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Abstract 

The 440 ferroelectric space groups, viz the Heesch- 
Shubnikov (magnetic) space groups, which are sym- 
metry groups of ferroelectric electric-dipole arrange- 
ments in crystals, are derived and tabulated. By con- 
sidering automorphisms induced by the automorph- 
isms of the discrete space-time group, we show that 
although ferroelectric, ferromagnetic and ferrocur- 
rent point groups all number 31, the number of fer- 
roelectric space groups differs from 275, which is that 
of both ferromagnetic and ferrocurrent space groups. 

I. Introduction 

Which of the 1651 Heesch-Shubnikov (magnetic) 
space groups are ferroelectric space groups, that is, 
symmetry groups of ferroelectric electric-dipole 
arrangements in crystals? Neronova & Belov (1960) 
have tabulated a list of 275 Heesch-Shubnikov space 
groups, which they call ferroelectric space groups. 
These authors, however, do not take into account the 
fact that the action of elements of Heesch-Shubnikov 
groups on a polarization P cannot be arbitrarily 
defined within the usual electromagnetic theory based 
on Maxwell's equations. Their choice of action is 
incompatible with that theory and consequently their 
list of 275 Heesch-Shubnikov space groups is not 
that of the ferroelectric space groups. With a choice 
of action that is compatible with that theory, Crack- 
nell (1975) has stated that the number of ferroelectric 
space groups is 275, Schwarzenberger (1984) gives it 
as 265. No tabulation is given by either of these 
authors. 

In § II we shall review the action of the discrete 
space-time group on electromagnetic quantities. We 
then derive and tabulate the 440 ferroelectric space 
groups-the Heesch-Shubnikov space groups that are 
symmetry groups of ferroelectric electric-dipole 
arrangements in crystals. In § III we discuss why, 
although the same number, 31, is the number of 
ferroelectric, ferromagnetic and ferrocurrent point 
groups, the number of ferroelectric space groups is 
different from the number, 275, of both ferromagnetic 
and ferrocurrent space groups. 

II. Ferroelectric space groups 

Let 9 /=  1, 1, 1', 1' denote the discrete space-time 
group consisting of the identity 1, space inversion 1, 

0108-7673 / 86/010044-04501.50 

Table 1. Character table of  the discrete space-time 
group 9/ 

Basis functions of  the irreducible representations, on the right, are 
given in terms of  the charge density p and the components  of  
polarization P, magnetization M and current density J. 
1 T 1' ]~ 

1 1 1 1 p 
1 - 1  1 -1  Px~Py, Pz 
1 1 - 1 - 1 M .  M~, Mz 
1 -1 -l 1 Jx, J,,Jz 

Table 2. The thirty-one ferroelectric point groups 

1 1' 
2 21' 2' 
m ml' m' 
m m 2  mm21'  m'm'2  m'  m2'  
3 31' 
3m 3ml' 3m' 
4 41' 4' 
4 m m  4 m m  1' 4 m ' m  ' 4' m'  m 
6 61' 6' 
6 m m  6ram1' 6m'  m'  6' m'  m 

time inversion 1', and 1', the product of space inver- 
sion and time inversion. Further, let P, M, J and /9 
denote the four quantities polarization, magnetiz- 
ation, current density and charge density, respec- 
tively, that appear in Maxwell's equations. These 
quantities can be classified according to the symmetry 
operations that are the elements of 9/(Ascher, 1966). 
In Table 1 we give the character table of 0-// and 
classify the four quantities that appear in Maxwell's 
equations according to irreducible representations of 
the group 9/. This classification and the symmetry 
operations of 9 /on  these quantities follows from the 
assumption that the charge density is invariant under 
9/ and the covariance of Maxwell's equations under 
°2/ (Opechowski, 1985). 

It follows from Table 1 and the vector properties 
of P, M and J that the maximal symmetry group of 
a polarization vector P is ooml', of a magnetization 
vector M, ~ / m  m', and of a current density vector J, 
oo/m' m. To determine which Heesch-Shubnikov 
groups are ferroelectric space groups, one determines 
which Heesh-Shubnikov groups have a point group 
that is a subgroup of ~ m  1'. (In a similar manner one 
finds all ferromagnetic and ferrocurrent space groups 
by determining which Heesch-Shubnikov groups 
have a point group that is a subgroup of oo/m m' or 
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Table 3. The four hundred and forty ferroelectric space groups 

The table is subdivided into subtables, all groups in one subtable having the same point group listed at the top of the subtable. We list 
the groups in the ~otation of Opechowski & Guccione (1965) and, if it is different, on the right give the notation of Belov, Neronova 
& Smirnova (1957). 

1 mm21' 
P1 P2cmm2 Pcmm2 

1' P2a ram2 Pa mm2 
P2sl Psl Pcmm2 Camm2 
Pl1' PAmm2 Acmm2 

2 Prmm2 Fsmm2 
P2 P2cmm'2' Pcmc2t 
p21 P2c m' m'2 Pccc2 
C2 P2am'm'2 Pama2 

PAm'm'2 A~bm2 
21' P2amC21 P~mc21 

P2a2 P~2 P2bmc21 Pbmc21 
P262 Pb2 Pcmc2t C~mc21 
Pc2 Ca2 P2amC'2~ Pamn21 
P262' Pb21 PEbm, c,21 Paca2t 
P2a21 Pa21 P2acC2 Pacc2 
C2c2 Cc2 Pccc2 Cacc2 
Cp2 Pc2 PEbC' C2' Pbnc2 
Cp2' Pc21 P2bma2 Pbma2 
P21' PEcma2 Pcma 2 
P2tl' PAma2 A~ma2 
C21' P2bm' a2' P~ba2 

2' PEcm' a2 ' P~ca21 
P2' PEcma'2' Pcmn21 
P2~ P2~m' a'2 P~nc2 
C2' PAm' a'2 Acba2 

m PEbCa21 Pbca2t 
Pm P2bc' a'21 Pbna21 
Pc P2~nc2 P~nc2 
Cm P2~nc'2' P~nn2 
Cc PEbmn2t Pbmn21 

ml' P2bm'n2~ Pana2t 
P2~m P~m P2~ba2 P~ba2 
P2t, m Pb m PEcb' a2' Pcna21 
Pc m Ca m P2c b' a'2 Pcnn2 
P2~m' P~c PFnn2 F~dd2 
P2~c pa c C2cmm2 C~mm2 
Pubc Pbc Cpmm2 Pcmm2 
Pcc Ca c CImm2 Icmm2 
CEcm Cc m C2cm'm2' Ccmc21 
Cpm Pcm C2cm'm '2  Cccc2 
C2cm, Cc c Cpm' m2' Pcma2 
Cpm' P A c Cpm' m'2 Pcba2 
C~ Pcc Gm'm2' Icma2 
Pm l ' C1m' m'2 Icba2 
Pc1' Cpmc2~ Pcmc2~ 
Cm l' Cpm' c2~t Pcca2~ 
Ccl' Cpmc'2~ Pcmn2~ 

Cpm' c'2 t Pcna21 
m' Cpcc2 Pccc2 

Pm' Cec' c2' Pcnc2 
Pc' C~,c' c'2 Pcnn2 
Cm' A2~mm2 A~mm2 
Cc' Apmm2 PAmm2 

ram2 A~mm2 I~mm2 
Prom2 A2~mm'2' A~ma2 
Pmc2t Apm'm2' Pnmn21 
Pcc2 Apmm'2' PAmC2t 
Pma2 Apm'm'2 PAne2 
Pca2~ A~m'm'2 I~ma2 
Pnc2 A2~bm2 A~bm2 
Pmn2t Aebm2 PBma2 
Pba2 A~bm2 Ibma2 
Pna2~ A2ab'm'2 Aaba2 
Pnn2 Apb'm2' PBmc21 
Cram2 Apbm'2' P~ca2~ 
Cmc2t Apb'm'2 PAce2 
Ccc2 A~b'm'2 I~ba2 
Atom2 Aema2 PAma2 
Abm2 Apm' a2' PAna2t 
Area2 Apma'2' PAmn2~ 
Aba2 Apm' a'2 PAnn2 
From2 Aeba2 PAba2 
Fdd2 Aeb' a2' PAca2t 
Imm2 Apba'2' Pnna2~ 
Iba2 
Ima2 

Aeb' a'2 PBnc2 3 
Fcmm2 CAmm2 P3 
FAmm2 Acmm2 P31 
Fcmm'2 ' CAmC21 P32 
Fcm'm'2 CACC2 R3 
FAro'm2' Acbm2 31' 
FAmm'2' Acma2 P2~3 Pc3 
FAm'm'2 Acba2 P2c32 Pc32 
Ipmm2 Pxmm2 P2c31 P~31 
Ipmm'2' P1mn21 RR3 RI3 
Ipm'm'2 Pznn2 P31' 
Ieba2 Plcc2 P311' 
Ipba'2' P1ca2t P321' 
Ipb' a'2 P~ba2 R31' 
Ipma2 P~ma2 3m 
Ipm' a2' P1na21 P3m l 
Ipma'2' Pxmc21 P31m 
Ipm' a'2 P1nc2 P3cl 
Prom21' P31c 
Pmc211' R3 m 
Pcc21' R3c 
Pma21' 3m1' 
Pca2tl' P2~3m1 P~3ml 
Pnc21' P2~3m'l P~3cl 
Pmn211' PE~31m P~31m 
Pba21' P2~31m' P¢31c 
Pna211' RR3m Rx3m 
Pnn21' Ra3m' R~3c 
Cram21' P3mll'  
Cmc2~l' P31ml' 
Ccc21' P3cll '  
Atom21' P31cl' 
Abm21' R3ml' 
Ama21' R3cl' 
Aba21' 
Fmm21' 3m' 
Fdd21' P3m'l 
Imm21' P31 m' 
Iba21' P3c'l 
Ima21' P31c' 

m'm2' R3m' 
Pro'm2' R3 c' 
Pm'c2~ 4 
Pmc'2~ P4 
Pc'c2' P41 
Pm' a2' P42 
Pma '2' P43 
Pc'a2~ I4 
Pca'2 ~ I 41 
Pn'c2' 41' 
Pnc'2' P2c 4 P~4 
Pm' n2't P1.4 Pc4 
Pmn'2'l P~4 I~4 
Pb'a2' Pzc4' p~42 
Pn' a2~ pp4t pc41 
Pna'2~ put42 Pc41 
Pn'n2' Pp42 Pc42 
Cm'm2' P142 it41 
Cm'c2~ P2~4 ~ p~43 
Cmc'2~ ep43 Pc43 
Cc' c2' Ip4 PI4 
Am'm2' Iv 4, pi42 
Amm'2' ip41 pi41 
Ab'm2' Ip4~ P14a 
Abm'2' P41' 
Am'a2' P411' 
Area'2' P421' 
Ab' a2' P431, 
Aba'2' I41' 
Fro'm2' I411' 
Fd'd2' 4' 
Im' m2' P4' 
Ib' a2' P4't 
Ire'a2' P4[ 
Ima'2' P4~ 

14' 
I4~t 

4mm P4~n'm 
P4mm P4'2nm' 
P4bm P4' c' c 
P42cm P4' cc' 
P42nm P4'n' c 
P4cc P4'nc' 
P4nc P4~m' c 
P42mc P4~mc' 
P42bc P4~b' c 
I4mm P4~bc' 
14cm I4'm'm 
I4tmd I4'mm' 
I41 cd 14' c'm 

4mml' I4' cm' 
PE~4mm P~4mm 14'tm'd 
Pp4mm Pc4mm I4~md' 
P14mm Ic4mm I4[c'd 
P2c4,m, m Pc42cm I4~cd' 
P2~4'mm' P~42mc 6 
P2.4m'm' P~4cc P6 
Pp4'mm' Pc4bm P61 
Px4m'm' I~4cm P65 
P2c4bm Pc 4bm P62 
P2c4'b'm Pc42 nm P64 
P2c4'bm' Pc42bc P63 
P2~4b'm' P~4nc 61' 
Pp42cm Pc42mc 
Pp4~cm' Pc42bc P2c6 Pc6 
Pi42nm Ic41 md P2c6' Pc63 
P142n'm ' I~41cd P2c62 P~61 
Pp4cc Pc4cc P2c6~ P~64 
Pp4' cc' Pc4nc P2c64 Pc62 
Pp42mc Pc42cm P2c6t4 Pc65 

P61' Pp412mc ' Pc42nm 
Ip4mm P14mm P611' 
Ie4'm'm P142nm P651' 
Ip4'mm' P142mc P621' 
Ip4m'm' Pi4nc P641' 
Ip4cm P14bm P631' 
Ip4' c' m P142cm 6' 
Ip4' cm' P142bc P6' 
Ip4c'm' P14cc P6~ 
P4mml' P6'5 
P4bml' P6[ 
P42cm 1' P6'4 
P42nm1, P6~ 
P4ccl' 6ram 
P4ncl' P6mm 
P42mc1' P6cc 
P42bcl' P63cm 
I4mml' P63mc 
I4cm1' 6ram1' 
I41md1' P2c6mm P.6mm 
I41 cdl' P2c6,m, m P2~63cm 

4m'm' PE~6'mm' P~63mc 
P4m'm' P2~6m'm' Pc6CC 
P4b'm' P6mm 1' 
P42c'm' P6cc l ' 
P42n'm' P63cml' 
P4c' c' P63mc1' 
P4n'c' 6m'm' 
P42m' c' P6m' m' 
P42b' c' P6c'c' 
I4m'm' P63c'm' 
I4c' m' P63 m' c' 
I4tm'd' 6'm'm 
I4tc'd' P6'm'm 

4' m' m P6' mm' 
P4'm'm P6'c'c 
P4'mm' P6' cc' 
P4'b'm P6~c'm 
P4'bm' P6~cm' 
P4~c'm P6'3m' c 
P4" cm' P6~mc' 
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Table 4. Automorphisms of  the discrete space-time 
group °ll 

An element in the ith row of the left-hand column is mapped under 
the automorphism Aj in the jth column of the top row into the 
element of q/ at the intersection of the ith row and jth column. 

Ao At A2 A3 A4 A5 
1 1 1 1 1 1 1 
i i T i' 1' i '  1' 
1' 1' i '  1' i i i '  
i '  i '  1' 1 i' 1' i 

Table 5. The set of  all ferroelectric ( FE ),ferromagnetic 
(FM)  or ferrocurrent (FC) point groups given in the 
ith row of  the left-hand column is mapped under the 
automorphism Aj in the jth column of  the top row into 
a set of  FE, FM or FC point groups according to the 
entry at the intersection of  the ith row and jth column 

Ao Al A2 A3 A4 A5 
FE FE FC FE FM FM FC 
FM FM FM FC FE FC FE 
FC FC FE FM FC FE FM 

~ / m '  m.) The point groups of Heesch-Shubnikov 
groups that are subgroups of ~ m l ' - t h e  ferroelectric 
point groups-are listed in Table 2. 

In Table 3 we list the 440 ferroelectric space groups. 
These are all the Heesch-Shubnikov groups whose 
point group is one of the ferroelectric groups (listed 
in Table 2). Table 3 has been subdivided into sub- 
tables, all ferroelectric groups with the same ferroelec- 
tric point group appearing in one subtable. 

There are 275 ferromagnetic space groups 
(Neronova Belov, 1960; Opechowski & Guccione, 
1965) and 275 ferrocurrent space groups. The latter 
have been listed by Neronova & Belov (1960) but are 
called by them ferroelectric space groups. This 
nomenclature is incompatible with the usual elec- 
tromagnetic theory based on Maxwell's equations, 
and is misleading as it does not give the correct 
number of ferroelectric space groups. Of the 440 
ferroelectric space groups listed in Table 3, 68 are 
non-magnetic space groups F, 68 are of the form F I '  
and, using the notation of Opechowski & Guccione 
(1965), 129 are magnetic groups M r  and175 are mag- 
netic groups MR. We note that the sum of the first 
three types is 265, the number of ferroelectric space 
groups given by Schwarzenberger (1984). 

III. Numerology 

There are 31 ferroelectric point groups, 31 ferromag- 
netic point groups and 31 ferrocurrent point groups 
(Ascher, 1966; Cracknell, 1972; Kopsky, 1976; 
Ascher & Janner, undated). There are 275 ferromag- 
netic space groups, 275 ferrocurrent space groups and 
440 ferroelectric space groups. To understand why 
the number of ferroelectric, ferromagnetic and fer- 
rocurrent point groups is the same, and why the 
number of ferromagnetic and ferrocurrent space 
groups is the same, though different from that of 
ferroelectric space groups, requires considering the 
automorphisms of the discrete space-time group #/. 

The six automorphisms A~, i = 0, 1, 2, 3, 4, 5, of the 
discrete space-time group #/ are listed in Table 4 
(Kopsky, 1976). These automorphisms of #/ induce 
automorphisms of the group R+(3) x #/, where R+(3) 
is the group of all proper three-dimensional rotations: 
Let A~[u] denote the element of q/ into which the 

element u of 07/ is mapped under the automorphism 
Ai. The mapping Ai[R÷u] = R+Ai[u] then defines an 
automorphism of R+(3) × ~//. Under these automorph- 
isms of R+(3)× #/, the set of all ferroelectric point 
groups is mapped into sets of point groups, which, 
depending on the automorphism Ai, are sets of dis- 
tinct ferroelectric, ferromagnetic or ferrocurrent point 
groups. The same is true for the set of all ferromag- 
netic point groups and the set of all ferrocurrent point 
groups. In Table 5 we show how each set of all 
ferroelectric, ferromagnetic and ferrocurrent point 
groups is mapped under each of the automorphisms 
of R+(3)x °7/ induced by the automorphisms A~ of 
#/. It follows that the number of ferroelectric, fer- 
romagnetic and ferrocurrent point groups is the same. 
For example, the automorphism A2 maps the set of 
all ferromagnetic point groups into a set of distinct 
ferrocurrent point groups and simultaneously the set 
of all ferrocurrent point groups into a set of distinct 
ferromagnetic point groups. Consequently, the num- 
ber of ferromagnetic and ferrocurrent point groups 
is the same. 

However, only the identity automorphism A0 and 
the automorphism A2 of 0// induce automorphisms 
of the group ~+(3)x q/, where ~+(3) is the proper 
three-dimensional Euclidian group. From the 
automorphism induced by the automorphism A2 of 
0//, it follows that the number of ferromagnetic and 
ferrocurrent space groups is the same. As there are 
no other such induced automorphisms, we conclude 
that the number of ferroelectric space groups may be 
(and, as we have shown, is) different. 

I thank Professor W. Opechowski for suggesting 
this problem. I am also grateful for the hospitality he 
extended to me while I was visiting the University of 
British Columbia. The financial aid of the Faculty 
Scholarship Support Fund of The Pennsylvania State 
University is gratefully acknowledged. 
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Abstract 

The absolute values of the reflecting powers /9 are 
measured for the 200 and 2 ± ~',0,0 set of magnetic and 
nuclear reflections in the helimagnetic phase of a 
good-quality crystal of MnP as a function of its thick- 
ness. Severe and very different extinction effects are 
observed for the magnetic and nuclear reflections 
(Ymagnetic"0"4, Ynudear~O'02 for the largest thick- 
ness). This corresponds to the spectacular result that 
the magnetic reflecting powers p± are twice as big as 
the nuclear one pN, in spite of the fact that the 
scattering cross sections F± 2 are about ten times 
smaller than the nuclear FNI 2. The nuclear results 
appear consistent with dynamical theory while the 
magnetic ones are not. They can be explained by 
Zachariasen's type II secondary extinction model 
based on the chirality domain pattern. The same 
measurements were performed in the ferromagnetic 
phase, yielding Yrer~o = 0'03. A model using the rela- 
tive sizes of the ferromagnetic and chirality domains 
is presented. 

I. Introduction 

The basic publication on extinction for the neutron 
case, within the framework of the mosaic model, is 
now nearly forty years old (Bacon & Lowde, 1948). 
Since then most of the improvements introduced to 
correct the extinction of the intensities diffracted by 
a single-crystal sample originate from the theory 
based on the Darwin energy transfer equations 

worked out by Zachariasen (1967). This theory was 
modified to take into account the anisotropy of the 
extinction by Coppens & Hamilton (1970) and 
Thornley & Nelmes (1974). The formalism was recon- 
sidered and improve~t by Cooper & Rouse (1970) and 
Becker & Coppens (1974a, b) in order to apply it to 
spherical or ellipsoidal crystals, the theory being 
extended to non-spherical crystals with anisotropic 
extinction by Becker & Coppens (1975). 

The main limitation of Zachariasen's theory is in 
its kinematical approach to the scattering, as pointed 
out by Werner (1969, 1974): the coherence of the 
transmitted and diffracted beams is not taken into 
account, and so this method does not appear to be 
suitable for correction for severe primary extinction. 
Another approach, starting from the dynamical 
theory of diffraction, was worked out for distorted 
crystals by several authors (Klar & Rustichelli, 1973; 
Gronkowski & Malgrange, 1984; Kulda, 1984), but 
mainly by Kato (1976), who has partially reconciled 
the two approaches. He shows that for optical coher- 
ence lengths smaller than the extinction distance A 
the new treatment leads to the usual coupling 
equations. Kato (1980) has also developed a con- 
sistent statistical theory of extinction covering the 
whole range of crystal quality from perfect (dynami- 
cal theory) to ideally imperfect (kinematical approxi- 
mation). The results of this last theory have recently 
been compared to those of previous ones (Becker & 
Dunstetter, 1984) and experimentally tested using 
polarized neutrons (Guigay, Schlenker, Baruchel & 
Schweizer, unpublished). 
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