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ABSTRACT          Theory and practice of direct methods are given in detail for their
application in image processing of high resolution electron microscopy and for solving
incommensurate crystal structures. The effect of dynamical electron diffraction is also
discussed.

INTRODUCTION

For the structure analysis of crystalline materials, electron crystallographic methods are in some
cases superior to X-ray methods. Firstly, many crystalline materials important in science and
technology, such as high Tc superconductors, are too small in grain size and too imperfect in periodicity
for an X-ray single crystal analysis to be carried out, but they are suitable for electron microscopic
observation. Secondly the atomic scattering factors for electrons differ greatly from those for X-rays
and it is easier for electron diffraction to observe light atoms in the presence of much heavier atoms.
Finally the electron microscope is the only instrument that can produce simultaneously for a crystalline
sample a microscope image and a diffraction pattern at atomic resolution. In principle either the
electron microscope image (EM) or the electron diffraction (ED) pattern could lead to a structure image
of the sample. However the combination of the two will make the procedure much more efficient and
powerful. Solving crystal structures from electron diffraction data based on the kinematical-diffraction
approximation were pioneered by Vainshtein and his colleagues (see Vaishtein, 1964) and by Cowley
(1953). The first application of direct methods in electron diffraction analysis was presented by Dorset
and Hauptman (1976). High resolution electron microscopic observation of crystal structures appeared
in early 1970’s for inorganic compounds (Allpress, Hewat, Moodie and Sanders, 1972; Cowley and
Iijima, 1972) and for the organic compound, chlorinated copper phthalocyanine (Uyeda Kobayashi,
Suito, Harada and Watanabe, 1972). The idea of combining the information from an EM and the
corresponding ED pattern was proposed by Gerchberg and Saxton (1971). The first attempt to enhance
the resolution of an EM by making use of the corresponding ED was reported by Ishizuka, Miyazaki,
and Uyeda (1982) using the phase correction method (summarized by Gassmann, 1976). Direct
methods in X-ray crystallography were introduced into high resolution electron microscopy as a tool of
image processing combining the information from an EM and the corresponding ED (Li and Fan, 1979;
Fan and Li, 1987). The procedure is in two stages, i.e. image deconvolution and phase extension. The
former aims at eliminating the blurring effect of the contrast transfer function, while the later is for
enhancing the resolution of the image. Multidimensional direct methods (Hao, Liu and Fan, 1987; Fan,
Van Smaalen, Lam and Beurskens, 1993) have been developed for solving crystal structures containing
periodic defects. They have been used to reveal the incommensurate structure modulation in high Tc
superconductors using electron crystallographic data. The scope of this paper will be concentrated in
the direct methods which are applied in electron crystallography for the image processing and for
solving incommensurate crystal structures. While the kinematical electron diffraction are assumed for
all examples in this paper, the effect of dynamical electron diffraction on the results will be discussed.

IMAGE PROCESSING COMBINING EM AND ED

Simulating calculations with the sample, chlorinated copper phthalocyanine, have shown that the
combination of EM and ED can be a much more powerful tool than either of them alone (Fan, Zhong,
Zheng and Li, 1985; Han, Fan and Li, 1986). The results are summarized in Figure 1. The object,

chlorinated copper phthalocyanine (C32N8Cl16Cu) crystallizes in the space group C2/c with unit cell
parameters a=19.62, b=26.08, c=3.76Å and β=116.5o. Figure 1a is the expected image of the unit cell
at 1Å resolution projected down the c axis. Figure 1b is the theoretical EM at 2Å resolution taken
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Figure 1. Simulating calculations on the crystalline chlorinated copper phthalocyanine. (a) the expected
structure image; (b) the theoretical EM at 2Å resolution; (c) the corresponding ED pattern; (d) the direct-
method deconvolution result of (b); (e) the result of direct-method phasing with theoretical electron
diffraction data at 1Å resolution; (f) the result of image processing combining EM and ED.

with the photographic conditions: accelerating voltage=500kV, Cs=1mm, D=150Å and ∆f = −1000Å.
Figure 1c is the corresponding ED pattern at 1Å resolution. It is seen from Figure 1b that, even in the
case of kinematical diffraction, an EM will not necessary directly reflect structure details of the object.
However a direct-method image deconvolution (Han, Fan and Li, 1986) could bring Figure 1b to 1d.
Here the shape of the molecule can be recognized but individual atoms other than copper are not
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visible. On the other hand, a set of structure-factor magnitudes at 1Å resolution can be measured from
the ED pattern. Ab initio direct-method phasing of these data resulted in the best E-map shown in
Figure 1e. Although the chlorine atoms are on the map, but the large number of ghost peaks makes the
E-map impossible to interpret. With the same set of structure-factor magnitudes, by incorporating the
phase information at 2Å resolution obtained from the Fourier transform of Figure 1d, a direct-method
phase extension (Fan, Zhong, Zheng and Li, 1985) led to Figure 1f, which is nearly the same as Figure
1a, the theoretical structure image. While the advantage of combining EM and ED is evident, it does
not mean that, to solve the structure from an ED alone is impossible. Dorset, Tivol and Turner (1991)
and Tivol, Dorset, McCourt and Turner (1993) reported the determination of the structure of
chlorinated copper phthalocyanine. They started from an experimental ED pattern at 0.91Å resolution
obtained with the accelerating voltage of 1200 kV. Direct-methods phasing of the ED revealed all the
heavy atoms. The Fourier refinement based on which let to the complete structure.

Image Deconvolution

The goal of image deconvolution is to retrieve the structure image from one or a series of blurred
EMs, or equivalently, to extract a set of structure factors from them. Different procedures have been
proposed. Most of them use a series of EMs with different defocus values. Uyeda and Ishizuka (1974,
1975) first proposed a method for the deconvolution of a single EM under the weak-phase-object
approximation. Inspired by this work, direct methods in X-ray crystallography were introduced into
high resolution electron microscopy for the image deconvolution using a single EM (Li and Fan, 1979;
Han, Fan and Li, 1986; Liu, Xiang, Fan, Tang, Li, Pan, Uyeda and Fujiyoshi, 1990).

With the weak-phase-object approximation, in which dynamical diffraction effects are neglected,
the Fourier transform of an EM can be expressed as

                                       )](exp[)(sin)(2)()( 21 hhFhT χχσδ −+= hh ,                                 (1)

which can be rearranged to give

                                           )](exp[)(sin2)()( 21
0

hhTF
h

χχσ −=
≠

hh ,                                       (2)

Here σ€=€π/λ U, λ is the electron wavelength and U the accelerating voltage. h is the reciprocal lattice
vector within the resolution limit. F(h) is the structure factor of electron diffraction, which is the
Fourier transform of the potential distribution ϕ(r) of the object. sinχ1(h)exp[−χ2(h)] is the contrast
transfer function, in which
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Here ∆f  is the defocus value, Cs is the spherical aberration coefficient and D is the standard deviation
of the Gaussian distribution of defocus due to the chromatic aberration (Fijes,1977). The values of ∆f,

Cs and D should be found by image deconvolution. Of these three factors, Cs and D can be determined

experimentally without much difficulties. Further more, in contrast to ∆f, Cs and D do not change much
from one image to another. This means that the main problem is the evaluation of ∆f. With the

estimated values of Cs and D, a set of F(h) can be calculated from Equation (2) for a given value of ∆f.
If the ∆f value is correct then the corresponding set of F(h) should obey the Sayre equation (Sayre,
1952)
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where θ is the atomic form factor and V is the volume of the unit cell. Hence the true ∆f can be found by
a systemic change of the trial ∆f so as to improve the validity of the Sayre equation. For the evaluation
of the quality of each trial, figures of merit used for direct methods in X-ray crystallography (see
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Woolfson and Fan, 1995) were introduced. The procedure has been automated in the program VEC
(Wan, Fu, and Fan, 1997). An example K2O.7Nb2O5 is given here. The space group is P4bm and unit
cell parameters are  a=b=27.5Å and c=3.94Å. Figure 2a is the expected image at 3Å resolution of the
unit cell projected down the  c axis. Two [001] direction experimental EMs at the same resolution, one
near to and the other far from the optimum defocus, are shown in Figures 2b and

    

    

Figure 2. Image deconvolution of high resolution EMs of K2O.7Nb2O5. (a) the expected structure image
at 3Å resolution; (b) and (c): experimental EMs with defocus value at about −900Å and −400Å
respectively; (d) and (e): deconvoluted images of (b) and (c) respectively.

2c respectively.  It is seen that Figure 2b and 2c are quite different and roughly the inverse to each
other. Starting with the images 2b and 2c respectively, the program VEC (Wan, Fu and Fan, 1997)
resulted in the deconvoluted images 2d and 2e. Now both the two deconvoluted images have the similar
feature as that of the expected image 2a, i.e. they all have four heptagonal channels surrounding by
hexagonal, pentagonal, tetragonal and trigonal channels.

As has been shown by the simulating calculation (Han, Fan and Li, 1986), ED data can help
improving the deconvolution result. An example using real experimental data is given on the left part of
Figure 3. By comparing Figure 3a, 3b and 3d, it is seen that even for an EM taken under the optimum
defocus condition, the image quality can be significantly improved by the deconvolution making use of
the corresponding ED data.
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Phase Extension

An ED pattern usually contains observable reflections at the resolution equal to or better than 1Å.
In addition, the intensities of the ED pattern from a crystalline specimen are independent of defocus and
the spherical aberration of the electron-optical system. Accordingly, under the weak-phase-object
approximation, better quality images could be obtained from ED. However, structure analysis by ED
alone is subject to the well-known difficulty of the crystallographic phase problem (but see Dorset,
Tivol and Turner, 1991; 1992). On the other hand, since an EM, after deconvolution, can provide phase
information at about 2Å resolution, the complexity of the solution of the phase problem can be greatly
reduced. An improved high-resolution image can be obtained by a phase extension procedure using the
magnitudes of the structure factors from ED and starting phases from the corresponding EM. The
tangent formula (Karle and Hauptman, 1956) is used as the basis of the phase extension:
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where αh is the phase associated with the normalized structure factor Eh. The later is in turn expressed
by the conventional structure factor Fh as

                                                           2/1)( ∑= εhh FE .

Σ is the average value of |Fh|2 for the scattering angle corresponding to h. The factor ε usually equals
unity but is, in general, a small integer that depends on the space group and the type of reflection and
gives the effect that for all the reflections of that particular type <|Eh|

2> = 1.
By substituting the normalized structure factors with known phases into the right-hand side of the

tangent formula, originally unknown phases can be predicted according to the outcome on the left-hand
side. In the program VEC a procedure similar to that of RANTAN (Yao, 1981) is used for phase
extension. All reflections with their E value greater than a certain limit are put into the right-hand side
of Equation (4). Trial sets of random values are given to the unknown phases. The random phases in
each trial set are then changed gradually during the recycling process until they are converged. Figures
of merit (see Woolfson and Fan, 1995) are used to pick out the best solution from the resulting phase
sets.

An example of phase extension using the experimental EM and ED of chlorinated copper
phthalocyanine is given below. Structure-factor magnitudes up to 1Å resolution were measured from
the ED pattern, Figure 3c. Phases up to 2Å resolution were obtained from the Fourier transform of the
deconvoluted image, Figure 3d. The phase extension with the program VEC resulted in Figure 3e,
which shows the essential features of the structure at atomic resolution. Four cycles of Fourier iteration
based on this gave significant improvement as is shown in Figure 3f. This work was originally done by
Fan, Xiang, Li, Pan, Uyeda and Fujiyoshi (1991). The results shown here were reproduced with
improvements by using the program VEC (Wan, Fu and Fan, 1997).

Fan and Zheng (1975) have shown that it is possible to extrapolate not only the phases but also the
magnitudes of structure factors beyond the resolution limit of the original diffraction data. An example
of the structure-factor extrapolation from the theoretical EM of chlorinated copper phthalocyanine at
2Å resolution to the structure image at 1Å resolution has been reported by Liu, Fan and Zheng (1988).
Applications to real EMs still have to be explored.
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Figure 3. Image processing of the high resolution EM of chlorinated copper phthalocyanine. (a) the
expected structure image of the object projected along the c axis; (b) the experimental EM of the object at
2Å resolution taken near the optimum defocus value; (c) the corresponding experimental ED pattern; (d)
the direct-method deconvoluted image of (b); (e) the electron potential projection of the object at 1Å
resolution obtained from the direct-method phase extension based on the deconvoluted image at 2Å
resolution and experimental electron diffraction data at 1Å resolution. (f) the electron potential projection
after 4 cycles of Fourier refinement. The experimental EM and ED are provided by Professor N. Uyeda.
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MULTIDIMENSIONAL DIRECT METHODS AND THE DETERMINATION OF
INCOMMENSURATE CRYSTAL STRUCTURES

In diffraction analysis, crystal structures are assumed to be ideal 3-dimensional periodic objects.
Since real crystals are never perfect, what we obtained is just an averaged image of the real structure
over a large number of unit cells. However a knowledge on the average structure is not enough for
understanding the properties of many solid state materials. Therefore an important task for methods of
solving crystal structures is to extend their scope to include real crystals. Modulated crystal structures
belong to that kind of crystal structures, in which atoms suffer from certain occupational and/or
positional fluctuation. If the period of fluctuation is commensurate with that of the three-dimensional
unit cell then a superstructure results, otherwise an incommensurate modulated structure is obtained.
Incommensurate modulated phases can be found in many important solid state materials. In many cases,
the transition to the incommensurate modulated structure corresponds to a change of certain physical
properties. Hence it is important to know the structure of incommensurate modulated phases in order to
understand the mechanism of the transition and properties in the modulated state. Up to the present
many incommensurate modulated structures were solved by trial-and-error methods. With these
methods it is necessary to make assumption on the modulation in advance. This leads often to
difficulties or erroneous results. In view of diffraction analysis, it is possible to phase the reflections
directly and solve the structure objectively without relying on any assumption about the modulation
wave. Multidimensional direct methods have been developed for this purpose (Hao, Liu and Fan, 1987;
Fan, Van Smaalen, Lam and Beurskens, 1993). A brief description of the theory involved is given
below.

An incommensurate modulated structure produces a 3-dimensional diffraction pattern, which
contains satellites round the main reflections. An example of a section of such a 3-dimensional
diffraction pattern is shown schematically in Figure 4.

Figure 4. Schematic diffraction pattern of an incommensurate modulated structure. The vertical line
segments indicate projected lattice lines parallel to the fourth dimension

The main reflections are consistent with a regular 3-dimensional reciprocal lattice but the satellites do
not fit the same lattice. On the other hand, while the satellites are not commensurate with the main
reflections, they have their own periodicity. Hence, it can be imagined that the 3-dimensional
diffraction pattern is a projection of a 4-dimensional reciprocal lattice, in which the main and the
satellite reflections are all regularly situated at the lattice nodes. From the properties of the Fourier
transform the incommensurate modulated structure here considered can be regarded as a 3-dimensional
“section” of a 4-dimensional periodic structure. This representation was first proposed by De Wolff
(1974) to simplify the structure analysis of the incommensurate modulated structure of γ-Na2CO3. The
above example corresponds to a one-dimensional modulation. For an n-dimensional (n=1,2, …)
modulation, it needs a (3+n)-dimensional description. A (3+n)-dimensional reciprocal vector is
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expressed as
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where bi is the ith translation vector defining the reciprocal unit cell. The structure factor formula is
written as
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The fj(h) on the right-hand side of (7) is the ordinary atomic scattering factor, Pj is the occupational
modulation function and Uj describes the deviation of the jth atom from its average position ( , , )j j jx x x1 2 3

.

For more details on (6) and (7) the reader is referred to the papers by De Wolff (1974), Yamamoto
(1982) and Hao, Liu & Fan (1987). What should be emphasised here is that, according to (6) a
modulated structure can be regarded as a set of ‘modulated atoms’ situated at their average positions in
3-dimensional space. The ‘modulated atom’ in turn is defined by a ‘modulated atomic scattering factor’
expressed as (7). A special kind of incommensurate modulated structures is called composite structures.
The characteristic of which is the coexistence of two or more mutually incommensurate 3-dimensional
lattices. Owing to the interaction of coexisting lattices, composite structures are also incommensurate
modulated structures. Unlike ordinary incommensurate modulated structures, composite structures do
not have a 3-dimensional average (basic) structure. The basic structure of a composite structure
corresponds to a 4- or higher-dimensional periodic structure. For a detailed description of composite
structures the reader is referred to the paper by Van Smaalen (1992). Obviously crystal-structure
analysis of incommensurate modulated structures would better be implemented in multi-dimensional
space. For this purpose we need firstly a theory on multi-dimensional symmetry and secondly a method
to solve directly the multi-dimensional phase problem. The work of Janner and co-workers (see
Janssen, Janner, Looijenga-Vos and De Wolff, 1992) has been aiming at the first problem, while the
multidimensional direct methods are trying to solve the second.

Hao, Liu and Fan (1987) showed that the Sayre equation (1952) can be extended into multi-
dimensional space. We have
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here h is a multi-dimensional reciprocal vector defined as (5). The right-hand side of (8) can be split
into three parts, i.e.
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Where subscript m stands for main reflections while subscript s stands for satellites. Since the
intensities of satellites are on average much weaker than those of main reflections, the last summation
on the right-hand side of (9) is negligible in comparison with the second, while the last two summations
on the right-hand side of (9) are negligible in comparison with the first. Letting F(h) on the left-hand
side of (9) represents only the structure factor of main reflections we have to first approximation
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On the other hand, if F(h) on the left-hand side of (9) corresponds only to satellites, it follows that
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For ordinary incommensurate modulated structures the first summation on the right-hand side of (11)
has vanished, because any three-dimensional reciprocal lattice vector corresponding to a main reflection
will have zero components in the extra dimensions so that the sum of two such lattice vectors could
never give rise to a lattice vector corresponding to a satellite. We then have

                                                F
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For composite structures on the other hand, since the average structure itself is a 4- or
higher-dimensional periodic structure, the first summation on the right-hand side of (11) does not
vanish. We have instead of (12) the following equation:
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Equation (10) indicates that the phases of main reflections can be derived by a conventional direct
method neglecting the satellites. Equation (12) or (13) can be used to extend phases from the main
reflections to the satellites respectively for ordinary incommensurate modulated structures or composite
structures. This provides a way to determine the modulation functions objectively. The procedure will
be in the following stages:

i)  derive the phases of main reflections using Equation (10);
ii)  derive the phases of satellite reflections using Equation (12) or (13);
iii)  calculate a multi-dimensional Fourier map using the observed structure factor magnitudes and

the phases from i) and ii);
iv)  cut the resulting Fourier map with a 3-dimensional ‘hyperplane’ to obtain an ‘image’ of the

incommensurate modulated structure in the 3-dimensional physical space;
v)  parameters of the modulation functions are measured directly on the multi-dimensional Fourier

map resulting from iii).
A program package DIMS (Direct methods for Incommensurate Modulated Structures) has been written
in Fortran for the implementation of steps i) and ii) (Fu and Fan, 1994; Fu and Fan, 1997).

The widespread occurrence of incommensurate modulations in the high-Tc superconducting phases
and related compounds requires the multi-dimensional crystallographic methods for their structure
analysis. On the other hand, the modulation in the high-Tc superconductors involves both the metal and
the oxygen atoms. The modulation of the latter in the Bi-O layer is important for understanding the
mechanism of superconductivity, since it plays an important role in the incorporation of extra O atoms
in the Bi-O layer and hence contributes to the hole concentration in the Cu-O layer. Owing to the
dominating effect of heavy atoms in X-ray diffraction, electron diffraction can be a better technique to
study the oxygen modulation. In the following there are examples on studying structure details of high-
Tc superconductors by multidimensional direct methods with electron crystallographic data.

The Incommensurate Modulation of the Pb-Doped Bi-2223 Superconductor

The analysis was based on the preliminary electron diffraction study of Li et al. (1989) and the
average structure obtained by Sequeira et al. (1990). The diffraction intensities used in the study were
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measured from the electron diffraction pattern normal to the a axis. Since the a axis is rather short
(5.49Å) and is perpendicular to the modulation vector q, no attempt was made to use 3-dimensional
diffraction data. The symmetry of the sample belongs to the superspace group   P [B bmb] 1-11 (see
Janssen et al., 1992, for a discussion of superspace groups and their designations.) with the
3-dimensional unit cell a = 5.49, b = 5.41, c = 37.1Å; α€=€β€=€γ€= 90o and the modulation vector
q = 0.117b*. Five photographs were taken with different exposure times for the same 0klm electron
diffraction pattern. This is an analogue of the multifilm method in X-ray crystallography for collecting
diffraction intensities. A microdensitometer was used to measure the integrated intensities. Structure
factor magnitudes were obtained as the square root of diffraction intensities. The R factor for the
discrepancy of symmetrically related reflections is 0.12 for the 42 main reflections and 0.13 for the 70
first-order satellite reflections. A few second-order satellites were also observed; however, they are
much weaker than the first-order ones and were neglected in the structure analysis. The structure
analysis was carried out in 4-dimensional space, in which the real and the reciprocal unit cells are
defined respectively as

a1 = a,     a2 = b - 0.117d,     a3 = c,     a4 = d
and

b1 = a*,     b2 = b*,     b3 = c*,     b4 = 0.117 b* + d

where d is the unit vector normal to the 3-dimensional space, i.e. a unit vector simultaneously
perpendicular to the vectors a, b, c, a*, b* and c*. An atom in the 4-dimensional space without
modulation will be something like an infinite straight bar parallel to the fourth dimension a4.

Occupational modulation will change periodically the width, while positional modulation will change
periodically the direction of the bar. Our task is to find out such a periodic change. This can be
accomplished by solving the phase problem and calculating the 4-dimensional potential distribution, the
4-dimensional Fourier map. The incommensurate modulated structure in the 3-dimensional physical
space can be obtained by cutting the 4-dimensional Fourier map with a 3-dimensional hyperplane
perpendicular to the direction a4. The modulation wave of all the atoms can be measured directly on the
4-dimensional Fourier map.

Figure 5. Modulation waves in the Pb-doped Bi-2223 superconductor, revealed on the map

ϕ(x ,0,x ,x )dx1 3 4 1∫ , a 3-dimensional ‘section’ of the 4-dimensional Fourier map at x2=0  projected along the

a axis.

The phases of the main reflections 0kl0 were calculated from the known average structure, while
phases of the satellites 0klm were derived by the multidimensional direct method. A Fourier map in
multidimensional space was then calculated, from which modulation waves of all metal atoms were
measured directly. On this basis least-square refinement including also modulation parameters of
oxygen atoms ended at an R-factor of 0.16 for the main and 0.17 for the first-order satellite reflections.
Figure 5 shows the modulation waves of the metal atoms. Figure 6 shows the incommensurate
modulation of the Pb-doped Bi-2223 superconductor in the 3-dimensional physical
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Figure 6. The 3-dimensional potential distribution function of the Pb-doped Bi-2223 superconductor
projected along the a axis on an area of 10b×1c.

space projected along the a axis. As is seen, both occupational and positional modulations are evident
for most metal atoms. An other prominent feature is that the oxygen atoms on the Cu-O layers move
towards the Ca layer, forming a disordered oxygen bridge across the layers of
Cu(2)-Ca-Cu(1)-Ca-Cu(2). This work was originally done by Mo et al. (1992). The figures shown here
were reproduced by using the program VEC.

The Incommensurate Modulation of Bi-2212

The superconducting phase Bi-2212 has been extensively studied (Matsui et al., 1988; Gao et al.,
1988; Petricek et al., 1990; Yamamoto et al., 1990; Kan, et al., 1992; Gao et al., 1993; Fu et al., 1995).
Most of them were done using X-ray and/or neutron diffraction data. We provide here an example of
using electron crystallographic data and show how the combination of EM and ED can be used to
determine the incommensurate structure even when the average structure is unknown (Fu, Huang et al.,
1994). The sample belongs to the superspace group N [B bmb] 1-11 with a = 5.42, b = 5.44, c = 30.5Å,
α€=€β€= γ = 90o and the modulation wave vector q = 0.22 b* + c*. We started with an EM at 2Å
resolution (Figure 7a) and the corresponding ED (Figure 7b) at 1Å resolution. A set of structure-factor
magnitudes with indices 0klm was measured from the ED. The phases of the main reflections within 2Å
resolution were obtained from the Fourier transform of the deconvoluted EM. Phases of the satellite
reflections and of the main reflections beyond 2Å resolution were derived by the direct-method phase
extension using the program DIMS (Fu and Fan, 1994). The resulting Fourier map is shown in Figure
7c, which reveals much more structure details in comparison with the original EM.
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Figure 7. Image processing for the Bi-2212 superconductor. (a) experimental EM taken with the incident
electron beam parallel to the a axis; (b) the corresponding ED pattern; (c) the 3-dimensional potential
distribution projected along the a axis on an area of 8b×1c. The structure-factor magnitudes used for
calculating (c) were from the ED, while the phases were from the direct-method phase extension based on
the deconvolution of (a). The experimental EM is provided by Dr. S. Horiuchi.

The Incommensurate Modulation of Bi-2201

Crystals of Bi-2201 belong to the superspace group P [B 2/b] -11 with a = 5.41, b = 5.43,
c = 24.6Å, α = β = γ = 90o and the modulation wave vector q = 0.217b* + 0.62c*. The structure
analysis was based on the known average structure (Gao, et al., 1989). Only electron diffraction
intensities of the 0klm reflections were used. Since inconsistent results have been reported on the
oxygen atoms (Gao, et al., 1989; Yamamoto et al., 1992), special care was taken for their
determination. The 4-dimensional Fourier map projected along the a axis was calculated with phases
from the average structure and the direct-method phase extension. Apart from two oxygen atoms, which
are overlapped with metal atoms respectively on the Bi-O and Sr-O layers, the modulation waves of all
symmetrically independent atoms were measured directly from this Fourier map. Up to the fourth-order
harmonics were included in the expression of the modulation function. Fourier recycling and
least-squares refinement led to the R factors: RT = 0.32, RM = 0.29, RS1 = 0.29, RS2 = 0.36 and
RS3 = 0.52. Here the R factor is defined as R = Σ| |Fo|-|Fc| |€⁄  Σ|Fo|, RT denotes the R factor for the total
reflections, RM for the main reflections, RS1, RS2 and RS3 respectively for the first-order, second-order
and third-order satellite reflections. The resulting Fourier map clearly shows the main feature of the
modulation. However, it contains a number of small additional peaks near some of the Bi and Sr sites.
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After failed to eliminate them, they were treated as extra oxygen atoms. By including extra oxygen
atoms in the Bi-O layer, a few cycles of refinement brought the R factors to 0.23, 0.20, 0.24, 0.27 and
0.30 for RT, RM, RS1, RS2 and RS3 respectively. Further inclusion of extra oxygen atoms in the Sr-O layer
led to the R factors of 0.18, 0.13, 0.19, 0.25 and 0.26 for RT, RM, RS1, RS2 and RS3 respectively. The final
Fourier map is shown in Figure 8.

Figure 8. The final Fourier map (three-dimensional potential distribution) of the Bi-2201 superconductor
projected down the a axis on to an area of 7b×3c.

Solving Composite Structures

There have been no examples on solving composite structures by multidimensional direct methods
using electron diffraction data. We provide here an example from X-ray crystallography since the
subject is of interesting and the method can be used with electron diffraction data as well. For
composite structures it is much more difficult to solve the average structure than to determine the
modulation. The reason is that, the average structure of a composite crystal corresponds to a four- or
higher-dimensional periodic object and, ab initio phasing rather than phase extension should be used
for solving the phase problem. However by using multidimensional direct methods the problem can be
much simpler. The composite crystal structure (PbS)1.18TiS2 (Van Smaalen et al., 1991) belongs to the
space group C2/m (α, 0, 0) s-1. It consists of two subsystems: the subsystem TiS2 with a1=3.409,
b=5.880, c=11.760 α=95.29o and the subsystem PbS with a2=5.800, b=5.881, c=11.759 α=95.27o. A
default run of DIMS in a test (Mo et al., 1996) using Equation (10) was able to reveal directly the basic
structure (see Figure 9). On the upper-left of Figure 9 there is the direct-method-resulting electron
density map, which is the 3-dimensional hypersection with x4 =0 projected along the b axis. The map
shows the alternate stacking of TiS2 and PbS layers along the c axis. This results in a ‘chimney-ladder’
structure along the a axis with two incommensurate periodicity a1 and a2. The other three direct-method
maps in Figure 9 are 2-dimensional sections of the 4-dimensional electron density function showing
clearly all the atoms in the unit cell. Determination of the modulation by multi-dimensional direct
methods was also successful (Fan et al., 1993; Sha, et al., 1994).

 extra O atomsb

c
 Bi
 Sr
 Cu
 Sr
 Bi

O atoms on the
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Figure 9. Direct-method phased Fourier maps of (PbS)1.18TiS2. Upper-left: ρ(x ,x ,x , )dx1 32 20∫ , the

3-dimensional hypersection of the electron density function projected down the b axis; Lower-left:
ρ(x1, 0, x3 0); Upper-right: ρ(0.25, x2, x3, 0.25); Lower-right: ρ(0, x2, x3, 0).

ON THE EFFECT OF DYNAMICAL ELECTRON DIFFRACTION

It is well known that the dynamical diffraction effect causes serious problems in crystal-structure
analysis using electron diffraction data. However, recent study  (Li, Wan, Li and Fan, 1998) showed
that this effect is often much weaker than what people would usually predict. The thermal motion of
atoms, the incommensurate modulation of the structure and any deviation from the ideal periodicity can
significantly weaken the dynamical diffraction effect. In practice many structural defects, which break
the ideal periodicity, are either unrecognized or difficult to handle in simulating calculations. Hence the
dynamical electron diffraction effect is often overestimated in theoretical considerations.

It is believed that, with kinematical electron-diffraction analysis, reasonable result is unlikely to be
obtained from a sample much thicker than 100Å, especially when the sample contains heavy atoms.
However, the following simulating calculation shows that, under the kinematical-diffraction
approximation, the incommensurate modulation of Bi-2201 could be determined by using electron
diffraction data from a sample as thick as 300Å. Details on the determination of the incommensurate
modulation in Bi-2201 from experimental electron diffraction data have been given in the previous
section. The resulting potential map is shown in Figure 8. Here we start from the resulting structure
model. Atoms in which are expressed by their scattering factor, positional and thermal parameters, and
their modulation parameters. Four different sets of dynamical diffraction intensities were calculated
assuming respectively the sample thickness equal to 1×5.41Å (the length of the a axis), 20×5.41Å,
40×5.41Å and 60×5.41Å. Potential maps (shown in Figure 10) were then obtained by assigning the
correct phases to the square roots of dynamical diffraction intensities. Figure 10a, which can be
considered as nearly the true structure image, is close enough to the experimental map in Figure 8. The
other three maps all have their essential feature similar to that of Figure 10a. Furthermore, even some
oxygen atoms are visible on the map corresponding to the sample thickness of 300Å (Figure 10d). It
turns out that, based on the kinematical-diffraction approximation, the modulation of all metal atoms in
Bi-2201 could be determined by using electron diffraction data from a sample as thick as 300Å,

Pb

S

Ti

Ti

S

c

b

0

S

Pb

c

a

S

Ti

Pb + S

a1

a2

c

b

0



- 15 -

provided we can find the correct phases by whatever method. The complete structure may then be
solved by Fourier recycling. Besides, given a rough structure model or just a partial structure, there are
some techniques to compensate the dynamical diffraction effect (Sha, Fan and Li,1993; Huang, Liu, Gu,
Xiong, Fan and Li, 1996). This would further improve the results.

     

     

Figure 10. Simulating potential distribution of the superconductor Bi-2201 projected down the a axis on
to an area of 7b×3c, calculated with the structure factors replaced by the square roots of dynamical
diffraction intensities associated with correct phases. (a) sample thickness = 1×5.41Å; (b) sample
thickness = 20×5.41Å;  (c) sample thickness = 40×5.41Å; (d) sample thickness = 60×5.41Å.

The calculation, measurement and display of images shown in this paper, except for those in
Figures 1, and 7, were done by the program VEC (Wan, Fu and Fan, 1997) running on an IBM
compatible PC.
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