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Groups that are a generalization of magnetic groups, and called 'spin groups', are defined. Among the 
spin groups those called 'spin translation groups' are tabulated and described in some detail. Thepossible 
magnetic reflexions of unpolarized neutrons elastically scattered from a single crystal whose spin ar- 
rangement is invariant under a spin translation group are also tabulated. It is shown how by using these 
tables and considering the indices of magnetic reflexions one can obtain information on the mutual 
orientation of non-collinear spins without making any assumptions on the rotational symmetry of the 
spin arrangement. As an example of this, the neutron diffraction data of the 'umbrella' spin arrangement 
of CrSe is reanalysed. 

I. Introduction 

Two group-theoretical methods have been applied in 
determining the spin arrangement of a magnetic crystal 
from neutron diffraction data. One is the method of 
Donnay, Corliss, Donnay, Elliott & Hastings (1958) 
based on the theory of magnetic groups, and the second 
the method of Bcrtaut (1968) based on the theory of the 
representations of space groups. Opechowski & Drey- 
fus (1971) have shown in which sense the two group- 
theoretical methods are equivalent. 

In the method based on magnetic groups, spin ar- 
rangements are uniquely characterized by a label which 
contains in the simplest case the magnetic symmetry 
group of the spin arrangement and the orientation and 
magnitude of a single spin. For spin arrangements 
where the magnetic symmetry group is a two-dimension- 
al magnetic space group one needs to specify in such 
a label an infinite number of spins. In the case of a 
helical spin arrangement whose magnetic symmetry 
group is two-dimensional it is sufficient to specify 
several or even only one spin together with a group of 
rotations (Opechowski & Dreyfus, 1971). Such addi- 
tional symmetries are closely related to the generalized 
magnetic groups considered by Nash (1963) and Kitz 
(1965) and called "spin-space' groups by Brinkman & 
Elliott (1965). We will call such groups simply 'spin' 
groups. One can from the outset characterize spin ar- 
rangements using these spin groups instead of magnetic 
groups. 

In this paper we give a precise definition of spin 
groups and consider in detail a subclass of these groups 
named spin translation groups. In § 2 we review the 
transformation properties of a spin arrangement upon 
the application of space-group and magnetic-group 
elements and discuss the concept of spin-group ele- 
ments. Spin translation are defined in § 3 and the 
possible magnetic reflexions of unpolarized neutrons 
elastically scattered from a single crystal whose spin 
arrangement is invariant under a spin translation group 
are derived in § 4. In § 5 we apply the theory of spin 

translation groups to the analysis of neutron diffrac- 
tion data and show how information on the mutual 
orientation of non-collinear spins can be obtained 
without making any assumptions on the rotational 
symmetry of the spin arrangement. We then consider 
as an example the analysis of neutron diffraction data 
from powdered chronium selenide. 

2. Spin symmetry 

A spin arrangement, in the purely geometric point of 
view adopted in this paper, means an axial vector func- 
tion denoted by S(r) that changes sign under time in- 
version, defined on a set of points (atoms) which form 
a crystal. We will call the vectors 'spins' and the vector 
space to which these spins belong the 'spin space'. 

The usual notation of a space group element G is 
(R[v) where R is a proper or improper rotation matrix 
and v is a column matrix representing a primitive or 
non-primitive translation. Applying G to a spin ar- 
rangement S(r) means replacing S(r) by the spin arrange- 
ment which we denote by [R!',R[v]S(r) and is defined in 
Opechowski & Guccione (1965) by 

3 

[RI[RIv]S~(r) = ~ fiRRijgJ((Rlv)-~r) (1) 
j = l  

where 6R=det R and i=  1,2,3. As apparent from (1), 
a space-group element G when applied to a spin ar- 
rangement acts simultaneously both on the compo- 
nents of the spin and on the coordinates of the magne- 
tic atoms. Denoting the operator corresponding to 
G= (Rlv) by [RI'~RIv] explicitly shows this and is to be 
understood as follows: The rotation on the left-hand 
side of the double vertical lines acts only in spin space, 
on the components of the spins. The rotation and trans- 
lation on the right-hand side act only in 'physical 
space' (the Euclidean point space in which the atoms 
are located) on the coordinates of the atoms. 

We introduce a new notation for space-group ele- 
ments similar to the above operator notation. If the 
operator in (1) corresponding to a space-group element 
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G is denoted by [RIJRIv], we denote G by (R![RIv). 
Characteristic of space-group elements in this notation 
is that the same rotation R appea~s on both the right 
and left-hand sides of the double vertical lines. This fol- 
lows directly from (1) and means simply that when apply- 
ing a space-group element to a spin arrangement, the 
rotation R acts simultaneously both on the components 
of the spins and on the coordinates of the atoms. 

Spins have the property of changing sign under time 
inversion. Time inversion when applied to a spin ar- 
rangement acts only in spin space, on the components 
of the spins, and is denoted by (E'IIEI0) where E '  is 
time inversion. Thus, applying time inversion to a spin 
arrangement means replacing S(r) by the spin arrange- 
ment denoted by [E'I',EI0]S(r) where [E'IIEI0]S(r)= 
-S ( r ) .  In addition to space-group elements (RIIRIv), 
one can define elements (E'RIIRIv), i.e. products of time- 
inversion and space-group elements. Elements of the 
form (R[IRIv) and (E'R[IRIv), excluding the time-inver- 
sion element (E'IIEI0), are called magnetic elements. 

We now introduce a generalization of the concept of 
symmetry elements of a spin arrangement by consider- 
ing in addition to time inversion and the rotations R 
of the spin space induced by the space-group elements, 
see (1), still other transformations of the spin space. 
Let 1:1(3) denote the Euclidean rotation group. An ar- 
bitrary element ~ of 1:i(3) is a proper or improper rota- 
tion matrix which when applied to a spin arrangemnt 
is defined to act only in spin space, on the components 
of the spins, and is therefore denoted by (~I]EI0). Ap- 
plying an element of 11(3) to a spin arrangement means 
replacing S(r) by the spin arrangement [~l]EI0]S(r) 
defined by 

3 

[:~ilEI0]a~(r) = ~ 6~,~,jS'(r) (2) 
j = l  

where 6:~ = det ~ and i = 1,2, 3. 
Within this generalization we define, in addition to 

elements (RliRIv) and (E'RIIRIv), elements (~RIIRIv) 
and (E'~RIIRIv). These elements are products of 
(.~IIEI0) and (E'~IIEI0) and space-group elements. 
Since ~ is an arbitrary matrix of 11(3), and a rotation 
R induced in spin space by a space-group element is 
also a matrix of 11(3), we can write these elements as 
(~llelv) and (E'~I!RIv). From (1) and (2), applying an 
element (~]lRIv) to a spin arrangement means replacing 
S(r) by the spin arrangement [~]]RIv]S(r) defined by 

3 

[~'llRIv]S~(r) = ~. c ~ , j S J ( ( R I v ) - I r ) .  (3) 
J = l  

Such elements when applied to a spin arrangement act 
in both the spin space and physical space, i.e. on both 
the components of the spins and the coordinates of the 
atoms. But, unlike space-group elements, the rotations 
acting in the two spaces are not necessarily the same. 
Only if ~ ' =  R is (~[IRlv) a space-group element. 

Elements of the form (~[]glv) and (E'~[IRIv) could 
be called 'spin-space-physical-space elements' but for 
conciseness will be called simply 'spin elements'. Groups 

of such elements which leave a spin arrangement in- 
varient could be called 'spin-space-physical-space 
groups', but again for conciseness will be called 'spin 
groups'. Spin-space groups, spin translation groups and 
spin point groups designate spin groups in which the 
transformations acting in the physical space constitute, 
respectively, a space group, translation group, and point 
group. The theory of spin space groups will be considered 
elsewhere (Litvin & Opechowski, 1973). In this paper 
we limit our discussion to spin translation groups 
which will be dealt with below. 

For examples of spin elements which are symmetry 
elements of spin arrangements, we consider the spin ar- 
rangements of nickel and of dysprosium. The space 
group of the atom arrangement in nickel is G = Fm3m 
and the spin arrangement is ferromagnetic with spins 
along the z direction (Kubac, 1972). Applying a spin 
element (EilRIv) to the nickel spin arrangement, where 
the rotation and translation are in G, we have from (3) 
that 

[E []Rlv]S(r) = S((RIv)-It) 

which is equal to S(r) since in a ferromagnetic spin 
arrangement the magnitude and orientation of the spins 
of all magnetic atoms are identical. The spin element 
(EIIRIv) is consequently a symmetry element of this 
spin arrangement. Such spin elements, i.e. the identity 
rotation acting on the components of the spins in com- 
bination with a rotation and translation acting on the 
coordinates of the atoms, are characteristic symmetry 
elements of ferromagnetic spin arrangements. 

The high-temperature spin arrangement of dyspro- 
sium is a helical spin arrangement with all spins perpen- 
dicular to the z direction and such that S ( r + t ) =  
~S( r ) .  t=(001) and ~ denotes a rotation about the 
z axis through an angle of between 26.5 ° and 53.2 ° de- 
pending on the temperature (Miwa & Yosida, 1961). 
Consequently, the dysprosium spin arrangement is in- 
variant under the spin element (.~l[EIt). Such spin ele- 
ments, a rotation of the spins combined with a transla- 
tion of the atom positions, are called spin translations 
and are characteristic symmetry elements of helical 
spin arrangements. 

3. Spin translation groups 

Let T denote a crystallographic translation group 
generated by the three translations ai i= 1,2,3, and 
A xR+(3) the direct product of the time-inversion 
group A, consisting of identity and time inversion, and 
the group of proper Euclidean rotations. A spin 
translation group, denoted by T~, is defined as a group 
generated by the three spin translations (P(ai)l[Ela~) 
i= 1,2,3 where the P(ai) are elements of A x 11+(3). A 
spin translation group T~ will be said to belong to a 
family of T and P if a~, i=  1,2, 3 generate the group T 
and P(a~) i= 1,2,3 the group P (Litvin & Opechowski, 
1973). An arbitrary element of T~ is denoted by 
(P(t)[]E[t) where t = nlax + nzaz + n3a3 is a translation of 
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Y and P ( t ) =  P(al)"~P(a2)"2P(a3) "3 is an element of the 
group p. An element of P will be called unprimed if it 
is an element of R ÷ (3), and primed if it is the product 
of time inversion E '  and an element of R +(3). A spin 
translation group will also be denoted by [P(a0, P(a2), 
P(a3)], a notation in which the generators of Y~ expli- 
citly appear. 

We will classify all spin translation groups first into 
crystal systems and then into equivalence classes, 
called Bravais classes of spin translation groups, in a 
manner similar to the classification of crystallographic 
translation groups into seven crystal systems and 
fourteen Bravais classes. For this purpose we define the 
holohedry H~ of a spin translation group. 

Let P be an element of A x R(3) and H an element of 
R(3). The holohedry H, of a spin translation group is 
defined as the group of elements (PiIH[O) such that for 
every element (P(t)l!EIt) of T,, 

(P',iHI0) (P(t)llElt) (PIIHIO)-'-=(PP(t)P-IIIEIHt) (4) 

is also an element of T~. An element (P[]HI0) belongs 
to the holohedry of the spin translation group [P(at), 
e(a2), P(a3)] if and only if (PP(a,)P-~IIEIHa,) i= 1,2,3 
are elements of T~. A holohedry H~ is said to belong to 
a family of H if the distinct elements H of the elements 
(P',IHI0) of Hs form the group H. From (4) we note 
that if (PIIHI0) is an element of Hs then Ht is a trans- 
lation belonging to T. Therefore H is one of the 32 
crystallographic point groups. 

We now show that the holohedry of any spin trans- 
lation group contains at least one element of the form 
(PIIII0) where I denotes inversion. Since a spin trans- 
lation group T~ belonging to a family of T and P is a 
group, and T is an abelian group, the elements of P 
commute, and T~ is also an abelian group. Therefore, 
the elements P(a~) i=  1,2,3 of the generators of a spin 
translation group fall into one of the following three 
categories" 
1) They are all primed or unprimed rotations about 

the same axis. 
2) They are all twofold primed or unprimed rotations 

about two or three mutually perpendicular axes. 
3) Two are twofold primed or unprimed rotations 

about perpendicular axes and the third is identity 
or time inversion. 

If T~ is a spin translation group with P(ai) coming 
under the first category, then (2±!1110) is an element of 
its holohedry, where 2± denotes a twofold rotation 
about an axis perpendicular to the rotation axis of the 
P(a~). If T~ is a spin translation group with P(a~) com- 
ing under the second or third category, then (EIII[0) 
is an element of its holohedry. Consequently a holo- 
hedry H~ of a spin translation group belongs to a 
family of H where H is one of the seven crystallographic 
point groups T, 2/m, mmm, 4/mmm, $m, 6/mmm and 
m3m. We can therefore classify spin translation groups 
into seven crystal systems according to the point 
group H of their holohedries. We will use the same 
nomenclature for spin translation groups, i.e. triclinic, 

monoclinic, orthorhombic etc., as is used in the clas- 
sification of crystallographic translation groups into 
seven crystal systems. For example, a spin translation 
group with holohedry belonging to a family of !-I = 
4/mmm will be called a tetragonal spin translation 
group. 

We now classify spin translation groups into Bravais 
classes in a manner similar to that of the classification 
of magnetic translation groups given by Opechowski 
& Guccione (1965). Let T~(E) denote the subgroup of 
a spin translation group Ts consisting of all elements 
(P(t)ilE[t) where P ( t ) = E ;  H~^T, denote the semi- 
direct product of a spin translation group and its holo- 
hedry. Two spin translation groups Y~l with holohedry 
H~I and T~2 with holohedry Hs2 will be said to belong 
to the same Bravais class of spin translation groups 
if (1) the semi-direct product H~I a T~I is isomorphic 
to the semi-direct product H~z ̂  Ts2, (2) the unprimed 
elements of H~ ^Ts~ correspond under the isomorph- 
ism to the unprimed elements of Hs2 ^ls2,  and (3) 
the elements of T~dE) correspond under the isomorph- 
ism to the elements of T~2(E). 

In this classification two spin translation groups 
Y~=[P(at),  P(a2), P(a3)] belonging to a family of T~, and 
T~2=[P(bl),P(bz),P(b3)] belonging to a family of T2, 
belong to the same Bravais class of spin translations 
if P (a i )=P(b i )  i=  1,2,3 and Y~ and T2 belong to the 
same Bravais class of crystallographic translation 
groups with ai corresponding to b~ i =  1,2,3. Two spin 
translation groups Y.n = [P~(aO, Pl(a2), Pl(a3)] and Ys2 = 

[P2(al), P2(a2), Pda3)] both belonging to the same family 
of T and with the Pi(ai) and the P2(at) both belonging 
to the same category of rotations, belong to the same 
Bravais class of spin translation groups if the corre- 
sponding elements Pl(a~) and P2(a~) are primed or un- 
primed rotations through the same angle but about 
different axes. Consequently, in the notation of a rep- 
resentative spin translation of each Bravais class one 
does not need to denote the absolute orientation of the 
rotation axes of the elements P(a~) i=1 ,2 ,3 ,  i.e. the 
orientation of the rotation axes with respect to the 
crystal coordinate system in which the translations of 
T are defined, but only their mutual orientation. 

A representative spin translation group of each 
Bravais class of spin translation groups is listed in 
Table 1. The Table is divided into seven headings cor- 
responding to the seven crystal systems of spin transla- 
tion groups. We give the conditions, if any, on the mu- 
tual orientation and magnitude of the generating trans- 
lations of T due to H, and the representative spin trans- 
lation groups are listed in the notation (P1P2P3) where 
P~=P(a~) i=1,2 ,3 .  A rotation P~ through an angle 
2re~Z, where Z is an irrational number, is denoted by 
Z. Nip denotes a rotation through an angle of 2top~N, 
where N is an integer greater than two, p is an integer 
less than N/2 and where N and p are relatively plime. 
A single symbol Q will be used in Table 1 to denote 
both an arbitrary Z and an arbitrary Nip. A twofold 
rotation is denoted by 2 and identity by 1. If two or 
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more different Q appear in the notation of  a represen- 
tative spin translation group, e.g. the triclinic (Q~Q2Q3), 
the corresponding Z's or N's are relatively prime. In 
the triclinic and monoclinic systems, (Q~Qz2), (Q21) ,  
(Q 2 2), (Q Q-12),  and (2 2 Q) are such that if Q = Nip 
then N is an odd integer. A primed symbol denotes 
that time inversion is combined with the rotation. If 
not otherwise specified, all three P~, i =  1,2,3 denote 
primed or unprimed rotations about a single arbi- 
trarily oriented axis. If the rotations are not all about 
a single axis subscripts have been added only to indi- 
cate the mutual orientation of the twofoldaxes. 

4. Spin translation groups and possible reflexions 

The standard formula used to calculate the magnetic 
contribution to the intensity of unpolarized neutrons 
elastically scattered from a single crystal, denoted by 
o'(K), is 

or(K) = IP(K)I z -  I ~ . P(K)I 2 (5) 

where K is the scattering vector and: 

P(K)= ~ f~(K)S(r,) exp (iK. r,).  (6) 
i 

Table 1. Bravais classes of spin translation groups 

Detailed explanation of the symbols used is given in the final paragraph of § 3. 
Triclinie H = T 
Triclinic primitive: No conditions on a~, a2, and a3 

(QI  !) (21 1) (2~2yl) (1 1 i) 
(Q'I 1) (2'1 1) (2':,2yl) (1 1 1') 
(Q 1 1') (2 1 1') (2~2y1') 

Monoclinie H = 2/m 

Monoclinic primitive: a3 perpendicular to at and az 
(Q 12) (Q 11) (21 Q) (212)  
(Q'I 2) (Q'I I) (2'1 Q) (2'12) 
(Q I'2) (0  1'i) (2 I'Q) (21'2) 
(Q 12') (Q 11') (21 Q') (2 i 2') 
(Q'I 2') (Q'! 1') (2'1 Q') (2'1 2') 
(Q 1'2') (Q 1'1") (2 I'Q') (2 1'2') 

(1 1 Q) (1 1 2) (2,2rl) (1 1 1) 
(1"1 Q) (1'1 2) (2~,2yi) (1'1 1) 
(1 1Q') (1 1 2') (2~2yi') (1 1 1') 
( I ' I 'Q ' )  (1'1'2') (2~2r 1') (1'1 i') 

Monoclinic side-centred: a~+az perpendicular to a ~ - a z  and a3 

(Q,Q21) (Q,Q22) (Q 2 i) (Q,Q2Qa) 
(QiQ21) (QiQz2) (Q'2 1) (QIQ2Qa) 
(Q~Q21') (Q~Q22') (Q 2'1) (Q;Q;Q3) 
(QIQ~I) (Q~Q~2) (Q 21')  (Q~Q;Q'3) 

(Q;Q22') (Q'2'1) 
(Q~Q~2') 

(2 1 ! ) (2~2~.2A 
(2'1 1) (2~2~2x) 
(2 1'1) (2,2~.2 ~) 
(2 1 I') (2,2r2x) 
(2'1 1') (2~,2~.2]) 
(2 1'i ') (2~2~.2,~) 

(Q 2 1) (Q 2 2) 
(Q'2 I) (Q'2 2) 
(Q 2'1) (Q 2'2) 
(Q 2 1') (Q 2 2') 
(Q'2'1) (Q'2'2) 
(Q'2 1') (Q'2 2') 
(Q 2'1') (Q 2'2') 
(Q'2'1') (Q'2'2') 

(1 1 Q) (i 1 2) (Q Q 1) (Q Q - ' I )  (Q Q 2) 
(I ' I 'Q) (1'!'2) (Q'Q'I) (Q'Q-~'I)  (Q'Q'2) 
(I i Q') (I 1 2') (Q Q I') (Q Q- ' I ' )  (Q Q 2') 
( I ' I 'Q ' )  (1'1'2') 

(2 2 Q) (Q Q- '2)  (Q~Q~Q2)  (2x2yl) (1 ! 1) 
(2'2'Q) (Q'Q-~'2) (Q'aQx~'Q2) (2~2~i) (1'1'1) 
(2 2 Q') (Q Q-~2') (Q~Q~Q'z) (2~2y1") (1 1 i') 
(2'2'Q') (Q'Q -a'2") (Q',Q~-~'Q'2) 

Orthorhombic H = mm 

Orthorhombic primitive: at, a2, and a3 are mutually perpendicular 

(2~1 2~.) 
(2~1 20 
(2,,1 '2y) 
(2~! 2~.) 
(2~1 2~.) 
(2~1'2;) 

(Q,Q21) 
(Q~Q22) 
(Q~Q21') 
(Q~Q~I) 
(Q[Q21') 
(Q~Q21") 

(22 !) 
(2'2'1) 
(2 2 1') 

(2x2~2y) 
(2',,2~2~.) 
(2~2~2~) 

(222)  (111)  
(222 ' )  (1 1 1') 
(2'2'2) (1' 1'1 ) 
(2'2'2') (1'1'1') 

(QtQ22) 
(Q~Q22) 
(QIQ22') 
(Q;QI2) 
(QIQ'22') 
(QIQ~2') 

(1 2 Q) (1 1 Q) (2 2 Q) (2 2 !) (1 1 2) (2~2~2-) (2x2~i) 
(1'2 Q) (1'1 Q) (2'2 Q) (2'21) (1'12) (2'~2~2_-) (2~,2,.1) 
(1 2 '0)  (1'1 '0)  (2'2'Q) (2'2'1) (I '1'2) (2~2x2:) (2;,2~, 1) 
(1 2 Q') (1 1 Q') (2 2 Q') (2 2 1') (i 1 2') (2x2x2'z) (2,2~.1') 
(1'2'Q) (1'1 Q') (2'2 Q') (2'2 1') (1'1 2') (2',~2~2~) (2;,2y1') 
(1'2 Q') ( i ' I 'Q ' )  (2'2'Q') (2'2'1') (1'1'2') (2~2~,2'~) (2,~2~1 ') 
(1 2'Q') 
(1'2'Q') 
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Table 1 (cont.) 
Orthorhombic base-centred: at + a2, a t -a2 ,  and as are mutually perpendicular. 

(Q Q 1) (Q Q 2) (1 i Q) (2 2 Q) (2 2 !) 
(Q'Q'!) (Q' Q'2) ( 1 "I'Q) (2'2' Q) (2'2' I ) 
(Q Q I') (Q Q 2') (1 1 Q') (2 2 Q') (2 2 1') 
(Q'Q'i ") (Q'Q'2') ( I ' I 'Q ' )  (2'2'Q') (2'2'1') 

(2~ 2 ~2~.) (2~2~ ! ) (2~ 2~.2..) 
(2~,2'~2,) (2~,2~1) (2.~2~2:) 
(2x2 ~2~) (2x2~ 1 ') (2x2,2'D 
(2~,2~,2~) (2~,2~!') (2~2~2~) 

Orthorhombic body-centred" at=½(-a,b,c) ,  a2={(a , -b , c ) ,  a3={(a ,b , - c )  
(Q Q Q-~) (2 2 2) (2~2,2y) 
(Q'Q'Q -~') (2'2'2') (2'~2~,2'y) 

Orthorhombic face-centred: at=½(a,b,0), a2 = ½( - a, b, 0), a~= ~_(O,b,c) 
(22Q)  (1 I Q) (1 1 2) 
(2"2'Q) (I ' I 'Q)  (1'1'2) 
(2 2 Q') (1 1 Q') (1 1 2') 

Tetragonal H = 4~ram 
Tetragonal primitive : a~,a2,as are mutually perpendicular at = a2 

(2~2.~2~) 
(2~2~2~) 

(i 1 i) 
(1'1'1) 
(111 ' )  
(1'1'1") 

(1 1 1) 
(1'1'1') 

(1 1 2) 
(1'1"2) 
(I 1 2') 
(1'1'2') 

(1 1 1) 
(1 1 i ')  

(2 2 Q) (1 1 Q) (2 2 1) (1 1 2) (2 2 2) (2x2~2~.) 
(2'2'Q) ( I ' I 'Q)  (2'2'1) (1'1'2) (2'2'2) (2j,2'x2y) 
(2 2 Q') (1 1 Q') (2 2 1') (1 1 2') (2 2 2') (2~2.~2~) 
(2'2"Q') ( I ' I 'Q ' )  (2'2'1") (1"1'2') (2'2'2') (2~,2~,2'y) 

(I 1 1) 
( l ' l ' l ' )  

(2,2yl) (2~2y2D (1 1 1) 
(2~2~1) (2~2~2D (1"1'1) 
(2~2y1') (2~2r2~) (1 1 1') 
(2~2~1') (2~2~2~) (1'1'1') 

Tetragonal body-centred: a~=½(-a,a,c), a2=½(a, -a ,c) ,  a3=½(a ,a , -c )  
(Q Q Q-t)  (2 2 2) (2~2~2y) 
(Q,Q,Q - 1,) (2'2'2') (2~,2~,2~) 

Rhombohedral  H = ~m 

Rhombohedral primitive: a~ =a2=a3 al • a2=a2, as=a~,  a3 
(Q Q Q) (2 2 2) 
(Q'Q'Q') (2'2'2') 

(2~2v2.) (1 1 1) 
(2~,2',2~) (i '1'1') 

Hexagonal H = 6/mm 
Hexagonal primitive: a3 perpendicular to at and a2, at = a 2 ,  and a t .  a, = ata2 cos (120 °) 

(! 1 Q) (1 1 2) (2x2,1) (3 3 1) (3 3 2) 
(1 1 Q') (1 1 2') (2,2y1') (3 3 1') (3 3 2') 

(33-t2)  (1 I 1) 
(3 3-12 ') (i 1 1") 

(111)  
(1'1'1') 

Cubic H = m3m 
Cubic primitive: al,a2,a3, are mutually perpendicular at=a2=as 

(2 2 2) (2,2r2:) 
(2'2'2') (2~,2~2'z) 

Cubic body-centred: a ,={ ( -a ,a ,a ) ,  a2=½(a , -a ,a ) ,  a3=½(a ,a , - a )  
(222)  (11 1) 
(2'2'2') (1'1'1') 

(11 1) 
Cubic face-centred: a~ = ½ ( a , a , 0 ) ,  a2 = ½(0, a, a), a3 = ½(a, 0, a) 

(2~2~2D 

(2 2 2) 
(2'2'2) 
(2 2 2') 
(2'2'2') 

(3 3-11) 
(3 3-t l  ') 

S(r,) is the spin and  fi the scat ter ing ampl i tude  of  the 
magnet ic  a t o m  at  posi t ion ri, and  the sum is over all 
magnet ic  a toms  in the crystal .  Rela t ion (5) can be m a d e  
plausible using the q u a n t u m  mechanica l  fo rmu la  given 
by Ha lpe rn  & Johnson  (1939). 

Fo r  a spin a r r a n g e m e n t  invar ian t  under  a spin t rans-  
lat ion g roup  T~ belonging to a family of  T, we will find 
the values of  the scat ter ing vector  K for  which the in- 
tensity o'(K) can possibly be non-zero.  These values of  

K determine  the 'possible reflexions'  o f  the neu t ron  
scattering.  For  such a spin a r r a n g e m e n t  we can rewrite 
(6) as 

P ( K ) =  ~ f j ( K )  exp ( i K .  U) ~ S ( u + t )  exp ( i K .  t) 
j = l  t 

(7) 

where the sum is over the t rans la t ions  t of  T and  the 
magnet ic  a toms  j =  1 . . .  m in the pr imit ive unit  cell o f  
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Y. The mutual orientation of the spins S(rj + t) for each 
j and all values of t is determined by the spin transla- 
tion group Ts. We have S(r j+ t )=P( t )S( r j )  from the 
fact that the spin translation [P(t)llEIt] of T~ is a sym- 
metry element of the spin arrangement. We then re- 
write (7) as 

m 

P(K)= ~.fj(K) exp (iK. rj)Sj(K) (8) 
j = l  

where 
Sj(K) = ~ P(t)S(u) exp (iK. t) .  (9) 

t 

Lastly, assuming that the spins S(rj) are arbitrarily 
oriented we preform the summation over t. The values 
of K for which the sum (9) is non-zero determine the 
possible reflexions of a spin arrangement invariant 
under the spin translation group Ts. 

For a spin translation group Ts= [P(a~), P(a2), P(a3)] 
belonging to a family of T we determine the values of 
K such that Sj(K)-¢:0 in terms of a trio of numbers 
{hkl} where K=hbl+kb2+lb3 and where bi i=1,2 ,3  
are the generators of the reciprocal translation group 
of T defined by ai .  bj=2~zJ, i. We also determine the 
sum Sj(K) corresponding to these values of K as a 
function of the components of the spin S(r.i). 

We will take the components of S(rj), and of Sj(K), 
in an orthogonal coordinate system defined by the ro- 
tation axes of P(at) i=  1,2, 3 and not in the crystal co- 
ordinate system in which the translations of the crys- 
tallographic translation group T are defined. Thus, the 
components of Sj(K) will depend on the mutual orien- 
tation of the rotation axes of the P(a~) i=  1,2, 3 but not 
on the absolute orientation of these axes with respect 
to the crystal coordinate system. The components of 
S(U ), denoted by S~, S~, and S~, are taken in an orthog- 
onal coordinate system where the :? axis is along the 
rotation axis of the P(at) i=  1,2,3 if all rotations are 
about a single axis. If the elements P(a~) i=  1,2, 3 have 
subscripts indicating the mutual orientation of perpen- 
dicular rotation axes, the components of S(rj) are 
taken in the orthogonal coordinate system defined by 
these axes. 

Substituting t = n~a~ + nzaz + n3a3 and K = hb1 + kb2 + 
Ib3 into (9), Sj(K) takes the form 

S(hkl)= ~ PT~P~2p]3S(r) 
n l  n2  n 3 

x exp [2~zi(hn~+knz+ln3)] (10) 

where P~ = P(a,) i=  1,2, 3 and where we have dropped 
the index.j since S(r~) is arbitrary. For a spin translation 
group T~ belonging to a family of T we have from (10) 
that the sum S(hkl) is dependent only on the value of 
the rotations P~ i = 1,2, 3 and on the mutual orientation 
of the rotation axes of these elements. The translations 
of T do not appear explicitly in (10) and in the above 
convention for the components of S(r), the components 
of S(hkl) are not dependent on the absolute orientation 
of the rotation axes of the P~ i=  1,2, 3 with respect to 
the crystal coordinate system. In addition, let Sx(hkl) 

Table 2. The possible reflexions of magnetic neutron 
scattering from a single crystal tabulated for the 

spin translation groups 

The fourth column gives the sum (10) for each set of possible 
reflexions in the notation 

, 

E =  , F =  - i S ~ + S y  and G =  i S , , + S ~  
0 0 

T, h k 1 S(hk/) 
( 1 1 1 )  m n q A 
( 1 1 1 ' )  m n q + ½  A 
(1'1'1) m+½ n+½ q A 
(I'1"1") m+½ n+½ q+½ A 
(21 !) rn n q B 

m+½ n q C 
(2'1 I) m n q C 

m+½ n q B 
( 2 1 1 ' )  m n q+½ B 

m+½ n q+½ C 
(2 '11')  m n q+½ C 

m+½ n q+½ B 
(2 I ' I ' )  m n+½ q+½ B 

m+½ n+½ q+½ C 
(2'1'1') m n+½ q+½ C 

m+½ n+½ q+½ B 
( 2 2 1 )  m+½ n+½ q C 

m n q B 
( 2 2 1 ' )  m+½ n+½ q+½ C 

m n q+½ B 
(2"2 1) m n + ½  q B 

m+½ n q C 
(2'2 i') m n+½ q+½ B 

m+½ n q+½ C 
(2'2"1) m n q C 

m+½ n+½ q B 
(2'2' 1 ') m n q + ½ C 

m+½ n+½ q+½ B 
( 2 2 2 )  m+½ n+½ q+½ C 

m n q B 
( 2 2 2 ' )  m+½ n+½ q C 

m n q+½ B 
(2'2'2) m n q + ½ C 

m+½ n+½ q B 
(2'2'2') m n q C 

m+½ n+½ q+½ B 
(2~,2yl) m n + ]~ q D 

m+½ n q E 
m+½ n+½ q B 

(2:~2r I ) rn + ½ n + ½ q D 
m n q E 
m n+½ q B 

(2x2~ 1 ") m n + ½ q + ½ D 
m+½ n q+½ E 
rn+½ n+½ q+½ B 

(2.'~2y1') m+½ n+½ q+½ D 
m n q+½ E 
m n+½ q+½ B 

(2x2~1) m + ½ n q D 
m n+.½ q E 
m n q B 

(2~2~ 1') m + ½ n q + ½ D 
m n+½ q+½ E 
m n q+½ B 

(2.,.2~,2y) m n q + ½ D 
m+½ n+½ q E 
m+½ n + ~  q+½ B 
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T$ 

(2~2~2y) 

(2~,2x2~) 

(2~2~2~) 

(2~2~2;) 

(2x2~,2~) 

(2~,2r2~) 

(2.~2~,2,) 

(2~,2~,2~) 

( Q I  1) 

(Q'I  1) 

(Q 1 1') 

(0'1 1') 

(Q 1'1') 

(Q ' I ' I ' )  

( Q 2  1) 

(Q 2 l ')  

(Q 2'1) 

(Q 2'1') 

(Q'2 l) 

(Q'2 1') 

(Q'2'1) 

(Q'2'1') 

Table 2 (cont.) 

h 
m+½ 

m 
m. 

m+½ 
m 
m 
m 

m+½ 
m+½ 

m 
m+½ 
m+½ 
m+½ 

m 
m 
m 

m+½ 
m+½ 

m 
m+½ 
m+½ 
m+½ 

m 
m 

m+½ 
m 
m 

m - 1 / Q  
m + l / Q  

m 

m + ½ - 1 / Q  
m + ½ + l / a  

m+½ 
m - l / Q  
m + l / Q  

m 
m + ½ - 1 / Q  
m + ½ + l / Q  

m 
m - 1 / Q  
m + l / Q  

m 
m + ½ - 1 ] Q  
m + ½ + l / Q  

m+½ 
m - 1 / Q  
m + l / Q  

m 
m - 1 / Q  
m + l / Q  

m 
m - 1 / Q  
m + l / Q  

m 
n i - 1 / Q  
m + l / Q  

m 
m + ½ - 1 / Q  
m + ½ + l / Q  

m+½ 
m + ½ - 1 / Q  
m + ½ + l / Q  

m+½ 
m + ½ - 1 / Q  
m + ½ + l / Q  

m+½ 
m + ½ - 1 / Q  
m + ½ + l / Q  

m+½ 

k 
n 

n + ½ 
n+½ 
n+½ 

n 

n 

n 
n+½ 
n+½ 
n+½ 

n 

n 

n+½ 
n 

n 
n+½ 

n 

n+½ 
n+½ 

n 

n+½ 
n 

n+½ 
n 
n 

n+½ 
n 
n 

n 
n 
n 

n 

n 

n 
n 

n 
n 
n 

n 
n+½ 
n+½ 
n+½ 
n+½ 
n+½ 
n+½ 
n+½ 
n+½ 

n 

n+½ 
n+½ 

n 

n 
n 

n+½ 
n 

n 
n+½ 
n+½ 
n+½ 

n 

n+½ 
n+½ 

n 
n 

n 

n+½ 
n 

n 

n+½ 

/ 
q+½ 

q 
q+½ 
q+½ 

q 
q+½ 

q 
q+½ 

q 
q 

q+½ 
q 
q 

q+½ 
q 

q+½ 
q+½ 

q 
q 
q 

q+½ 
q+½ 
q+½ 

q 
q 
q 

q+½ 
q 
q 
q 
q 
q 
q 

q+½ 
q+½ 
q+½ 
q+½ 
q+½ 
q+½ 
q+½ 
q+½ 
q+½ 
q+½ 
q+½ 
q+½ 

q 
q 
q 

q+½ 
q+½ 
q+½ 

q 
q 
q 

q+½ 
q+½ 
q+½ 

q 
q 
q 

q+½ 
q+½ 
q+½ 

q 
q 
q 

q+½ 
q+½ 

q 

Table 2 (cont.) 

S(hkl) rs h k 
D (Q 2 2) m -  I/Q n+½ 
E m+ I/Q n+½- 
B m n 
D (Q 2 2') m -  I/Q n+½ 
E m+ I/Q n+½ 
B m n 
D (Q 2'2') m -  1/0 n 
E m+ 1/Q n 
B m n+½ 
D ( 0 ' 2 2 )  m + ½ - 1 / O  n+½ 
E m + ½ + l / Q  n+½ 
B m+½ n 
O (0 '2  2') m + ½ -  1/0 n+½ 
E m + ½ + l / a  n+½ 
B m + ½  n 
D (Q'2'2') m + ½ -  I/Q n 
E m + ½ + l / Q  n 
B m+½ n+½ 
D (QIQzl) m - 1 / Q  n - 1 / Q  
E m + l / Q  n + l / Q  
B m n 
O (QtQ21') m -  I/Q n -  1/0 
E m + l / Q  n + l / Q  
B m n 
D (Q~Q2 1) m + ½ -  l/Qt n -  1/Q2 
E m+½+ l/Qt n+ 1/Q2 
B m n 
F (QIQ~I) m + ½ -  I/Q n + ½ - 1 / Q  
G m + ½ + l / Q  n + ½ + l / Q  
B m + ½  n + ½  
F (Q'Q'I ' )  m + ½ - 1 / Q  n + ½ - 1 / Q  
G m + ½ + l / Q  n + ½ + l / Q  
B m + ½  n + ½  
F (Q1Q22) m -  1/Q n -  1/Q 
G m + l / Q  n + l / Q  
B m n 
F (01022') m -  1/Q n -  1/Q 
G m+ I/Q n+ 1/Q 
B m n 
F (QtQ2 2) m + ½ -  1/01 n -  1/Q2 
G m+½+ l/Qt n+ 1/Q2 
B m+ ½ n 
F (Q~Q2 2') m + ½ - 1 / 0 1  n -  1/Q2 
G m + ½ + l / Q l  n + l / Q z  
B m + ½  n 
F ( Q ~ . Q ~ 2 )  m + ½ -  I/Q n + ½ -  I/Q 
G m + ½ + l / Q  n + ½ + l / Q  
B m + ½  n + ½  
F (Q~Q~2') m + ½ - 1 / Q  n + ½ - 1 / Q  
G m + ½ + l / Q  n + ½ + l / Q  
B m + ½  n + {  
F (Q Q - ' I )  m -  1/Q n+ 1/Q 
G m + l / Q  n - 1 / a  
B m n 
F (0  0 - t  l ')  m -  1/Q n+ I/Q 
G m + l / Q  n - 1 / Q  
B m n 
F (Q 'Q- I '  1) m + ½ - 1 / Q  n + ½ + l / Q  
G m + { + l / Q  n + ½ - 1 / Q  
B m + ½  n + ½  
F (Q Q-12) m -  I/Q n+ 1/Q 
G m + l / Q  n - l / Q  
B m n 
F (Q 'Q-  1"2) m + ½ - 1 / Q  n + ½ - 1 / Q  
G m+½+ I/Q n + ½ -  I/Q 
B m+½ n+½ 
F (Q 0 - t 2  ') m -  1/Q n+ 1/Q 
G m + l / Q  n - 1 / Q  
B m n 

I 
q+~ 
q+½ 

q 
q 
q 

q+½ 
q 
q 

q+~ 
q+½ 
q+½ 

q 
q 
q 

q+½ 
q 
q 

q+½ 
q 
q 
q 

q+½ 
q+½ 
q+½- 

q 
q 
q 
q 
q 
q 

q+½ 
q+½ 
q+~ 
q+½ 
q+½ 

q 
q 
q 

q+½ 
q+½ 
q+~ 

q 
q 
q 

q+½ 
q+½ 
q+½ 

q 
q 
q 

q+½ 
q 
q 
q 

q+½ 
q+½ 
q+½ 

q 
q 
q 

q+½ 
q+½ 

q 
q+½ 
q+½ 

q 
q 
q 

q+½ 

S(hkl) 

F 
G 
B 
F 
G 
B 
F 
G 
B 
F 
G 
B 
F 
G 
B 
F 
G 
B 
F 
G 
B 
F 
G 
B 
F 
G 
B 
F 
G 
B 
F 
G 
B 
F 
G 
B 
F 
G 
B 
F 
G 
B 
F 
G 
B 
F 
G 
B 
F 
G 
B 
F 
G 
B 
F 
G 
B 
F 
G 
B 
F 
G 
B 
F 
G 
B 
F 
G 
B 
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Table 2 (cont.) 

T~ h k 
(Q 'Q-"2 ' )  m + ½ - 1 / Q  11+½+1/Q 

m+½+l/Q n+½-1 /Q 
m+½ n+½ 

(Q,Q2Q3) m-- 1/Q 11-- 1/Q 
m+ l/Q 11+ l/Q 

m 11 
(Q~Q2Q3) m+½- l/Q~ n -  1/Q2 

m+½+ 1/Q, n+ I/Q2 
m+½ n 

(Q~Q~Q3) m+½-1/Q,  n+½-1/Q2 
m+½+ l/Qt n+½+ l/Q2 

m+½ n+½ 
(Q~Q2Q3) m + ½ -  I/Q n+½-1 /Q 

m+½+l/Q n+½+l/Q 
m+½ n+½ 

(QJQ7 ~Q2) m -  1/Q~ n+ 1/O~ 
m+l /Q,  n - l /Q~ 

m n 
(Q~Q~-~'Q2) m+½-1/Qt  n+½+l/Q, 

m+½+l/Qt  n+½-1/Q,  
m+½ n+½ 

(Q,QftQ;) m -  l/Q, n+ 1/Q, 
m+ 1/QI n -  I/Q1 

m !I 
(Q~Q;-I"Q'2) m+½-1/Q1 11+½+1/Q1 

m+½+l/Q~ n+½-1/Q,  
m+½ 11+3 

I S(hkl) 
q F 
q G 

q+½ B 
q - 1 / Q  F 
q+l /Q G 

q B 
q -  I/Q3 F 
q+ 1/Q3 G 

q B 
q-- I/Q3 F 
q+ 1/Q3 G 

q B 
q+½-1 /Q F 
q+½+l/Q G 

q + ½ B 
q-- l/Q, F 
q+ l/Q2 G 

q B 
q -  1/Q2 F 
q+ l/Q2 G 

q B 
q+½-1/Q2 F 
q+½+ l/Q2 G 

q+½ B 
q+½-- 1/Q2 F 
q+½+ l/Q2 G 

q+½ B 

denote the sum (10) corresponding to a spin translation 
group T~I = (PI P2P3) and S2(hkl) the sum corresponding 
to T~2=(PIP2P3). Since the elements P~ in (10) com- 
mute, if the Pt of "I'~1 are a permutation of the /~ of 
T~2, then 

S~(hk/)=S2(h£l) 

where h,/~, and [ are a permutation of h, k, and l given 
by: 

( hkl]  [P, P2P3] 

Consequently, we have listed in Table 2 only distinct 
triplets of elements P~ i=  1,2, 3 appearing in the nota- 
tion of the spin translation groups of Table 1, disre- 
garding the order in which these elements appear and 
the translation group 1". For each triplet (P1PzP3) the 
sets of values of {hkl} corresponding to possible re- 
flexions are given; m, n, and q denote arbitrary integers. 
In addition, S(hkl) for each set of {hkl} is given in 
terms of the components of the spin S(r) given in the 
orthogonal coordinate system defined by the rotation 
axes of the P~, i=  l, 2, 3 as explained above. 

As an example consider the hexagonal spin transla- 
tion group (11Q). In Table 2 we find the values {hkl} 
corresponding to the trio of elements (Q11). The values 
of K corresponding to the possible reflexions of a spin 
arrangement invariant under the hexagonal spin trans- 
lation group ( l lQ)  are therefore given by {lkh}, i.e. 
where the indices h and l have been interchanged. 
There are three sets of values of K, the first {q, n, m} due 
to the component of the spins S ( r+ t )  along the rota- 
tion axis of Q, and the remaining two {q,n,m + 1/Q} 

due to the rotated components of the spins perpendic- 
ular to the rotation axis. The reflexions corresponding 
to the first set of values of K are referred to as 'fun- 
damental reflexions' and corresponding to the latter 
sets as 'satellite reflexions' by Lyons, Kaplan, Dwight 
& Menyuk (1962). 

5. Application to neutron-diffraction analysis 

We will show below how by considering the indices of 
observed magnetic reflexions and the list of possible 
reflexions given in Table 2 one can determine the spin 
translation groups which are compatible with the neu- 
tron-diffraction data. Such information is of special 
importance in determining non-collinear spin arrange- 
ments because the invariance of a spin arrangement 
under a spin translation group implies the mutual 
orientation of non-collinear spins which are related 
by rotations that are not in the space group of the 
crystal. (The invariance of a non-collinear spin arrange- 
ment under a magnetic space group implies the mutual 
orientation of only those spins which are related by ro- 
tations of the space group of the crystal.) We then show 
how such information can be utilized in determining 
the spin arrangement of a magnetic crystal and con- 
sider as an example the analysis of neutron diffraction 
data of chromium selenide. 

Consider a crystal with magnetic atoms which form 
an atom arrangement invariant under the space group 
G. Let T denote the subgroup of primitive translations 
of G, a crystallographic translation group belonging 
to a crystal system characterized by the point group R. 
The spin translation symmetry group of a spin arrange- 
ment defined on the magnetic atoms is a group Ts 
belonging to a family of Tx where T1 is equal to or a 
subgroup of T, and whose holohedry Hs belongs to a 
family of H where H is equal to or a subgroup of R. 

We consider all such spin translation groups starting 
with those groups belonging to a family of T with holo- 
hedry belonging to a family of R. We choose one such 
spin translation group Ts belonging to a family ofT with 
holohedry belonging to a family of Iq and determine if 
the possible reflexions corresponding to this spin trans- 
lation group are compatible with the experimentally 
observed reflexions. To do this we index the observed 
reflexions with respect to the reciprocal translation 
group of T, and compare the indices of these reflexions 
with the indices of the possible reflexions corresponding 
to Ts given in Table 2. If there are observed reflexions 
which do not correspond to any of the possible reflex- 
ions then we conclude that Ts cannot be the spin 
translation symmetry group of the spin arrangement 
which is to be determined. Provided that every ob- 
served reflexion corresponds to a possible reflexion, 
the spin translation group l's will be said to be compa- 
tible with the observed reflexions. 

By assuming that 1~ is the spin translation symmetry 
group of the spin arrangement, the mutual orientation 
of the spins S(r~+t) for fixed .j is determined. To 
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uniquely determine the spin arrangement one must in 
addition find the magnitude of the spins S ( u ) , j =  1 . . .  m 
and their orientation with respect to the crystal's co- 
ordinate system. To do this one can consider the mutual 
orientation of the spins S(U +t )  as additional informa- 
tion to be used in conjunction with the procedure based 
on the use of magnetic groups, or, if the number m of 
magnetic atoms in the primitive unit cell defined by T is 
small, in the following manner. We calculate the inten- 
sity a(K) as a function of the m spins S(U), j =  1 . . .  m 
in (8). We then vary the magnitude and orientation of 
these spins to find values such that the calculated and 
observed intensities are in agreement. If there exist such 
values of S(rj), j =  1 , . . . , m  we have determined the 
spin arrangement. If not, then we conclude that this spin 
translation group is not the spin translation symmetry 
group of the spin arrangement. Only after all possi- 
bilities of spin translation groups belonging to the 
family of T with holohedry belonging to a family of Iq 
have been ruled out does one then proceed in the same 
manner to consider other possible spin translation 
groups. 

As an example of this we consider the analysis of the 
neutron diffraction data of chromium selenide given 
by Corliss, Elliott, Hastings & Sass (1961). The chro- 
mium-atom arrangement is a simple hexagonal arrange- 
ment with one atom per unit cell and space-group sym- 
metry P6/mmm. The subgroup T of P6/mmm is a hex- 
agonal crystallographic translation group, i.e. R= 
6mmm. 

We first consider spin translation groups "l's belong- 
ing to a family of T with holohedry belonging to a 
family of 6/mmm. These are the hexagonal spin trans- 
lation groups listed in Table 1. The observed magnetic 
reflexions, indexed with respect to the reciprocal trans- 
lation group of T are 

~½) (~-) 
2 2  ( ~ )  (lOb 

/ 

~" "~' "~..~. ,~. X ! 

2 

/ "~, 
~y 

Fig. i. The 'umbrella' structure of CrSe: the mutual orienta- 
tions of the spins in the z=0 plane are shown. Only the 
components of the spins in the plane have been drawn. 

and the magnetic reflexions (00/) are absent (Corliss 
et al., 1961). From Table 2 we find that the observed 
reflexions are compatible only with a hexagonal spin 
translation group belonging to the Bravais class (331'). 
The possible reflexions corresponding to (331') are 
found in Table 2 under (QIQ21') by taking Q1 =Q2 =3.  
Since there is only one chromium atom in the primitive 
unit cell of T the mutual orientation of all the spins is 
determined by assuming that (331') is the spin trans- 
lation symmetry group of the chromium spin arrange- 
ment. 

We now calculate the intensities a(K) as a function 
of the chromium spin S(r) at r =  (000). Relation (8) be- 
comes 

hi+b2 

2,b,+b2)3  ) S(K)iS0 (11) 

where bi, i=  1,2, 3 are the generators of the reciprocal 
translation group of T and ~ is an arbitrary reciprocal 
translation. S~ and S~ are the components of the spin 
S(r) given in an orthogonai coordinate system where 
the _~ axis is along the rotation axis of the threefold ro- 
tations of (331') and the ff axis is chosen along the com- 
ponent of the spin perpendicular to the z7 axis. The 
orientation of this orthogonal coordinate system with 
respect to the crystals hexagonal coordinate system is 
as yet undetermined. 

The calculated intensities a(00l) are dependent only 
on the first term of (11) and using (5) are found to be 
proportional to S~ (I - c o s  2 0) where 0 is the angle be- 
tween the 2 axis and the crystal's z axis. Since the ob- 
served intensities a(00/) are zero, either S~=0 or 
cos 0 =  1. Taking S~=0 would mean that the calculated 
intensity a(10J2) is also zero which is incompatible with 
the experimentally observed a(10{) reflexion. Therefore 
cos 0 =  1 and the Y. axis coincides with the crystal z axis 
and the ~ axis is in the basal plane of the hexagonal 
unit cell. 

The calculated intensities are found by substituting 
(11) into (5). For comparison with neutron-diffraction 
data obtained from a powder sample we average over 
all equivalent wave vectors K and obtain 

( a ( K ) ) = 3 ( K - I : -  b32 ) f(K)2s~[I-K~] 

+ 3  K - , -  3 . . . .  ¼f(K)2S~[1 + K2I 

( 2(b, + b2) .~_) ¼f(K)2S~[1 + K~] + 6  K - ~  3 - 

(12) 
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where K~ is the z component of the unit scattering vec- 
tor I(. Varying the values of Sz and Sa. one finds (Corliss 
et al., 1961) non-zero values such that the calculated 
intensities are in agreement with the observed. We 
conclude that the chromium spin arrangement is in- 
variant under the spin translation group (331') where 
the rotations are about the z axis. The spins have both 
a component in the z direction and in the basal plane. 
This is the so-called 'umbrella' spin arrangement shown 
in Fig. 1. We note that the spin arrangement has not 
been uniquely determined since the orientation of the 

axis with respect to the crystal's hexagonal coordin- 
ate system, and consequently of the components of the 
spins in the basal plane, is unobtainable from the 
neutron diffraction data. 

Relation (12) was also derived by Corliss et al. 
(1961), but only after ad hoc assumptions were made 
pertaining to the rotational symmetry of the spin ar- 
rangement. The advantage of applying the theory of 
spin translation groups in the analysis of neutron dif- 
fraction data is that information on the mutual orien- 
tation of spin can be obtained, without making any 
assumptions on the rotational symmetry of the spin 
arrangement, by using Tables 1 and 2. In fact, relation 
(12) was derived above by considering only the indices 
of the magnetic reflexions and the table of possible 
reflexions of spin translation groups. 

The author is indebted to Professor W. Opechowski 
for valuable discussions and criticism. The financial 

assistance of the National Research Council of Canada 
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Calculation of the T, L and S Tensors from Crystal Forces and vice versa 
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It would be useful if the measured values of T, L and S could be used directly to give information 
about the intermolecular crystalline forces. This requires the assumption of an Einstein model for the 
molecular dynamics, where T, L and S are related through a smearing function to a molecular site 
potential function. It is shown that this potential function has no physical interpretation. Einstein- 
model calculations are compared with the physically justifiable Born-yon K~.rm~.n calculations for four 
examples, sulphur, benzene, phenanthrene and pyrene, and very little regularity is apparent in the 
comparison of these results. 

1. Introduction 

The average thermal motion of a rigid molecule in a 
crystal is correctly described by three tensors T, L and 
S which can be obtained from diffraction experiments. 
T and L describe respectively the mean-square trans- 

lational and librational displacements, while S, first 
introduced by Schomaker & Trueblood (1968), takes 
account of the correlations between translation and 
libration. These tensors derive from averages over all 
the lattice modes of vibration whose number may be of 
the order of Avogadro's number. It is therefore unsafe 


