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Abstract 

A possible approach to direct phasing of quasicrystal 
diffraction data is described. The data are first con- 
verted to a set of structure-factor amplitudes of a 
multidimensional crystal. The Patterson function of 
the quasicrystal is used to derive the converting factor. 
A direct method is then used to solve the phase 
problem in multi-dimensional space. The method has 
been tested with a hypothetical one-dimensional 
quasicrystal yielding a satisfactory result. 

Introduction 

The recently discovered quasicrystals (Shechtman, 
Blech, Gratias & Cahn, 1984) belong to a new kind 
of substance between the crystalline and amorphous 
states. They have long-range orientational order as 
well as long-range quasiperiodicity. The incon- 
sistency of their symmetry with classical crystallogra- 
phy has drawn great attention from condensed-matter 
physicists and chemists. Determination of quasicrys- 
tal structures is important for understanding the 
properties or for exploring the applications of quasi- 
crystals. So far quasicrystal structure determination 
has mainly been performed by trial-and-error 
methods. One must first propose a structure model, 
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calculate the diffraction intensities and then compare 
with the experimental data. This is a tedious process; 
it resembles the structure analysis of crystals in the 
early days. During the last two decades X-ray analysis 
of crystal structures has achieved great progress owing 
to the development of direct methods (Woolfson, 
1987). Hence it is worth trying to apply direct methods 
to quasicrystal structures. However, the task is far 
from straightforward, since quasicrystals do not 
possess periodicity in the sense of classical crystal- 
lography. Use of direct methods in quasicrystal struc- 
ture analysis was proposed by Li Fang-hua, Wang 
Li-chen & Fan Hai-fu (1987). A structure-factor rela- 
tion for quasicrystals has been derived and a pre- 
liminary test result has been obtained. In the previous 
study, the shape factor for constructing a quasicrystal 
from a multi-dimensional (MD) crystal is assumed 
to be known in advance. However this is not true in 
practice. In order that direct methods can be useful 
in practice, this problem remains to be solved. In this 
paper, a method which makes use of the Patterson 
function is proposed to determine the shape factor. 
This enables the conversion of diffraction data from 
a three-dimensional (3D) quasicrystal to the corre- 
sponding MD crystal. Direct methods can then be 
used to solve the phase problem in MD space. 

© 1990 International Union of Crystallography 
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Principle 

Quasicrystals yield sharp diffraction peaks which do 
not have simple indices in 3D reciprocal space. In 
principle, direct methods can still be used if a huge 
unit cell is chosen. However, the large number of 
atoms in such a unit cell makes the problem too 
complicated. Hence it would be better to have an 
alternative representation for quasicrystal structures. 
According to Bak (1986) and Janssen (1986) the 
diffraction pattern of a 3D quasicrystal can be 
regarded as the projection of a MD-weighted 
reciprocal lattice. Each reciprocal-lattice point has a 
weight equal to the corresponding intensity diffracted 
from the quasicrystal. The position vector of a lattice 
point can be expressed as 

I~I = ~ hib,, (1) 

where the b : s  are translation vectors defining the MD 
reciprocal unit cell, and the hi's are the n indices of 
a particular diffraction spot of the quasicrystal; they 
are all simple integers. On the other hand by a coor- 
dinate transform according fo the symmetry of the 
quasicrystal, H can also be split into two components 
H and HA. The former is the projection of H onto 
3D reciprocal space while the latter is that onto 
( n - 3 ) D  pseudo-reciprocal space. Both H and HA do 
not have simple indices. Now a 3D quasicrystal can 
be described as a 3D section of a MD crystal. The 

^ 

corresponding structure factors are denoted by Fq (H), 
the magnitude of which can be derived from the 
diffraction intensity of the quasicrystal. The unit cell 
is defined by a set of translation vectors ai, which is 
the reciprocal of b~. A position vector in the MD 
crystal can be expressed as 

~= ~ x,a,. (2) 
i = l  

can also be split into two components r and rA. The 
former is the projection of ~ onto 3D physical space 
while the latter is that onto ( n - 3 ) D  pseudo-space. 
The MD crystal shows no periodicity in either phy- 
sical space or pseudo-space alone. It should be 
noticed that the MD crystal described above corre- 
sponds to a special MD lattice, the nodes of which 
are not geometrical points. They have a particular 
shape in pseudo-space defined by a window function 
w(rA) which equals unity or zero depending on 
whether rA lies inside or outside a certain region 
around the lattice points. Atoms in such a MD crystal 
are then spread in the pseudo-space as they convolute 
with the window function. In order that direct 
methods can be applied, it is necessary to convert the 
above MD crystal to one having a normal lattice with 
geometrical points as nodes. The structure factor of 
this MD crystal is denoted by F(I?t). The relation 

between Fq(l~I) and F(I~I) can be written as 
^ A 

Fq(H) = S(HA)F(H), (3) 

where S(HA) is a shape factor which is the Fourier 
transform of the window function w(rA). Direct 
methods have proved successful for solving incom- 
mensurate modulated structures in MD space (Hao 
Quan, Liu Yi-wei & Fan Hai-fu, 1987). They can also 
be used to solve the phase problem of quasicrystals 
provided we can derive the shape factor S ( H . )  from 
experiment. This can be done as follows. Square both 
sides of (3). Then by the convolution theorem we have 

Pq(r, rA)=P(r,  rA)*[w(r±)*w(rA)] (4) 

where Pq(r, rA) is the inverse Fourier transform of 
IFq(H, HA)] 2, i.e. the Patterson function of the MD 
crystal corresponding to a special lattice, nodes of 
which have the shape defined by w(rA). P(r,  rA) is 
the inverse Fourier transform of IF(H, H.)[ 2, i.e. the 
Patterson function of the MD crystal corresponding 
to a normal lattice with geometrical points as nodes. 
'*' denotes the convolution operation, w(ri)  is the 
inverse Fourier transform of S(HA). Our task is to 
find the boundary of W(rA). Consider a region near 
P(0, 0). Then P(0, rA) will be a delta function centred 
on rA = 0. Hence within a region near the origin of 
the MD space, we can write 

Pq(0, r±) = Cw(r±) * w(r±), (5) 

where C is a constant, w(rA) * w(rA) has a maximum 
at rA = 0. It gradually falls to zero, or in practice falls 
to a base level, as IrAI increases to a value equal to 
the width of w(rA) along the direction of rA. Hence 
we can determine the boundary of w(rA) from the 
shape of the Patterson-origin peak. In summary a 
quasicrystal structure can be determined through the 
following steps: 

(1) Index the diffraction pattern in MD space, i.e. 
find the corresponding MD reciprocal lattice and the 
relation between physical space and MD space. 

(2) Determine the shape factor S(HA) from 
Pq(0, rA). 

(3) Convert IFq(Itl)l to the normalized structure 
factors IE(ltl)l of the corresponding MD crystal. 

(4) Solve the MD crystal by direct methods. 
(5) Cut the MD crystal by physical space to obtain 

the quasicrystal. 

Test model 

In the following test we use a centrosymmetric 1D 
quasicrystal model which corresponds to a Fibonacci 
sequence and is constructed by cutting a 2D square 
structure with a line - the 1D physical space (see Fig. 
1). A position vector in the 2D space is expressed as 

= xlal + x2a2. 

Both al and a2 have a period a = 18-00/~. ~ can also 
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be expressed as 

~=X+X±, 

where x is defined in the 1D physical space while x± 
is defined in the 1D pseudo-space perpendicular to 
x. The angle 0 between x and x~ is given by 

cot 0 = ( 1  +v~) /2 .  

The two segments constructing the 
sequence are denoted by 

l ~ = a c o s 0  and 12=as in0 ,  

Fibonacci 

respectively. Corresponding to the 2D-lattice shown 
in Fig. 1, there is a 2D reciprocal lattice. The position 
vector of the lattice points is given by 

I~I = hlbl + h 2 b 2 ,  

where bland b2 are reciprocal to a~ and a2. hi and h2 

are the two integer indices for a 2D reciprocal-lattice 
point. H can also be expressed as 

I-~I= H + H ± ,  

where H = hxl* + h21* and H± = h21*- h~l*, in which 
l* = a* cos 0 and l* = a* sin 0; they are the two seg- 
ments constructing the 1D reciprocal quasilattice. 
a*= 1/a is the period of the 2D reciprocal lattice. 

A 

The shape factor relating Fq(H) and F(H) then 
becomes (Li Fang-hua et al., 1987) 

S(H±) = sin 7rH±(ll+12)/~H ± . (6) 

The 2D square structure is constructed by convoluting 
four equal atoms with the 2D square lattice described 
above. The atomic number is chosen arbitrarily as 25. 
The absolute coordinates (in ~ngstr6ms) of the two 
independent atoms in the coordinate system (x~, x2) 
are (7.626,6.155) and (1.910,2.397), which were 
chosen by a random generator keeping the condition 
that in the 1D physical space, no atomic distance 
should be less than the sum of two atomic radii. In 
100 000 random trials, it was found that no structure 
model with more than two independent atoms can 
fulfil this condition. This means that for a one- 
dimensional quasicrystal it is hard to find a model 

x, \ 

\ \  

\ \  
\ \ \  \ \  \ 

\ 
\ 

Fig. 1. Cons t ruc t ion  o f  1D quasicrys ta l  by  cutt ing a 2D crystal  
structure,  e luc ida ted  by  cut t ing a square  lattice to f o r m  a 
F ibonacc i  sequence .  

Table 1. Atomic positions in the 1D quasicrystal 

A t o m  X, ,  Xa  

1 2-88 2.88 
2 5.58 5.57 
3 9.72 9.73 
4 12.42 12-42 
5 15.05 15.04 
6 18.19 18-20 
7 21-89 21.88 
8 25"03 25"04 
9 27.65 27"66 

10 30-36 30"35 
11 34-49 34.50 
12 37"20 37.19 
13 39"82 39.81 
14 42"97 42.97 
15 46"66 46.66 
16 49.80 49.82 
17 55"13 55"12 
18 58"28 58.28 
19 61.97 61 "97 
20 65.12 65.13 
21 67.74 67-75 
22 70.45 70.43 
23 74.58 74-59 
24 77.28 77"28 
25 79"91 79"90 
26 83 "05 83.06 
27 86"75 86"74 
28 89"89 89"90 
29 92"52 92"52 
30 95.22 95.21 

positions from the model structure (A). 
positions from the direct-method result (/~,). 

X m : 

Xd: 

more complicated than that used in our test with the 
given unit cell, atomic species, 0 and (l~ +/2). By 
cutting this 2D square structure with the line x, we 
obtained the 1D quasicrystal model. Atomic positions 
of the first 30 atoms are listed in Table 1. Structure 

^ 

factors, Fq(H), corresponding to the electron diffrac- 
tion from the first 10 000 atoms of this 1D quasicrystal 
at 1/~ resolution were calculated as shown in Table 
2. Reflections with intensity less than 1% of the largest 
have been omitted and were not used throughout the 
test calculation. Our test was performed by assuming 
that we know in advance only the following infor- 
mation: 

(1) the 2D structure is centrosymmetric; 
(2) 2D square unit cell: a = 18.00/~; 
(3) the angle 0 between x and x~; 
(4) unit-cell contents: four atoms with atomic 

number equal to 25; 
(5) the magnitudes of Fq(l?l) as listed in Table 2. 

All the above information, except (1), is easy to obtain 
from experiment. 

Test and results 

A. Evaluation of  S(H±) 

According to (6) the inverse Fourier transform of 
S(H±) is a window function 

1, if[x±]<-(l~+12)/2 
w(x~)= 0, if Ix±l> (11+/2)/2. 
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Table 2. Structure factors of the 2D crystal structure 
converted from the 1D quasicrystal 

H = htb l  + h262. 

S igns  o f  s tructure  fac tors  d e r i v e d  froth the  direct  m e t h o d  are e x a c t l y  
the  s a m e  as t h o s e  c a l c u l a t e d  f r o m  the  m o d e l .  

h~ h 2 IFq(H)I IF(H)I IE(H)I S ign  

0 4 31.62 22.26 1.62 - 
1 - 1  37.67 27.50 0.95 + 
1 1 41.21 2.37 0.14 + 
1 3 44-53 25.40 1.83 - 
2 0 60-95 11.34 0-79 + 
2 1 55.89 2.56 0-18 - 
2 2 71-72 24.86 1-83 - 
3 - 1  36.72 17.77 1.29 + 
3 5 33.09 18.34 1.95 + 
4 2 156.23 11.10 1.06 - 
4 4 45.50 16.69 1.87 + 
5 1 46.17 14.54 1.45 - 
5 3 315.02 12.95 1.52 + 
6 4 193.19 9.52 1.32 + 
7 3 56.13 11.20 1.62 + 
7 4 82.43 4.28 0.65 - 
7 5 48.68 7.89 1.27 - 
8 6 34.97 8.13 1.53 - 
9 5 92.69 8.80 1.70 - 
9 6 51.38 3.34 0.68 + 

10 6 41.41 1.80 0.39 + 
11 7 158-35 7.02 1.75 + 
12 7 43.05 2.66 0.71 - 
13 8 74.22 3-00 0.89 - 
16 10 80.05 3-32 1.30 + 
18 11 76.01 3.18 1.46 - 

P,,(o, xi) 

~--- X ±  

Fig.  2. Or ig in  p e a k  o f  Pq(0,  x±) .  

In order to evaluate S(H~),  we need the value of  
l~+12. As discussed in the previous section, the 
Patterson-origin peak will fall to a minimum as 
Ix~l increases from 0 to 11+/2, the width of  w(x±). 
A Patterson section Pq(0,x±) was calculated using 
IFq(fi)l 2 as coefficients. The origin peak falls to the 
base line at about 25.15 A, as shown in Fig. 2. Hence, 
as a first approximation we have 11 +/2 = 25.15 A. This 
value can be refined by the following trial-and-error 
procedure. With a value of  l~ + 12, we can convert 
[Fq (H)I to the corresponding I F(H)I and then calculate 
the normalized structure-factor amplitudes IE(fi)l-- 
IF(fi)l/(Y f~)'/~, where f~ is the atomic scattering fac- 
tor for electrons in the 3D physical space. A Patter- 
son function Pe(x ,x±)  calculated with IE(fi)l 2 as 
coefficients will correspond to a self-convolution of  
a point-atom structure and should have in theory a 
delta-function-like origin peak. If the value of  11 +/2 
is not accurate enough, then the origin peak of  
Pn(x, x±) will be broadened. By changing the value 
of  11+/2 in small steps we can find the best value 
which makes the origin peak of  PE (x, x±) the sharPest 
one. In this way, starting from / ~ + / 2 = 2 5 - 1 5 A  we 
obtained a refined value / 1 + / 2 = 2 4 . 7 6 A  which is 
much closer to the true value 24.77 A. Patterson maps 
corresponding to these three values of  l~+/2 are 
shown in Fig. 3. As can be seen even in the PE (x, x j_) 
calculated with the true value of  l~ +/2,  peaks are 
elongated along x±. This is due to the truncation 
effect in pseudo-space. Further discussion will be 
given later. A set of  IF(fi)l and the corresponding 
IE(H)I values calculated with / ~ + / 2 = 2 4 . 7 6 A  are 
listed in Table 2. 

B. Phase (sign) derivation 

A multi-solution direct-method procedure was 
applied to the [E(I?l)l's listed in Table 2. Random 
starting signs were assigned to seven reflections at the 

. m  

w 

o 

. i  w 

,m... :. 

" - -  N • :=" i= : 
- . .  ~ . ~  . ~ 

• ~ .:. ~ .  

--.!: : ~.~.. ... 

... 
.~: 

N! - N 
. - -  .~. = ~  --=. 

• , ~ h  

(a) (b) (c) 

Fig.  3. Pa t t er son  m a p s  PE(X, x ± )  c a l c u l a t e d  a c c o r d i n g  to  di f ferent  v a l u e s  o f  11 + 12. ( a )  ! l + 12 = 25 .15;  (b )  I l + / 2  = 2 4 . 7 7  ( the  true v a l u e ) ;  
( c )  I t + ! 2 = 2 4 . 7 6  A,. xt  is h o r i z o n t a l ,  x2 u p  "the p a g e ,  and  x± a l o n g  the  l o n g  a x e s  o f  the  e l l ip t i ca l  reg ions .  
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bottom of the convergence mgp. 50 trials were calcu- 
lated. The best result was picked by using the residual 
figure of merit defined as 

R<, = ~, laes, - a l /  Y. oLes,, 
il it 

where 

t~:= K c o s ~  + x s i n ~  , 

a<,,-'-E K[I,(K)IIo(K)], 
f-r 

,<, = 2 o . ~ o - - ~ / : l E  (I-~) 17 (I-~') 17 (I~ - t~I') I, 

qb = ~¢r+ qh:i-¢l'. 

For the theory of convergence map and figures of 
merit, the reader is referred to papers by Germain, 
Main & Woolfson (1970, 1971). R~ values resulting 
from the 50 random trials range from 0.170 to 0.519. 
There were nine trials having R~ equal to the 
minimum value 0.170. All these nine trials led to the 
correct solution of the structure with signs of the total 
26 reflections correctly determined. The correspond- 
ing E map is shown in Fig. 4. Atomic positions of 

m 

.+  

.b_ 

. m ,  

. o  

(a) 

: i : : .  

(b) 

Fig. 4. E maps of the 2D crystal. (a) E map resulting from the 
direct method. (b) Theoretical E map of the model structure. 
Axes as in Fig. 3. 

the 1D quasicrystal were measured from the peak 
positions of the E map and are listed in Table 1. 

Discussion 

A common feature in quasicrystal and incommensur- 
ate modulated structures is that atoms spread out in 
pseudo-space along each pseudo-axis. In the case of 
incommensurate modulated structures, the pseudo- 
axes are also axes of the corresponding MD crystal. 
Atoms having a shape in pseudo-space determined 
by the modulation function will not overlap one 
another, while in the case of quasicrystal structures, 
the pseudo-axes are not parallel to those of the corre- 
sponding MD crystal. Atoms have a shape in pseudo- 
space determined by the shape factor S(H_t). These 
extended atoms may overlap one another. Hence 
before applying direct methods to solve the phase 
problem it is essential to correct the shape factor, i.e. 
to convert IFq(ttl)l to IF(ItI)l. This is equivalent to 
sharpening the atoms to geometrical points in pseudo- 
space. In view of this the evaluation of S(Hj_) is an 
important step for applying direct methods to quasi- 
crystals. As can be seen from Figs. 2 and 3 the method 
proposed in this paper for evaluating S(H±) is easy 
to implement and very efficient. 

It should be noticed that in practice we cannot 
obtain a complete set of IF(t?l)l from a set of experi- 
mental data ]Fq(l~I)[, since as IH.I increases, S(H±) 
decreases rapidly; thus according to (3) the value of 
IFq(I~l)l will also decrease rapidly. For this reason it 
is not possible in practice to  observe IFq(I~l)l with 
large IH±I. Consequently [Fq(H)I and also IF(H)I will 
suffer from serious truncation in pseudo-reciprocal 
space. This explains that even after correcting the 
shape factor, peaks in Figs. 3 and 4 are still elongated, 
of course to a much smaller extent, along x±. 

The resemblance of Figs. 4(a) and (b) shows that 
the direct phasing of quasicrystal diffraction data was 
successful in spite of the serious truncation of diffrac- 
tion data. However the direct-method technique used 
in the test is just a routine procedure in X-ray crystal- 
lography. It can be further improved to suit quasi- 
crystal structure analysis. 

For the example used in this paper Patterson analy- 
sis can also be used to derive the quasicrystal struc- 
ture. As can be seen from Fig. 3, after correcting the 
shape factor it is not difficult to solve the 2D structure 
by Patterson analysis. However, when the quasicrystal 
becomes more complicated, especially when it is com- 
posed of nearly equal atoms, direct methods will then 
be superior to Patterson analysis. Hence we recom- 
mend the combination of Patterson and direct 
methods. The former is used to evaluate S (H . ) ,  while 
the latter is used to derive the phases. 

Although the test was done on a 1D quasicrystal 
model with simple arrangement of atoms, there is no 
theoretical limitation to the procedures for use in the 
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multi-dimensional case with more complicated 
atomic arrangements. 
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Abstract 
A single crystal of stoichiometric lithium niobate has 
been studied, using high-resolution synchrotron X- 
rays, under an electric field applied along the polar 
crystallographic c direction. A crystalline plate, 
0.2 mm thick along the c direction, was polarized by 
a +900 V square wave of frequency 50 and 230 Hz. 
Electronic gating ensured that the scattered intensities 
were recorded only during the central 50% of the 
square-wave duration. The results show that the 
stoichiometric crystals have surface layers under the 
A1 electrodes that differ in the c cell dimension from 
the bulk by about dc/c = 6 × 10 -4, The resulting c 
lattice vector is close in length to that of congruent 
Lio.941Nbl.o1203, although the composition of the sur- 
face layer may only be inferred; modification by A1 
in-diffusion may also be possible. The surface-layer 
thickness is estimated to be of the order of 0.01 mm. 
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Introduction 
Lithium niobate is a readily grown high-quality 
single-crystal material widely used in many electronic 
and electro-optic devices. A detailed review of the 
chemisty and physics of lithium niobate has been 
given by R~iuber (1978) and, more recently, in Prop- 
erties of Lithium Niobate (EMIS, 1989). A detailed 
study of both the congruent and stoichiometric crystal 
structure has been presented by Abrahams & Marsh 
(1986). 

Lithium niobate has a congruent melting point at 
1513 K corresponding to the chemical composition 
Li0.946NbO2.973 (Carruthers, Peterson, Grasso & 
Bridenbaugh, 1971), as found in single crystals grown 
from the melt. It is however possible to form 
stoichiometric crystals by lithium vapor-phase 
equilibration of congruent material for about 800 h 
at 1373 K (O'Bryan, Holmes & Kim, 1984). The phy- 
sical properties of lithium niobate are strongly depen- 
dent on composition; for instance, the congruent 
phase has a ferroelectric Curie temperature Tc = 
1402 K, whereas the stoichiometric phase has the 
considerably higher Tc of 1471 (2)K (Gallagher & 
O'Bryan, 1985). 
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