parameters. The structural information is contained in the integrated intensities Iφh through

the structural parameters [ßI], while the instrumental and microstructural effects are included in the

peak shape function which depends on the “profile parameters” [ßP]. The background parameters

[ßB] contain information about disorder, short range order, amorphous phases, etc. If the set of

model parameters is ß =[ßI]U[ßP]U[ßB] = (ß1, ß2, ...ßP), where P=NI+NP+NB is the total number

free parameters, the Rietveld method tries to optimise the chi-square function:

χ2
p =  Σi wi {yiobs  - yical (ß)}

2
 (2)

where wi is the inverse of the variance associated to the observation “i” (σ2(yiobs)).

If there is no model for the structural problem (crystal and/or magnetic structure) the Rietveld

method is not applicable. The variance of the refined parameters are calculated using the formula:

σ
2
(ßj)= (A

-1
)jj .χ

2

ν = (A
-1

)jj χ
2

p/ (N-P+C)      (3)



where A is the matrix of the normal equations and χ
2

ν is the reduced chi-square.

For assessing the global quality of the refinement several R-factors are used in the literature. Let us

summarise the formula of the most usual indicators used in Rietveld refinements.

(i) R-pattern:

RP = 100 Σi |yiobs  - yical |/Σi yiobs

cRP = 100 Σi |yiobs  - yical |/Σi |yiobs-Bi| (4)

(ii) R-weighted pattern:

RwP = 100 [ Σiwi {yiobs  - yical}2/Σiwi{yiobs}2]1/2

cRwP = 100 [Σiwi{yiobs - yical}2/Σiwi{yiobs-Bi}2]1/2 (5)

(iii) R-expected:

RE = 100 [ (N-P+C)/Σiwi{yiobs}2]1/2

cRE = 100 [(N-P+C)/Σiwi{yiobs-Bi}2]1/2 (6)

(iv) Reduced Chi-square: χ2ν = Σi wi{yiobs  - yical}2/ (N-P+C) = (RwP/RE)2 (7)

(v) Durbin-Watson statistics: DW (see manual of FullProf)

The sums can be extended to all non-excluded points of the pattern or only to those points where

there is at least the contribution of a Bragg reflection:

(vi) R- Bragg factor (other notations RNuclear, RI):

The sums below are extended to the Bragg reflections in non-excluded regions.

RB = 100 Σh |Ih(“obs”) - Ih(calc)| / ΣhIh(“obs”)  (8)



where:

Ih(“obs”) = Ih(calc) ΣiΩ(Ti -Th)i {yiobs-Bi}/{yical-Bi} (9)

The symbols starting with “c” correspond to background-corrected indicators that are usually higher

than the corresponding non corrected R-factors.

The Simulation Method

The simulation method is preferred over real experiments because we can quantitatively control the

influence of “ known ” systematic errors in the “ refined ” structural parameters, enabling the

evaluation of the bias. The procedure we have used can be summarised as follows:

1- For a hypothetical (or real) compound characterised by a given crystal structure, scale factor

(which is related to a “ counting time ”), resolution function, peak shape, angular range

{2θi=2θS+(i-1)*∆, i=1, N} and background level, we calculate a theoretical (deterministic)

diffraction pattern {yi(theo), i=1, N}.

2- Nr versions of the “ observed ” diffraction pattern are generated by corrupting the deterministic

pattern by a noise calculated with a generator of pseudo-random numbers according to the

Poisson distribution yi(obs) = P{yi(theo)}.

3- The process is repeated for Nt different values of the “ counting time ” (scale factor), thus

producing Nr x Nt observed diffraction patterns for the same compound.

4- Each pattern is refined by the RM by using either the “ true ” model or a biased model (e.g.

wrong peak shape).

5- The values of the refined parameters are then compared to the true valued (bias and dispersion)

and the computed standard deviations are compared to the empirical ones obtained from the Nr

versions of the same diffraction pattern, as a function of the counting time.

6- Finally we study the behaviour of the R-factors versus counting time for the different conditions

of refinement.



7- We also refine the diffraction patterns without structural model to obtain the “ expected ” R-

factors for the best structural model by profile-matching (PM) iterating the Rietveld formula for

the Bragg R-factor

The profile matching method (usually known as Le Bail fit)

Pawley [15] proposed a method to obtain integrated intensities (for a single “phase”) by refinement

of the whole profile using I
h
 in expression (1) as least squares (LS) parameters. The matrix of the

normal LS-equations is usually singular, due to the reflection overlap. Pawley solved the problem by

using “slack constraints” [15]. However, there is an intrinsic degeneracy causing an infinite number

of solutions. When the reflections h1 and h2 are accidentally at the same position T
h1

=T
h2

 the global

intensity  I(h1, h2) can be decomposed, I
h1

+ I
h2

, in an infinite number of ways. Usually the a priori

Bayesian guess, I
h1

= I
h2

, is chosen. This uncertainty is the fundamental point limiting the capability of

getting a structural solution from powder data. The LS approach proposed by Pawley has the

drawback of needing the inversion of a matrix that can be of considerable size even if it is sparse. An

alternative procedure is to iterate the calculated profile up to “match” the observed pattern. For

doing that a criterion to approach the observed pattern must be defined. The problem can be

formulated, for a single phase, as follow. Let yobs ={y
iobs}i=1,...N

 (N: number of points in the profile)

be the observed diffraction pattern. This set of values can be calculated if the integrated intensities

Io={Ioj}j=1,...n(n: number of reflections) the cell parameters and the peak shape are known. In that

case the expression (1) can be rewritten as:

yiobs= yical+ei =  Σ Ioj Ωi,j + Bi+ei (10)

where ei is a statistic fluctuation of the order of σ(y
iobs

), and (2) is a minimum by definition. In

practice, the set Io is not known and the cell and profile parameters are known approximately. The

set Io can be considered as a fixed point of the n-dimensional space, R+n (positive components),

associated with the pattern yobs. If we start from an arbitrary point I
1
, of R

+
n, we have to find an



operator, Γ, that acting on that point transforms it into another closer to Io. The term “closer” means

that the distance d(Io, Γ[I1]) is smaller than d(Io, I1). Whatever formal definition of distance is

good. Actually, due to the degeneracy discussed above, Io is not a single point but belongs to an

extended region: V(Io) ⊂ R+n. A good operator must verify:

Ik = Γ[Ik-1]=Γk-1[I1] (11)

limk→∞ Ik = limk→∞Γk-1[I1]= Io ∈V(Io) (11’)

The expression provided by Rietveld [1] to estimate the “observed” integrated intensity in order to

mimic the classical crystallographic R-factor (now called R-Bragg), defined as expression Whatever

Rietveld program can be easily modified to include the possibility of “fitting” the whole profile

without structural model using the expression (9) for iterative calculation of the integrated intensities.

Of course, the rest of profile parameters, including the propagation vector(s) of a magnetic structure,

can be refined simultaneously with the usual LS procedure. The method of “profile matching" is

extremely efficient and fast. This procedure has been used first by Taylor [16] and A. Le Bail [17]

and it is implemented in the program FullProf [18] developed at the ILL/LLB. This program allows

the mixture of the Rietveld and “profile matching” methods for the analysis of a diffraction pattern.

This mixed procedure has to be used with caution: the use of both methods simultaneously is

necessary when one tries to get the integrated intensities of an unknown structure in presence of

another, already known, phase. Thus, no structural parameter of the known phase must be refined.

This is the usual case of neutron diffraction patterns of magnetically ordered compounds, where the

nuclear reflections coexist with the magnetic reflections.

Simulations

The text describing the different simulations is not yet written. Some of the figures are

given in a separate document.



CONCLUSIONS.

1- When the refined model is unbiased (no systematic errors), least squares estimates of the

standard deviations represent not only the precision but also the accuracy. For biased models

(usual practical situation) the standard deviations do not represent accuracy. Simulation

completely confirms the theses of E. Prince.

2- For biased models (a known systematic error in profile is introduced) in simple structures some

fitted parameters (profile and thermal parameters) show a bias while others are barely affected

(position parameters).

3- Concerning accuracy, nothing is gained repeating the measurement several times if the systematic

error is expected to be the same. The standard deviation obtained from different measurement is

not, in such a case, a measure of the accuracy.

4- For complex structures high statistical accuracy and high resolution is required for getting the true

parameter values even is the refined model is unbiased. Suggestion: the solvability index (r =

Neff/Nf for p=1/2) should be largely greater than 4-5 to be sure that the structural parameters

are accurate enough. More experience is needed to establish precise rules.

5- The absolute value of the profile R-factors has little significance because their values depend on

the quality of the data as well as on the goodness the structural model. The R-factors obtained

by a refinement of the whole pattern without structural model provide the “expected” values for

the best structural model.

6- Well behaved peak shape could be more important than resolution in some cases.
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COMPLEXITY VERSUS RESOLUTION

The model used for describing the powder pattern profile is based in the

expression

yical =  ΣφSφΣh Iφh[ßI] Ω(Ti -Tφh)[ßP] + Bi[ßB]

h (H or H+k) labels the Bragg reflections
φ  labels the phase 

Iφh[ßI] Integrated intensities depending on structural
parameters: atom positions, magnetic moments, …

Ω(Ti -Tφh)[ßP] Peak shape depending on profile parameters,
instrument, defects, domain size, etc.

Bi[ßB] Background function: diffuse scattering, short range
order, parasitic, etc.

Rietveld Method: Minimise the chi-square function against an
heterogeneous set of parameters

χ
2

p =  Σi wi {yiobs  - yical (ß)}
2

Reduced chi-square:
χ

2

ν = χ
2

p /(N-P+C) with P=NI+NP+NB

• If one is interested in “structural parameters” the number of
independent observations is not the number of points in the pattern N.

• What is the number of “independent” observations?

There is no rigorous answer...



Complexity of a structural problem:

Points to be considered:

• Signal-to-noise ratio, statistics.

• Number of independent Bragg reflections: NB

• Number of intensity-dependent free parameters: NI=Nf

• Degree of reflection overlap: resolution versus separation between

consecutive reflections.

The above considerations give rise to the concept of:

• Effective number of observations (resolution weighted): Neff

• “Solvability” index: ratio between the effective number of

observations and the number of structural parameters

r = Neff/NI

Guest

The solvability index must be higher than 5-8 (?) for powder diffraction



Criteria for calculating Neff:

Two reflections separated by ∆(Q) can be discriminated properly if the

following relation holds:

∆(Q) = 2π
2
j/(Q2Vo) ≥ p DQ

The “separability factor” p is of the order of the unity

A single reflection at Qo contributes to Neff as x/(x+nearest), where “x”

is the fraction of the current phase and “nearest” is the number of

adjacent reflections, weighted by the corresponding x, verifying:

Qo - p DQ ≤ Qadjacent ≤ Qo + p DQ

The formula for calculating Neff is:

Neff(φ)=Σi(φ)  {x[φ:i] / Σj(φ) x[φ:j]}

x[φ:i]: fractional contribution to the diffraction pattern (area) of the

phase “φ” to which belongs the reflection “i”

i(φ): index of reflections of the phase φ.

j index of reflections adjacent to reflection “i”. The reflection

“i” always belong to the set of j

For a single phase x[φ:i]=1

Neff=Σi  1/(1+Ni)

Ni is the number of reflections in the neighbourhood of reflection “i”



Simulation of “systematic errors” in the Rietveld Method

• The presence of systematic errors in the model prevents the possibility

of a rigorous analysis of the “accuracy” of the refined parameters.

• The standard deviations are a measure of the accuracy only when

statistical errors dominate the residuals

An empirical approach can help the assessment of the accuracy of the

refined parameters:

(1) Select a structural and profile model (real or artificial) and

calculate its theoretical deterministic diffraction pattern. Use

different scale factors to simulate different counting times.

(2) Add a “Poissonnian noise” to the deterministic pattern.

(3) Generate NR diffraction patterns corresponding to the same scale

factor

(4) Repeat for NT different “counting times” (NR x NT  diffraction

patterns)

(5) Refine, using the Rietveld Method, the generated diffraction

patterns with the correct model or with a partial model.

(6) Analysis of the “fitted” parameters and comparison with the “true

values”

(7) Behaviour of the reliability indices

(8) Plot results



Standard deviations

σ2(ßj)= (A-1)jj .χ
2
ν = (A-1)jj χ

2
p/ (N-P+C)

⇒ The standard deviation σ(ßj) is a measure of “precision”. It is also

a measure of the “accuracy” only if there is no “systematic error”.

⇒ In the Rietveld Method the standard deviations calculated with the

above formula could be much smaller than the corresponding

“accuracy” (case of cell parameters).

⇒ There is no general method of converting the standard deviations

obtained in least squares to estimated “true errors” of the

parameters.

⇒ ⇒ The repetition of the measurement in presence of systematic

errors does not help. The bias in some parameters remains.

⇒ For structural parameters the two step method (extraction of

integrated intensities an refinement based on peak clusters) could

be applied for getting a new set of standard deviations.


