
 1 This material is based upon work supported by the Czech Ministry of
Education under Grant ME336(1999) and by the National Science
Foundation under Grant No. DMR-9722799 .

Ferroelectrics 252 59-67 (2001)

 TENSORIAL COVARIANTS AND DOMAIN STATE
TENSORS1

VOJTECH KOPSKY* and DANIEL B. LITVIN**

*Institute of  Physics, Academy of  Sciences of the Czech Republic, Na
Slovance 2, 182 21 Prague 8, Czech Republic,E-mail: kopsky@fzu.cz;
**Department of  Physics, The  Pennsylvania  State  University, Penn

State  Berks  Campus, P. O. Box 7009, Reading PA  19610-6009,
USA. E-mail: u3c@psu.edu 

 

The use of tensorial covariants, subduction, and domain structure tables
are shown to facilitate the computation of  physical property tensors,
their matrix form,  the relationships among these tensors in domain
states which arise during a phase transition, and the relationship of
these components to parameters that drive a phase transition. An
example is given for phase transitions between a parent phase point
group symmetry of m 3&m and the point group mmm.
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 In describing the physical property of crystals by tensors, the
components of the tensors are usually given in a cartesian coordinate
system ( Nye, 1957). However, in calculating these components,
especially of higher rank tensors, relating components in different
domain states that arise in  phase transitions, and in relating these 
components to parameters that drive phase transitions, it is more
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appropriate and revealing , as we shall show below, to relate these
cartesian components first to what are called tensorial covariants.

To show this we shall consider a specific equitranslational ferroic phase
transition where the point group of the parent phase is G = m 3&m and
the point group of the lower symmetry phase is F = mxmymz . This
corresponds to phase transitions in lead zirconate (Landolt-Boernstein,
1982)  and cesium lead chloride ( Chabin & Gilletta ,1980). The
physical property tensors which we shall consider, and their symbols
are: 

, enantiomorphism
P polarization, pyroelectricity
u deformation, permitivity, thermal

expansion
g gyrotropy, optical activity
d piezoelectricity, electrooptics
A electrogyration
s elastic stiffness
Q piezooptics, electrostriction

 One can calculate (Kopsky, 1979)  linear combinations of the cartesian
components of tensors which transform as  sets of basis functions of
irreducible representations of the point group G of the parent phase.
These are named tensorial covariants. These have been calculated
(Kopsky 1970,2000) and in Table 1 we have listed these tensor
covariants for the physical property tensors listed above and the group
G = m 3&m.   Under each heading of symbols of basis functions of 
irreducible representations of m 3&m is a list of linear combinations of
cartesian components, the tensorial covariants, which transform under
G as those basis functions.  

In Table 2 , information concerning the subduction of irreducible
representations of the group G = m 3&m onto the subgroup F = mxmymz

is given (Kopsky 1982 and these proceedings). Each basis function of
m 3&m, when restricted to the subgroup mxmymz , transforms as a basis
function of mxmymz and is listed under that basis function of mxmymz.  
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In this  phase transition between G = m 3&m and F = mxmymz there arises
six domain states which we denote by Si , i=1,2...,6 . In Table 3 we give
the domain structure table  (Kopsky 1982) with  the information
necessary to calculate the physical property tensors in these domain
states. We note that only basis functions of the type x+

1 , x
+

2 , and x+
3,

y+
3 appear in Table 3. The consequences of this are:

1) Physical property tensors which have no tensor covariants
which transform as these basis functions are identically zero in all six
domains. That is, ,, P, g, and d are such tensors, which is anticipated
by the fact that the point group F is centrosymmetric.

2) Tensor covariants of physical property tensors which do not
transform as any of these basis functions are identically zero in all six
domains. This immediately provides a list of cartesian components
which are zero in all six domains. From Table 1, one sees, for example,
that A11 /0, and from s34 - s23 = 0 and s34 + s23 = 0 that  s34 = s23 = 0.
For this particular transition we have in all six domain states that u4 =
u5 =u6 = 0; A11 = A12 = A13 = A15 = A16 = A21 = A22 = A23 = A24 = A26 =
A31 = A32 = A33 = A34 = A35 = 0; s14 = s15 =s16 = s24 = s25 = s26 = s34 = s35

=s36 = s45 = s46 = s56 = 0; and  Q14 =Q15 =Q16 =Q24 =Q25 =Q26 =Q34 =Q35

= Q36 =Q41 =Q42 =Q43 =Q45 =Q46 =Q51 =Q52 = Q53 = Q54 =Q56 =Q61 =Q62

=Q63 =Q64 =Q65 = 0.

 Note in Table 3 under the first domain state that *(x+
3, y

+
3) appears

with a “*” to the left. This indicates the physical property tensors and
tensor components which can distinguish all domains. From this and
Table 3 one can see immediately that tensors u, s, and Q can distinguish
all six domains. In terms of an Aizu classification ( Aizu 1970), these
tensors are fully ferroic. In terms of parameters which drive this
particular phase transitions, only  tensor components, and cartesian
components related to these tensor components, which transform as
(x+

3, y
+

3) can drive this transition, can uniquely characterize the six
domains. 

The consequences given above were easily determined due to the 
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Table 1. Tensorial covariants for the group m 3&m.
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consideration  not of the cartesian components, but of the tensor
covariants of physical property tensors. The cartesian components can
be calculated from these tensor covariants: From Table 1, one has a list
of tensor covariants in terms of linear combinations of cartesian
components, e.g. u+

1 = u1+u2+u3; u
+

3x = u3 + (u1+u2)/2 ; and u+
3y =o 3'(u1-u2)/2 , where the superscript and subindices on the left-hand-

side of each equation denote the transformation properties of the
specific tensor covariants. These equations can be inverted to obtain
conversion equations, i.e. the cartesian components in terms of the
tensor covariants. For this phase transition, this  has  been  done and is
given in Table 4 for   u1 , u2 ,  u3 , and  all non-identically zero cartesian
components. These are also the non-zero components of the tensors u,
A, s, and Q in the first of the six domain states.

The cartesian components of the tensors in the remaining
domains are derived from the dependence of the cartesian components
on the tensor covariants given in the first domain state.
How the tensor covariants change from one domain state to another is
given explicitly in Table 3. For example, each tensor covariant which
transforms as x+

3 changes from the first to the second domain state
from x+

3 to -x+
3/2 + o 3'y+

3/2 , as y+
3 from y+

3 to o 3'x+
3/2 + y+

3/2, and as
x+

1 and x+
2 remain the same. Consequently, u1(S1) = u+

1 /3 - u+
3x /3 +

u+
3y /o 3' in the first domain state becomes in the second domain state  

u1(S2) = u+
1 /3 + 2u+

3x /3 . The cartesian components of the non-
identically zero cartesian components of the tensors u and A are given
in Table 5. From these tables one can also find relationships among the
cartesian components of the domains. For example, for the A tensor
one has: A14(S2) = -A14(S5) = A36(S1) = -A36(S4) and A25(S3) = -A25(S6).
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Table 2.  m 3&m to mxmymz subduction 

 mxmymz x+
1 x+

2 x+
3 x+

4

m 3&m x+
1, x

+
2, x

+
3, y

+
3 z+

1, z
+

2 x+
1, x

+
2 y+

1, y
+

2

 mxmymz x - 
1 x - 

2 x - 
3 x - 

4

m 3&m x - 
1, x

 - 
2, x

 - 
3, y

 - 
3 z - 

1, z
 - 

2 x - 
1, x

 - 
2 y - 

1, y
 - 

2

Table 3.

S1 S2 = 3xyzS1 S3 = 32
xyz S1

x+
1 x+

1 x+
1

x+
2 x+

2 x+
2

*(x+
3, y

+
3) (-ax+

3 - by+
3, bx+

3 - ay+
3) (-ax+

3+by+
3, -bx+

3 - ay+
3)

S4 = 2x&y S1 S5 = 2y&z S1 S6 = 2x&z S1

x+
1 x+

1 x+
1
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S4 = 2x&y S1 S5 = 2y&z S1 S6 = 2x&z S1

- x+
2 - x+

2 - x+
2

(x+
3, -y

+
3) (-ax+

3 +by+
3, bx+

3 +ay+
3) (-ax+

3 - by+
3, -bx+

3 + ay+
3)

 
Table 4. Conversion Equations

u1 =  u+
1 /3 - u+

3x /3 + u+
3y /o 3'  s55 =  s+

1,3/3 - s+
3x,3/3 -  s+

3y,3/o 3'
u2 =  u+

1 /3 - u+
3x /3 -  u+

3y /o 3'          s66 =  s+
1,3/3 + 2s+

3x,3/3               
u3 =  u+

1 /3 + 2u+
3x /3      

                   
 Q11 =   Q+

1,1/3 -  Q+
3x,1/3 + Q+

3y,1/o 3' 

A14 = A+
2 /3 + A+

3x /o 3' + A+
3y /3   Q22 =   Q+

1,1/3 -  Q+
3x,1/3 -  

Q+
3y,1/o 3'

A25 = A+
2 /3 -  A+

3x /o 3' + A+
3y /3    Q33 =   Q+

1,1/3 + 2 Q+
3x,1/3                 

A36 = A+
2 /3 - 2A+

3y /3                   Q44 =   Q+
1,2/3 -  Q+

3x,2/3 + 

Q+
3y,2/o 3'

 Q55 =   Q+
1,2/3 -  Q+

3x,2/3 -  

Q+
3y,2/o 3' 

s11 =  s+
1,1/3 - s+

3x,1/3 + s+
3y,1/o 3'  Q66 =   Q+

1,2/3 + 2 Q+
3x,2/3                

s22 =  s+
1,1/3 - s+

3x,1/3 -  s+
3y,1/o 3' Qs

23 =   Q+
1,3/3 -  Q+

3x,3/3 + 

Q+
3y,3/o 3' 

s33 =  s+
1,1/3 + 2s+

3x,1/3                 Qs
13 =   Q+

1,3/3 -  Q+
3x,3/3 -Q+

3y,3/o 3'
s44 =  s+

1,3/3 - s+
3x,3/3 + s+

3y,3/o 3' Qs
12 =   Q+

1,3/3 + 2 Q+
3x,3/3 

s55 =  s+
1,3/3 - s+

3x,3/3 -  s+
3y,3/o 3'           Qa

23 = Q+
2 /3 + Q+

3x,4 /o 3' + Q+
3y,4

/3 
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s66 =  s+
1,3/3 + 2s+

3x,3/3                      Qa
31 = Q+

2 /3 -  Q+
3x,4 /o 3' + Q+

3y,4 /3

s44 =  s+
1,3/3 - s+

3x,3/3 + s+
3y,3/o 3'       Qa

12 = Q+
2 /3 - 2Q+

3y,4 /3     

Table 5.

u1  u2

S1 u+
1 /3 - u+

3x /3 + u+
3y /o 3'  u+

1 /3 - u+
3x /3 -  u+

3y /o 3'
S2 u+

1 /3 + 2u+
3x /3 u+

1 /3 - u+
3x /3 + u+

3y /o 3'
S3 u+

1 /3 - u+
3x /3 -  u+

3y /o 3' u+
1 /3 + 2u+

3x /3

S4 u+
1 /3 - u+

3x /3 -  u+
3y /o 3' u+

1 /3 - u+
3x /3 + u+

3y /o 3'
S5 u+

1 /3 + 2u+
3x /3 u+

1 /3 - u+
3x /3 -  u+

3y /o 3'
S6 u+

1 /3 - u+
3x /3 + u+

3y /o 3' u+
1 /3 + 2u+

3x /3  

u3 A14

S1 u+
1 /3 + 2u+

3x /3 A+
2 /3 + A+

3x /o 3' + A+
3y /3

S2 u+
1 /3 - u+

3x /3 -  u+
3y /o 3' A+

2 /3  - 2A+
3y /3

S3 u+
1 /3 - u+

3x /3 -  u+
3y /o 3' A+

2 /3 -  A+
3x /o 3' + A+

3y /3

S4 u+
1 /3 + 2u+

3x /3 -A+
2 /3 + A+

3x /o 3' - A+
3y /3

S5 u+
1 /3 - u+

3x /3 + u+
3y /o 3' -A+

2 /3  + 2A+
3y /3

S6 u+
1 /3 - u+

3x /3 + u+
3y /o 3' -A+

2 /3 -  A+
3x /o 3' - A+

3y /3  

A25 A36

S1 A+
2 /3 -  A+

3x /o 3' + A+
3y /3 A+

2 /3 - 2A+
3y /3

S2 A+
2 /3 + A+

3x /o 3' + A+
3y /3 A+

2 /3 - A+
3x /o 3' + A+

3y /3

S3 A+
2 /3  + 2A+

3y /3 A+
2 /3 + A+

3x /o 3' + A+
3y /3
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A25 A36

S4 -A+
2 /3 -  A+

3x /o 3' - A+
3y /3 -A+

2 /3 + 2A+
3y /3

S5  -A+
2 /3 + A+

3x /o 3' - A+
3y /3 -A+

2 /3 + A+
3x /o 3' - A+

3y /3

S6 -A+
2 /3  - 2A+

3y /3 -A+
2 /3 - A+

3x /o 3' - A+
3y /3  


