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ABSTRACT
The results of Rietveld refinements of a series of amulated patterns is presented. We have studied
the effect of sysematic errors (in the profile function) and the resolution in the qudity of the refined
dructurd parameters. The behaviour of the common R-factors as a function of counting time
(satidtics) for refinement with the exact model and with the wrong profile function is analysed. The
profile R-factors depend on both the qudity of the data and the adequacy of the structurd and
profile modd. A way for getting the “ expected R-factors” for the best sructurd modd is
proposed. We have dso studied the limits of the Rietveld method for complex structures as a
function of resolution. Findly we introduce some concepts and prescriptions helping to asses the

“accuracy” of the dructurd parameters obtaned by the Rietved method.



I ntroduction

The Rietved Method [1] (RM) is now widely accepted as the naturd way of refining crysta
sructures from powder diffraction data. However, the common practice concerning the standard
deviations (s’'s) of the obtained structurd parameters is to ignore the problems related with ther
ggnificance.

In 1979 arose a gtrong criticism concerning the nearly systematic underestimation of the standard
deviations of the structural parameters [2]. Prince clarified the problem Stating that, in presence of
sysematic errors, “ uncertainties in parameters estimates cannot be evaduated by statistica method ”
[3]. An important work was published by Scott [4] who clearly distinguished between accuracy and
precision and gave a method for giving a “corrected ” set of standard deviations. Hill and co-
workers [5-9] have provided new ingght into the above and rdlated problems of the Rietveld
method by using different experimental conditions and studying the behaviour of the parameters of
interest. Some authors [4, 10-12] have proposed different methods to modify the s’s multiplying the
obtained vaues by a factor greater than 1, in order to take into account the “ correlation of
resduds " [11, 12], or to distinguish the effect of the heterogeneous set of parametersin the RM [4,
10].

Ancther important point that will be addressed in this article is the significance of the R-factors used
in the RM. Recently some proposal and prescriptions concerning R-factors have been given [13,
14], we will show that profile R-factors cannot be used as indicators of the goodness of structura
parametersif the “ expected ” R-factors for the best structural model are not known.

We have undertaken a smulation work for studying the effect of “ known systematic errors ” in
sructura parameters, their corresponding standard deviations, and R-factors. The ultimate god isto
find a method for assessing the true accuracy of the refined structurd parameters that is il lacking.
In this article we will present some aspects our work and we will aso discuss the behaviour of R-
factors and other indicators againg Satigticad accuracy (counting time). Findly we introduce some
definitions, asthe* effective number of reflections ”, and new indicators helping in the assessment of
the qudity of a Rietveld refinement.



The Rietveld M ethod, R-Factors And Standard Deviations

The model used for describing the powder pattern profile is based in the following

expression:
Yica = Sf SfSh Ifh[B|] VV(T| _Tfh)[Bp] + B,[BB] (1)

where h labels the Bragg reflections, the subscript f [abels the “phase” and vary from 1 up to the
number of “phases’ existing in the modd. W(T; -T;},) isthe value of the function W(x), normalised to

unit area, selected to describe the pesk shape, at the position T; due to the reflection centred at Ty,
Findly, § isascae factor and B; isthe background at T;.

In the RM, the functions I[3;], W[3p] and B[(3g], are calculated using a modd that depends on a
series of parameters. The structurd information is contained in the integrated intengties ky, through
the Structura parameters [13,], while the instrumenta and microgtructurd effects are included in the
peak shape function which depends on the “profile parameters’ [[3p]. The background parameters
[Bg] contain information about disorder, short range order, amorphous phases, ec. If the set of
model parametersis 3 =[3]U[Rp]U[Rg] = (3, 3, ...[3), where P=N,+Np+Ng is the total number
free parameters, the Rietveld method tries to optimise the chi-square function:

Czp = Si W, {yiobs " Yica (B)}Z @

where w; isthe inverse of the variance associated to the observation “i” (S 2(Yigps))-

If there is no model for the structural problem (crystd and/or magnetic sructure) the Rietveld
method is not applicable. The variance of the refined parameters are caculated using the formula

s‘®)=(A"), ¢’ = (A7), ¢/ (N-P+C) 3



where A isthe matrix of the norma equations and c2n is the reduced chi-square.

For assessing the globa qudity of the refinement several R-factors are used in the literature. Let us
summarise the formula of the most usud indicators used in Rietveld refinements.

(i) R-pattern:
Rp =100 S; Yiobs - Yica V'Si iobs

cRp =100 S iops - Yica I'Si IYiobs™Bil “)
(i) R-weighted pattern:

Rup = 100 [ SW; {Yiobs - Yica} ZSWi{ Yiopst Y2
CRyp = 100 [SWi{ Yiobs - Yica} Z/ SWi{ Yiobs Bi} 442 ©)

(iii) R-expected:
Re = 100 [ (N-P+C)/Swi{Yiope} 442

cRe = 100 [(N-P+C) Swi{ Yions Bi} 212 (6)

(iv) Reduced Chi-sauare: ¢2n = S WilYiops - Yica} 7 (N-P¥C) = (R,,o/Re)? (@)

(V) Durbin-Watson getigtics DW (see manud of FullProf)

The sums can be extended to al non-excluded points of the pattern or only to those points where

there is at least the contribution of a Bragg reflection:

(vi) R- Bragg factor (other notations Ryygear R):

The sums below are extended to the Bragg reflections in non-excluded regions.

Rg =100 Sp, [In(*0bs”) - I5(calC)|/ Syl (*obs’) (8)



where:

In(“obs”) = Ip(calc) ST -Tp)i { Viobs B} { Vica-Bi} ©)

The symbols starting with “¢” correspond to background-corrected indicators that are usually higher

than the corresponding non corrected R-factors.

The Simulation M ethod

The smulation method is preferred over red experiments because we can quantitatively control the

influence of “ known ” systematic errors in the “ refined” dructurd parameters, enabling the

evauation of the bias. The procedure we have used can be summarised as follows:

1-

For a hypothetica (or real) compound characterised by a given crystd structure, scae factor
(whichisrdated to a“ counting time ), resolution function, peak shape, angular range
{2g=20<t(i-1)*D, i=1, N} and background level, we caculate a theoreticd (determinigtic)
diffraction pattern {y;(theo), i=1, N}.

N, versons of the“ observed ” diffraction pattern are generated by corrupting the determinigtic
pattern by a noise caculated with a generator of pseudo-random numbers according to the
Poisson digtribution y;(obs) = P{y;(theo)} .

The process is repeated for N different values of the “ counting time ” (scale factor), thus
producing N, x N; observed diffraction patterns for the same compound.

Each pattern is refined by the RM by usng ether the “true ” modd or a biased modd (e.g.
wrong peak shape).

The vaues of the refined parameters are then compared to the true valued (bias and dispersion)
and the computed standard deviations are compared to the empirica ones obtained from the N,
versons of the same diffraction pattern, as afunction of the counting time.

Findly we study the behaviour of the R-factors versus counting time for the different conditions
of refinement.



7- We dso refine the diffraction patterns without structura mode to obtain the “ expected ” R-
factors for the best structurd mode by profile-maiching (PM) iterating the Rietveld formula for
the Bragg R-factor

The profile matching method (usually known as L e Bail fit)

Pawley [15] proposed a method to obtain integrated intengties (for a single “phase’) by refinement
of the whole profile using |, in expression (1) as leest squares (LS) parameters. The matrix of the
norma LS-equationsis usudly singular, due to the reflection overlap. Pawley solved the problem by
using “dack condraints’ [15]. However, there is an intrinsc degeneracy causing an infinite number
of solutions. When the reflections h1 and hy are accidentdly a the same position T, =T, , the global

intensity 1(hy, hp) can be decomposed, |, + 1, , in an infinite number of ways Usudly the a priori

ha?
Bayesan guess, |, = |, , is chosen. This uncertainty is the fundamenta point limiting the capability of
getting a structural solution from powder data. The LS approach proposed by Pawley has the
drawback of needing the inverson of amairix that can be of consderable Sze eveniif it is sparse. An
aternative procedure is to iterate the caculated profile up to “match” the observed pattern. For
doing that a criterion to approach the observed pattern must be defined. The problem can be

formulated, for asingle phase, asfollow. Let ygps ={V. (N: number of points in the profile)

iobs} i=1,...N
be the observed diffraction pattern. This set of vaues can be caculated if the integrated intensities
1 0={ IOJ-} j= 1,...n(N: number of reflections) the cell parameters and the peak shape are known. In that

case the expression (1) can be rewritten as:

Viows™ Yiea ™8 = S19 W, + Bite (10
where q is a gatigtic fluctuation of the order of s(y, ), and (2) is a minimum by definition. In

practice, the set 19 is not known and the cell and profile parameters are known gpproximately. The

set 10 can be considered as a fixed point of the n-dimensiona space, R (positive components),

associated with the pattern ygps. If we start from an arbitrary point Il, of RN we have to find an



operator, G, that acting on that point transforms it into another closer to 1. The term “closer” means
that the distance d(1°, G[11]) is smaller than d(1©, 11). Whatever forma definition of distance is
good. Actualy, due to the degeneracy discussed above, 10 is not a single point but belongs to an
extended region: V(19) I R4N. A good operator must verify:

Ik = grk-L=ck-11y (11)

lime y 1K = lime v G<-1[11)=10T v(19) (11)

The expression provided by Rietveld [1] to estimate the “observed” integrated intendty in order to
mimic the classca crystalographic R-factor (now caled R-Bragg), defined as expresson Whatever
Rietved progran can be eadsly modified to incdlude the possihility of “fitting” the whole profile
without structural model using the expression (9) for iterative caculation of the integrated intengties.
Of course, the rest of profile parameters, including the propagation vector(s) of a magnetic structure,
can be refined smultaneoudy with the usua LS procedure. The method of “profile matching” is
extremdy efficient and fast. This procedure has been used first by Taylor [16] and A. Le Bail [17]
and it is implemented in the program FullProf [18] developed at the ILL/LLB. This program dlows
the mixture of the Rietveld and “profile matching” methods for the andysis of a diffraction pattern.
This mixed procedure has to be used with caution: the use of both methods smultaneoudy is
necessary when one tries to get the integrated intensities of an unknown structure in presence of
another, dready known, phase. Thus, no structura parameter of the known phase must be refined.
Thisis the usua case of neutron diffraction patterns of magnetically ordered compounds, where the
nucleer reflections coexigt with the magnetic reflections.

Simulations

The text describing the different smulations is not yet written. Some of the figures are

given in a separ ate document.



CONCLUSIONS.

1-

When the refined mode is unbiased (no systematic errors), leest squares estimates of the
standard deviations represent not only the precision but aso the accuracy. For biased models
(usud practicd dtuation) the standard deviations do not represent accuracy. Simulation
completely confirms the theses of E. Prince.

For biased modes (a known systematic error in profile is introduced) in Smple structures some
fitted parameters (profile and thermd parameters) show a bias while others are barely affected
(pogition parameters).

Concerning accuracy, nothing is gained repesating the measurement severd timesif the syslematic
error is expected to be the same. The sandard deviation obtained from different measurement is
not, in such a case, a measure of the accuracy.

For complex structures high statistical accuracy and high resolution is required for getting the true
parameter values even is the refined mode is unbiased. Suggestion: the solvability index (r =
Ne/N¢ for p=1/2) should be largely greater than 4-5 to be sure that the Structurd parameters
are accurate enough. More experience is needed to establish precise rules.

The absolute value of the profile R-factors has little sgnificance because their vaues depend on
the qudity of the data as well as on the goodness the structurad modd. The R-factors obtained
by a refinement of the whole pattern without structural mode provide the “expected” vaues for
the best structural modd.

Wl behaved peak shape could be more important than resolution in some cases.
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COMPLEXITY VERSUSRESOLUTION

The model used for describing the powder pattern profileis based in the

expression

Vit = S Oy lnlB] WIT; -T; ) [Be] + BIR]

h (H or H+k) |abels the Bragg reflections
f |abels the phase
e [13] Integrated intensities depending on structural

parameters. atom positions, magnetic moments, ...

W, T, )[3] Peak shape depending on profile parameters,
instrument, defects, domain size, etc.

B.[13] Background function: diffuse scattering, short range
order, parasitic, etc.

Rietveld Method: Minimise the chi-sguare function against an
heterogeneous set of parameters

2 2
Cp= S W {Yigps - Yiea (B
Reduced chi square:
cC,=cC IO/(N-P+C) with P=N,+Np+Ng

If oneisinterested in “structural parameters’ the number of
Independent observationsisnot the number of pointsin the pattern N.

What isthe number of “independent” observations?

Thereisnorigorousanswer ...



Complexity of a structural problem:

Points to be considered:

Signal-to-noiseratio, statistics.
Number of independent Bragg reflections. N
Number of intensity-dependent free parameters: N|=Nf

Degree of reflection overlap: resolution versus separation between
consecutive reflections.

The above considerations give rise to the concept of
Effective number of observations (resolution weighted): Neff
“Solvability” index: ratio between the effective number of

observations and the number of structural parameters
I = Neff/Nj

Guest
The solvability index must be higher than 5-8 (?) for powder diffraction



Criteriafor calculating Ngff:
Two reflections separated by D(Q) can be discriminated properly if the

following relation holds:
2.
D(Q) =2p'j/(Q2Vo) * pD,
The “ separability factor” p is of the order of the unity
A singlereflection at Qg contributes to Ng as x/(x+nearest), where “x”

Isthe fraction of the current phase and “nearest” is the number of
adjacent reflections, weighted by the corresponding x, verifying:

QO'pDQ£Qadjacent£QO+pDQ

The formulafor calculating Ng iS:
Neff(F)=Sic) {XIF:i1 [ Sty xIf:il}

x[f ] fractional contribution to the diffraction pattern (area) of the
phase “f ” to which belongs the reflection “i”

1(f): index of reflections of the phasef .

] index of reflections adjacent to reflection “i”. The reflection
“I” dways belong to the set of j

For asingle phase x[f :i]=1
Neff=S 1/(1+N)

N; is the number of reflectionsin the neighbourhood of reflection “i”



Simulation of “systematicerrors’ in the Rietveld Method

The presence of systematic errorsin the model prevents the possibility
of arigorous analysis of the “accuracy” of the refined parameters.

The standard deviations are a measure of the accuracy only when
statistical errors dominate the residuals

An empirical approach can help the assessment of the accuracy of the

ref

(1)

(2)

3

(4)

(5)

(6)

(7)
(8)

ined parameters:

Select astructural and profile model (real or artificial) and
calculate its theoretical deterministic diffraction pattern. Use
different scale factorsto simulate different counting times.

Add a“Poissonnian noise” to the deterministic pattern.

Generate NR diffraction patterns corresponding to the same scale

factor

Repeat for NT different “counting times’ (NR X NT diffraction
patterns)

Refine, using the Rietveld Method, the generated diffraction
patterns with the correct model or with a partial model.

Analysis of the “fitted” parameters and comparison with the “true
values’

Behaviour of thereliability indices

Plot results



Standard deviations
2 -1 2 -1 2
s“(B)=(A"); .7, = (A"); ¢/ (N-P+C)

P Thestandard deviation s(f3j) isameasure of “precision”. It isalso

ameasure of the “accuracy” only if thereisno “systematic error”.

P Inthe Rietveld Method the standard deviations cal culated with the
above formula could be much smaller than the corresponding
“accuracy” (case of cell parameters).

P  Thereisno general method of converting the standard deviations
obtained in least squares to estimated “true errors’ of the
parameters.

P P Therepetition of the measurement in presence of systematic

errors does not help. The biasin some parameters remains.

P For structural parameters the two step method (extraction of
integrated intensities an refinement based on peak clusters) could
be applied for getting a new set of standard deviations.



