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axes should give a precession photograph with two 
mirror planes normal to each other, but all other 
twofold axes of the quasicrystal should give photo- 
graphs with no plane at all. 

Sixth, the stereographic projection of the symmetry 
elements observed in this quasicrystal by Mai, Tao, 
Zeng & Zhang (1988) clearly indicates the consistency 
of the threefold and twofold axes with the threefold 
and fourfold axes of a cube respectively. 

So a model of a quasicrystal structure including 
the hypothesis of the special sort of quasicrystal con- 
taining the translationally symmetrical subgroup of 
atoms was supported by experimental facts. 

Attention has been concentrated in this paper on 
an explanation of quasicrystal structures taking into 
consideration the principles of CCMAI. But as a 
result one can make a conclusion about the efficiency 
of the CCMAI as a common theoretical background 
for both crystals and quasicrystals. 
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Abstract 

Basic group-theoretical properties of the icosahedral 
point groups are derived. Here are given the permuta- 
tions of the vertices of an icosahedron under the 
action of the elements of the icosahedral point groups, 
the icosahedral point groups' multiplication tables, 
subgroups, sets of conjugate subgroups, centralizers 
and normalizers of arbitrary subsets and coset and 
double coset decompositions. 

I. Introduction 

Basic group-theoretical properties of the 32 crystallo- 
graphic point groups have been tabulated by Janovec, 
Dvorakova, Wike & Litvin (1989). Here, we extend 
that work to the icosahedral point groups. Icosahedral 
point groups have been of interest in connection with 
the vibrational (Boyle & Parker, 1980) and electronic 
properties (Boyle, 1972) of icosahedral molecules. 

Much work has been done on the coupling coefficients 
of the icosahedral groups, see for example Golding 
(1973), Boyle & Ozgo (1973), Pooler (1980) and 
Fowler & Ceulemans (1985). The representations of 
the icosahedral group have been studied by Back- 
house & Gard (1974) and polynomial invariants by 
Cummins & Patera (1988). Additional interest in the 
icosahedral groups stems from the icosahedral sym- 
metry of biological macromolecules (Litvin, 1975) 
and the discovery of quasicrystals (Shechtman, Blech, 
Gratias & Cahn, 1984; see also Nelson, 1986). 

In § 2 we define the icosahedral groups in terms of 
the symmetry of an icosahedron inscribed in a cube. 
In § 3 we give the permutations of the vertices of the 
icosahedron under the action of the elements of the 
icosahedral point groups, the icosahedral point 
groups' multiplication tables, subgroups, sets of con- 
jugate subgroups, centralizers and normalizers of 
arbitrary subsets, and coset and double coset 
decompositions. 
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Table 1. The Cartesian coordinates of the vertices of 
the icosahedron shown in Fig. 1 

The ratio v/u = r -  1, where r is the golden ratio (1/2) [sqr(5) + 1]. 

Vertex no. Coordinates 
1 v 0 u 
2 -v 0 u 
3 0 u v 
4 u v 0 
5 u -v 0 
6 0 -u I) 

7 V 0 - -U 

8 0 U --1,~ 

9 0 1) --/2 

10 0 -u --U 

11 -u 0 
12 - v  0 - u  

2. T h e  i c o s a h e d r a l  po int  g r o u p s  

One can inscribe an icosahedron in a cube whose 
vertices are given in a Cartesian coordinate system 
by (+u, +u, +u) .  The vertices of the inscribed icosa- 
hedron are given by (Longuet-Higgins & Roberts, 
1955) 

(+u,  +v, 0); (0, +u, +v) ;  (+v, 0, +u ) ;  (1) 

where v / u = ( 1 / 2 ) [ s q r ( 5 ) - l ] = r - 1 ,  and r = t h e  
golden ratio = (1 /2 ) [ sq r (5 )+  1]. We index the twelve 
vertices of  the icosahedron in Table 1 and show a 
diagram of  the icosahedron inscribed in a cube in 
Fig. 1. This indexing scheme follows that of  Muetter- 
ties & Wright (1967) and Boyle & Parker (1980) where 
in the latter the values of  the coordinates are given 
by taking u = r/2 and v = 1/2. 

For the elements of  the icosahedral  groups we use 
the s tandard Internat ional  [Schoenflies] notat ion 
with addi t ional  notat ions to represent uniquely  the 
group elements.  These addi t ional  notations consist 
of  indices of  the vertices of  the icosahedron in Fig. 
1. A rotation of  180 ° about  an axis passing through 
the center of  the icosahedron and the middle  of  the 

7 

Y 

Fig. 1. An icosahedron inscribed in a cube. The numbering scheme 
of the vertices is that given by Boyle & Parker (1980). 

Table 2. The permutations of the vertices of  the 
icosahedron in Fig. 1 induced by a set of generators of  

- - n  

the icosahedral group 2 / M 3 5  

Generator Permutation 
2(12) (1,2) (3,6) (4,11) (5,7)(8, 10) (9,12) 
3(143) (1,4,3) (2,5,8) (6,9,7) (10,12,11) 
5 (1-12) (1) (12) (2,6,5,4,3) (7,11,10,9,8) 
i (1,12) (2,9) (3,10) (4,11)(5,7) (6,8) 

edge of the icosahedron which connects the ith and 
j t h  vertices is denoted by 2(i j )  [C2(ij)]. i and j are 
the indices of  two vertices of  the icosahedron which 
are permuted  under  the action of  this rotation. 

A rotation of  120 ° about  an axis passing through 
the center of  the icosahedron and the center of  the 
t r iangular  face whose vertices are indexed by i, j and 
k is denoted by 3( i jk )  [C3(ijk)]. Looking at the 
center of  the icosahedron from the center of  the 
t r iangular  face, the rotation 3(i jk)  [C3(ijk)] is a 
counter-clockwise rotation which induces the permu-  
tation (i, j, k) of  the three vertices of  the t r iangular  
face. 

A rotation of  72 ° about  an axis passing through the 
center of  the icosahedron and the two vertices indexed 
by i and j is denoted by 5 ( i - j )  [Cs(i - j )] .  Looking 
at the center of  the icosahedron from the ith vertex, 
the rotation 5 ( i - j )  [ C s ( i - j ) ]  is a counter-clockwise 
rotation, i and  j are the indices of  the two vertices 
of  the icosahedron which are invariant  under  the 
action of  this rotation. 

The icosahedral  group 235 [ I ]  contains sixty ele- 
ments, all proper  rotations which leave the icosa- 
hedron invariant .  A set of  generators of  this group is 
the elements 2(1 2) [C2(1 2)], 3(1 4 3) [C3(1 4 3)] and  
5(1-12) [C5(1-12)].  

The icosahedral  group 2 / M 3 5  [Ih] contains 120 
elements,  all proper  and improper  rotations which 
leave the icosahedron invariant.  This group is the 
direct product  of  the icosahedral  group 235 [ I ]  and 
the group consisting of  the identity and spatial  
inversion. 

3.  G r o u p - t h e o r e t i c a l  proper t i e s  

The fol lowing group-theoretical  properties of  the 
icosahedral  groups have been calculated.* 

* A computer program on disk for IBM compatible computers 
entitled The lcosahedral Point Groups is available as SUP53561 
(1 diskette) through The Technical Editor, International Union of 
Crystallography, 5 Abbey Square, Chester CH1 2HU, England. 
This program gives all the group-theoretical information on the 
icosahedral groups listed in § 3 of this paper. This includes the 
permutation of the vertices of an icosahedron under the action of 
the group elements, the icosahedral point groups' multiplication 
tables, subgroups, sets of conjugate subgroups, centralizers and 
normalizers of arbitrary subsets and coset and double coset 
decompositions. 
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Table 3. Conjugate subgroups of the subgroup 2(4 5) 2(3 8) 2(1 2) in the icosahedral group 235 and the 
corresponding conjugating elements 

Subgroup: 
Conjugating elements: 

Conjugate subgroup: 
Conjugating elements: 

Conjugate subgroup: 
Conjugating elements: 

Conjugate subgroup: 
Conjugating elements: 

Conjugate subgroup: 
Conjugating elements: 

2(45) 2(3 8) 2(1 2) 
1, 2(4 5), 2(3 8), 2(I 2), 3(1 4 3), 32(1 4 3), 3(2 3 7), 32(2 3 7), 3(1 6 5), 32(1 6 5), 3(4 9 8), 32(4 9 8) 

2(2 7) 2(3 4) 2(1 6) 
5(1-12), 53(4-11), 2(5 10), 32(1 26), 2(1 3), 54(3-10), 52(2-9), 3(4 5 9), 2(1 5), 5'(5-7), 3(3 48), 52(6-8) 

2(1 5) 2(2 3) 2(4 8) 
52(1-12), 32(3 4 8), 2(2 7), 54(6-8), 32(1 3 2), 5(5-7), 2(2 6), 52(4-11), 32(1 5 4), 5(2-9), 52(3-10), 2(5 6) 

2(5 10) 2(2 6) 2(1 4) 
53(1-12), 32(3 8 7), 2(4 9), 5(3-10), 54(2-9), 3(1 5 4), 53(6-8), 2(3 4), 54(4-1 l), 3(1 2 6), 2(2 3), 53(5-7) 

2(1 3) 2(5 6) 2(4 9) 
54(1-12), 52(5-7), 2(4 8), 3(1 3 2), 5(4-11), 2(1 4), 3(3 8 7), 53(3-10), 5(6-8), 2(1 6), 53(2-9), 32(4 5 9) 

3.1. Symbols 

The symbols for the icosahedral point groups and 
their elements are given in both International and 
Schoenflies notation. 

3.2. Permutation of the vertices of an icosahedron 

The transformation of position vectors under the 
action of group elements is given symbolically by 
R ' =  gR, where R is a position vector, g is an element 
of the group G, and R' is the position vector into 
which R is transformed under the action of the group 
element g. In terms of the components of the position 
vectors 

RI= D(g)oRj (2) 

where the matrix D(g) is the matrix of the vector 
representation of the group G corresponding to the 
element g. 

A set of generators for the icosahedral group 
2/M35 [Ih] and the corresponding matrices D(g) are 

D[2(12)]  = -1  

0 

D[3(1 4 3)1 = 0 

1 

o-5 - o - 5 ,  

D[5(1-12)]= 0.5~- 0.5/~- - 0 . 5 ]  
/ \ 0 . 5 / r  0"5 0.5z 

D [ i ] =  -1  . 

0 - 

(3) 

A set of generators for the icosahedral group 235 [I]  
and corresponding_matrices D(g) are those given in 
(3) excluding g = 1. 

The elements of the icosahedral groups induce 
permutations of the vertices of the icosahedron shown 
in Fig. 1. We give the matrices D(g) for all elements 
of the icosahedral groups and the corresponding per- 

mutations of the vertices of the icosahedron. The 
permutations of the twelve vertices of the icosahedron 
induced by the generators given in (3) are given in 
Table 2. 

3.3. Multiplication tables 

The multiplication tables of the icosahedral point 
groups are given. The product of any two elements 
can also be calculated. 

3.4. Subgroups 

The symbols and elements are given for each of 
the 58 subgroups of the icosahedral group 235 [ I ]  
and the 163 subgroups of the icosahedral group 
2/M35 [ Ih]. 

3.5. Conjugate subgroups 

For a given group G and subgroup S of G, a 
subgroup S' is a conjugate subgroup of S in G if 
there exists an element g of G such that gSg-'= S'. 
The element g is called a conjugating element of S'. 
For each icosahedral point group G and subgroup S 
of G, one can calculate the conjugate subgroups S' 
and the conjugating elements of each conjugate sub- 
group. An example of this is given in Table 3. 

3.6. Centralizers 

For a given group G and subset B of elements in 
G, the centralizer C of the subset B in G is the 
subgroup of all elements g of G which commute with 
all elements b of the subset B, i.e. if gbg -1 = b for all 
elements of B. For each icosahedral point group G 
one can calculate the centralizer C of an arbitrary 
subset B of G. For example, the centralizer of the 
subset_{2(4 8), M(2 3)} in the icosahedral point group 
2/M35 is the subgroup M(1 5)M(2 3)M(4 8). 

3.7. Normalizers 

For a given group G and subset B of elements in 
G, the normalizer N of the subset B in G is the 
subgroup of all elements g of G such that gBg-~ = B, 
where gBg-' denotes the subset of elements gbg -1 of 
G for all elements b of the subset B. For each icosa- 
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Table 4. The left coset and  double coset decomposition elements gi = 1, g 2 , . . . ,  g,,, are called double  coset 
o f  the subgroup 2(1 3) 2(5 6) 2(4 9) in the icosahedral representatives. Each double  coset of  G with respect 

group 235 to S is made  up of  a set of  left cosets of  G with 
respect to S. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
1 2(13) 2(56) 2(49) The double  cosets Sg iS  and S(g~) -1S  are either 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  identical  or disjoint. If  identical ,  then the double  coset 
2(45) 53(6-8) 3(1 3 2) 54(3-10) 
52(6-8) 2(27) 54(1-12) 3(1 43) 
32(1 3 2) 5(1-12) 2(48) 53(5-7) 
5(3-10) 32(1 43) 52(5-7) 2(26) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
2(3 8) 32(45 9) 54(2-9) 52(1-12) 
3(4 5 9) 2(1 6) 52(3-10) 54(4-11) 
5(2-9) 53(3-10) 2(1 5) 3(49 8) 
53(1-12) 5(4-11) 32(49 8) 2(5 10) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
2(1 2) 5(5-7) 53(4-11) 3(3 8 7) 
54(5-7) 2(3 4) 3(1 6 5) 53(2-9) 
52(4-11) 32(1 6 5) 2(2 3) 5(6-8) 
32(3 8 7) 52(2-9) 54(6-8) 2(1 4) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3(2 3 7) 32(3 4 8) 3(1 5 4) 32(1 2 6) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
32(2 3 7) 3(1 2 6) 3(3 4 8) 32(1 5 4) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

hedral  point  group one can calculate the normal izer  
N of an arbitrary subset B of G. For example,  the 
normal izer  of  the subset_{2(4 8), 2(2 6)} in the icosa- 
hedral  point  group 2 / M 3 5  is the subgroup 2(1 3 ) / M .  

3.8. Coset and double coset decompositions 

Sg~S is called an ambivalent  double  coset and,  if  
disjoint, the two double  cosets are called complemen- 
tary double  cosets (Janovec, 1972). 

For a given icosahedral  point  group G and sub- 
group S of  G, one can calculate the left coset 
decomposi t ion of  G with respect to S and the double  
coset decomposi t ion  of  G with respect to $. The 
listing of  the left coset decomposi t ion of  the point  
group G with respect to S is given within the listing 
of the double  coset decomposi t ion  of  the point  group 
G with respect to $. In listing the double  coset 
decomposi t ion  of  G with respect to S one obtains a 
list where in each row are the elements of  each left 
coset of  the left coset decomposi t ion of G with respect 
to $. The left cosets which make up a single double  
coset are grouped together. Between each set of  left 
cosets which make up a single double coset is a dashed 
line . . . . .  , except in the case of  the members  of  a pair  
of  complementa ry  double  cosets where a dotted line 
... . .  is used to separate them. An example  of  such 
a double  coset decomposi t ion  is given in Table 4. 

For a given group G and  subgroup S, one can write 
the left coset decomposi t ion  of G with respect to S: 

G = S + g 2 S + g 3 S +  . . .  +gnS. (4) 

giS denotes the subset of  elements of  G found by 
mul t ip lying each element  of  the subgroup S from the 
left by the e lement  gi. Each set of  elements giS of  G, 
for i =  1 , 2 , . . . ,  n, is called a left coset of  G with 
respect to S, and the elements gl = 1, g2, • . . ,  gn are 
called the coset representatives. 

For a given group G and subgroup S of  G, one 
can write the double  coset decomposi t ion of  G with 
respect to S: 

G = S + S g 2 S + S g 3 S +  . . .  +Sg,, ,S.  (5) 

SgiS denotes the subset of  distinct elements of  G 
found by mul t ip lying each element  of  the subset g~S 
from the left by every element  of the subgroup S. 
Each set of  elements Sg~S of  G, for i = 1, 2 , . . . ,  m, is 
called a double  coset of  G with respect to S, and the 
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