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still be increasing at 97.5% TD. This suggests that 
discontinuous grain growth may be taking place. 
However, the large uncertainties in the scattering 
volume fraction, g,, and the effective radii, Ree~(0) and 
Re~(OO), preclude drawing firm conclusions. 

Although the final-stage samples were originally 
in tended for single-scattering SANS measurements ,  
it was found  that  even the 97.5% TD sample was 
within the limit of  appl icabi l i ty  of  the MSANS tech- 
nique. There was significant wavelength-dependent  
beam broaden ing  and even the smallest ~, value (~, = 
40) is well within the MSANS formalism. However,  
the fact that  q~ is so small means  that  the change in 
rc as a funct ion  of  h is small (see Fig. 4). This nearly 
fiat slope makes the ref inement procedure  difficult, 
resulting in large uncertaint ies  in the fitted Re~(0) 
and tp values. To improve the de te rmina t ion  of  Re~(0) 
during final-stage sintering, measurements  of  the 
higher-densi ty  samples are p lanned  with a high-resol- 
ut ion small-angle X-ray scattering ins t rument  (Long, 
Jemian,  Weer tman,  Black, Burdette & Spal, 1991). 
This ins t rument  can measure  the single-scattering 
intensities from pores 4-0 nm to 1.0 ~m in size and 
thus bridge the gap between those sizes which can be 
easily measured by convent iona l  SANS and MSANS 
techniques. 

This work was suppor ted  in part  by the US Army 
Research Office under  contract  no. MIPR ARO 102- 
90 and in part  by the Depar tment  of  Energy under  
grant no. DE-FG05-84ER45063.  
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Abstract 

The form of 36 rank 0, 1, 2 and 3 magnetic and non-magnetic 
physical-property tensors invariant under each of the 236 
subgroups of 6 ( Z ) / M ( Z ) M ( X ) M ( I ) I '  (Drhl ')  and each 
of the 420 subgroups of M ( Z ) 3 ( X Y Z ) M ( X Y )  1' (Oh 1') is 
tabulated. 

* Mailing address: 1701 Bern Road, Apartment B2, Wyomissing, 
PA 19610, USA. 

1. Introduction 

A vast amount of literature exists on the derivation and 
tabulation of the form of physical-property tensors invariant 
under the non-magnetic crystallographic point groups 
(Jahn, 1949; Nye, 1957; Birss, 1964; Wooster, 1973; Kopsky, 
1979a; Fumi & Ripamonti, 1980; Sands, 1982; and 
references contained in these sources). A wide variety of 
tensors and their physical interpretation is given by Sirotin 
& Shaskolskaya (1975). Recently, a computer-based 
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tabulation of the form of 20 rank 0, 1 and 2 physical- 
property tensors invariant under each of the 97 subgroups 
of M(Z)3(XYZ)M(XY)  (Oh) and the 53 subgroups of 
6 ( Z ) / M ( Z ) M ( X ) M ( I )  ( D 6 h )  has been given by Litvin & 
Litvin (1990). 

The form of physical-property tensors invariant under 
magnetic crystallographic point groups has also been 
considered (Sirotin, 1962; Birss, 1964; Tenenbaum, 1966; 
Kopsky, 1976, 1979b; and references contained in these 
sources). The usual tabulations of the form of physical- 
property tensors give the form invariant under a single 
magnetic point group from each type of magnetic point 
group. For example, the form of a tensor is given invariant 
under the magnetic point group 2(Z)/M(Z)'  of the 
magnetic-point-group type 2/M'. It is left to the reader to 
calculate the form of the tensor invariant under other 
magnetic point groups of the type 2/M', i.e. 2(X)/M(X)' ,  
2( Y)/M( Y)', 2(XY)/M(XY) ' ,  2(XY)/M(,~Y)' ,  
2( YZ)/M( YZ)', 2( ~'Z)/M( YZ)', 2(XZ)/M(XZ)' ,  
2(,~Z)/M(,~Z)', 2(1)/M(1) ' ,  2(2) /M(2) '  and 2(3)/M(3) ' .  
To bypass having to do such calculations, we consider here 
all subgroups of all magnetic point groups (Ascher & 
Janner, 1965). Consequently, we have tabulated the 
form of 36 rank 0, 1, 2 and 3 physical-property tensors 
invariant under each of the 326 subgroups of 
6 ( Z ) / M ( Z ) M ( X ) M ( 1 ) I '  ( D 6 h l ' )  and each of the 420 
subgroups of M(Z)3(XYZ)M(XY)I '  ( O h l ' ) . *  The 
physical-property tensors are discussed in § 2 and an 
example of this tabulation is given in § 3. 

2. Physical-property tensors 

The four types of rank 0 physical-property tensors will be 
denoted by 1, e, a and ae and are defined, in Table 1, by 
their transformation properties under the action of spatial 
inversion T and time inversion 1'. The rank 0 tensor given 
in the ith row of the left-hand-side column transformed by 
the element in the j th  column of the top row is given at 
the intersection of the ith row and j th  column. The nomen- 
clature for these four rank 0 tensors given in the right-hand- 
side column is that introduced by Birss (1964): scalar and 
pseudoscalar refer to tensors which, respectively, are 
invariant or change sign under spatial inversion. The 
prefixes i and c refer to tensors which, respectively, are 
invariant or change sign under time inversion. 

In Table 2 we list the 36 rank 0, 1, 2 and 3 physical- 
property tensors considered in this paper. These tensors 
are given in terms of a rank 0 tensor and products of the 
polar vector tensor V The symbols [ ] and { }, as in [ V2], 
[V 3] and {V2}, denote the symmetrization and anti- 
symmetrization, respectively, of the tensor contained within 
the symbol. The Birss (1964) nomenclature of the type of 
each tensor is given in the top row of each column oftensors. 

* A computer program on disk for IBM compatible computers 
entitled Magnetic and Non-Magnetic Tensors for Subgroups of 
M 3 M I '  ( O h l ' )  and 6/MMMI' ( D 6 h l ' )  is avialable as SUP53770 
(2 diskettes) through The Technical Editor, International Union 
of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. 
This program gives the form of 36 magnetic and non-magnetic 
rank 0, 1, 2 and 3 physical-property tensors invariant under each 
of the 236 subgroups of 6(Z)/M(Z)M(X)M(1)I' (D6hI') and 
each of the 420 subgroups of M(Z)3(XYZ)M(XY)I' (Ohl'). 

Tab le  1. Transformation properties of  rank 0 physical- 
property tensors under spatial inversion 1 and time 

inversion 1' 

Transformation 1 1 1' i '  Name 
Rank 0 1 1 I 1 1 i scalar  

physical-  e e - e e - e i p seudosca la r  
p roper ty  a a a - a  - a  c scalar  
tensor  ae ae - a e  - a e  ae c pseudosca la r  

Table  2. The 36 physical-property tensors considered 
in this paper 

[ ] denotes symmetrization and { } anti-symmetrization. The Birss 
(1964) nomenclature of the type of each tensor is given at the top 
of each column of tensors. 

Name i polar i axial c polar c axial 
Rank 0 1 e a ae 
Rank 1 V e V a V ae V 
Rank 2 V 2 e V  2 a V  2 a e V  2 

[ V 2] e[ V 2 ] a[  V 2] ae[ V 2 ] 
{ V 2} e{ V 2} a{ V 2} ae{ V 2} 

Rank 3 V 3 e V  3 a V  3 a e V  3 
V[ V 2 ] eV[  V 2] a V[ V 2 ] aeV[  V 2 ] 
V{ V 2 } eV{  V 2} aV{  V 2 } aeV{  V 2 } 
[ V 3] e[ V 3] a[ V 3] ae[ V ~] 

Table  3. The form of  the magnetoelectric effect tensor, 
a physical-property tensor of  the type aeV 2, invariant 
under each of  the magnetic point groups of  the type 
3' which are subgroups of  the magnetic point 
groups M ( Z ) 3 ( X Y Z ) M ( X Y ) I '  (Oh 1') and 

6 ( Z ) / M ( Z ) M ( X ) M ( 1 ) I '  (D6h 1') 

[_~cCil [AB!] 
3 ( Z ) '  A 3 ( X Y Z ) '  C A 

0 B C 

3(XYZ)' A 3(X?Z)' A 

-C C 

~(xY2)' 
[a 

- C  A 

B C 

The form of the physical-property tensors is given in a 
Cartesian coordinate system with axes denoted by x, y and 
z which follows the convention of the Standards on 
Piezoelectric Crystals (1949) (see also Nye, 1957, p. 282). 
The advantage of using a Cartesian coordinate system in 
giving the form of the physical-property tensors is in that 
one then does not have to distinguish between covariant 
and contravariant tensor indices (Sands, 1982). This coor- 
dinate system coincides with the cubic Cartesian coordinate 
system X, Y, Z used to denote the subgroups of 
M ( Z ) 3 ( X Y Z ) M ( X Y ) I '  ( O h l ' ) .  For the hexagonal coor- 
dinate system X, Y, Z used to denote the subgroups of 
6(Z) /M(Z)M(X)M(1)I '  (D6hl'),  the physical-property 
tensor Cartesian coordinate system is oriented such that 
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the x axis is parallel to the hexagonal X axis and the z 
axis is parallel to the hexagonal Z axis. 

3. An example: the magnetoelectric effect 

The magnetoelectric effect is represented by the rank 2 
c-axial physical-property tensor aeV 2 (Birss, 1964). In the 
tabulation given by Birss (1964_) only the case corresponding 
to the magnetic point group 3(Z) '  of the magnetic-point- 
group type 3' is given. In Table 3 we give the form of the 
magnetoelectric-effect tensor for all magnetic point groups 
which are subgroups of M ( Z ) 3 ( X Y Z ) M ( X Y ) I '  (Ohl ' )  
and 6 ( Z ) / M ( Z ) M ( X ) M ( 1 ) I '  (Dr_.hl') and which belong 
to the magnetic-point-group type 3'. The complete list of 
forms of the magnetoelectric-effect tensor invariant under 
all magnetic point groups is contained within the deposited 
tabulations.* 

* See deposition footnote. 
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Abstract 

The asymmetric part of the translation function is closely 
related to a unit cell and the symmetry of the multiple 
implication function. The actual asymmetric part depends 
on the symmetry of the fragment. 

Theory 

The translation function is used to locate a correctly orien- 
ted molecular fragment in the unit cell with respect to the 
symmetry elements. The full symmetry translation function 
can be given, for example, by (Pavel~ik, 1988) 

F F S S 
T(r) = min min min min P { [ R , ( r + r i ) + t , ]  

i= l  j= l  m=l  n=l  

- [ R m ( r + r j )  +tin]}, (1) 

where F is the number of atoms in the fragment, r~ are 
vectors to the atoms of the fragment, r is a search vector, 
R,  are rotational and t ,  translational parts of the symmetry 
operator, respectively. S is the number of space-group 
operators. A search volume is given by an asymmetric part 
of the translation function. 

In the papers of Egert & Sheldrick (1985) and Rius & 
Miravitlles (1987) it is stated that the asymmetric unit of 
the translation function is defined uniquely by the Cheshire 
groups (Hirshfeld, 1968). It is not clear whether this means 
an asymmetric unit or a unit cell of the Cheshire group. 
On the other hand, Wilson & Tollin (1986) state in the 
P A T M E T  program instructions that the unique region is 
0-½ on each relevant axis. Both statements are only partially 
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correct. The Cheshire groups have limits in the application 
to the pure translation problem because of special treatment 
of chirality. 

The asymmetric part of the translation function depends 
in general on the space group of the crystal and on the 
point group of the fragment. Owing to the symmetry of the 
Patterson function P ( r ) =  P(Rnr), (1) can be simplified to* 

F F S 
T ( r ) = m i n m i n m i n P [ ( R s - l ) r + t s + R s r i - r j ] .  (2) 

i=1 j= l  s= l  

For the extreme case of a single (heavy) atom, the transla- 
tion function is reduced to 

S 
T(r) = min P[(Rs - I ) r + L  + (R~-  I)r~]. (3) 

s=l  

Equation (3) is equivalent to the multiple implication (sym- 
metry minimum) function, MIF (Ellison & Levy, 1965; 
Simpson, Dobrott & Lipscomb, 1965), with the origin 
shifted by an arbitrary vector r~. The symmetry of the 
multiple implication function has recently been described 
by Zimmermann (1988) and Pavel~.ik (1990). The MIF 
groups are closely related to the Cheshire groups. In the 
case of a single atom, the asymmetric part of the translation 
function is given by the asymmetric part of the MIF group. 

* There is an error in equation (9) of Paveli~ik (1988). It should 
read 

n n S Z I Z !  1 I/2 
D(r) = rain min min P(r-Rsr- t j+r~,-Rjr~ ' )  

L k - i  l~k S~2 m~sZkZt 
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