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Abstract 

The validity of the Sayre equation [Sayre (1952). Acta 
Cryst. 5, 60-65] for (3+n)-dimensional  periodic 
structures is examined. A practical procedure is pro- 
posed for the determination of incommensurate 
modulated structures; this is an extension of the direct 
method previously proposed for solving superstruc- 
tures [Fan Hai-fu, He Lao, Qian Jin-zi & Liu Shi- 
xiang (1978). Acta Phys. Sin. 27, 554-558]. With the 
newly proposed method, the phase problem for the 
main as well as the satellite reflections can be solved 
directly without making particular assumptions about 
the modulation. A .known incommensurate modu- 
lated structure, y-Na2CO3, was used in the test. Satis- 
factory results were obtained. 

Introduction 

Incommensurate modulated phases are often found 
in inorganic solids (minerals, alloys, etc.) and organic 
solids. In many cases, the transition to the modulated 
structure corresponds to a chanse of certain physical 
properties. Hence it is essential to know the structure 
of incommensurate phases in order to understand the 
mechanism of the transition and properties in the 
modulated state. Up to the present, methods used in 
the determination of incommensurate modulated 
structures, such as the least-squares method of 
Yamamoto (1982), rely on some assumption about 
the modulation and on a preliminary knowledge of 
the main (average) structure. In this paper a method 
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is described which starts by handling X-ray diffraction 
data and ends in a (3+n)-dimensional  electron 
density map revealing the details of the modulated 
structure objectively. This method is proposed not to 
replace but to combine with the least-squares method 
in a way like that for solving ordinary small molecular 
structures. 

(3 + n)-dimensional description of 
modulated structures 

A modulated structure is a kind of crystal structure 
in which the atoms suffer from certain occupational 
and/or  positional fluctuations according to a periodic 
modulation. In the case that all the wave vectors of 
the modulation wave are commensurate with unit 
vectors of the reciprocal cell, a superstructure results, 
while in the case that the wave vectors are incom- 
mensurate with unit vectors of the reciprocal cell, an 
incommensurate structure is obtained. An n- 
dimensional (n -- 1, 2 , . . . )  periodic modulation corre- 
sponds to an n-dimensional modulated structure. In 
this section, the descriptions of modulated structure 
by de Wolff (1974) and by Yamamoto (1982) are 
briefly reviewed. 

For an n-dimensional modulated structure, the 
reciprocal vector H of a main or satellite reflection 
can be expressed in three-dimensional space as 

H = hla* + h2b* + hac* + ~.. h3+i ki, (1) 
i=1 

where 

k ' =  kila * + k~b* + k~c*. 
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k i is the ith wave vector of the n-dimensional modula- 
tion wave function. In the case of incommensurate 
modulation, at least one of k~l, k~, k~ should be irra- 
tional. Define a (3 + n)-dimensional reciprocal lattice 
with unit vectors 

bl ---- a*, b2-  b*, b3 = C*, 

ba+,=k iq-d, ( i = 1 , 2 , . . . , n ) ,  (2) 

where the d~ are the unit vectors perpendicular to the 
usual three-dimensional space. A reciprocal-lattice 
vector in the (3+ n)-dimensional space can then be 
written as 

3 + n  

I~I = ~ h~b,. (3) 
i = l  

Comparison,of (1) and (3) shows that H is the 
projection of H along directions d~ onto the three- 
dimensional space. In other words, the whole three- 
dimensional diffraction pattern from a modulated 
structure may be imagined as the projection of a 
hypothetical (3 + n)-dimensional weighted reciprocal 
lattice along directions d~ onto the usual three- 
dimensional space. Accordingly, a modulated struc- 
ture can be imagined as the section of a hypothetical 
(3+n)-dimensional periodic structure at a three- 
dimensional hyperplane perpendicular to directions 
d~. Unit vectors of the direct lattice reciprocal to (2) 
should be given as 

i '  
a I = a -  k l d i  , 

i = l  

i '  a2 = b -  k2d~ 
i = l  (4) 

a3 = c - k3di , 
i = 1  

a 3 + i  = d i  (i = 1, 2 , . . . ,  n),  

where a, b and c are reciprocal to a*, b* and c*. A 
vector x = x la+  x2b+ x3c in three-dimensional direct 
space can then be expressed in a (3 + n)-dimensional 
description as 

3 + n  

x = ~ xiai, (5) 
i = 1  

where x3+j = k~xl + kJ2x2 + kJ3x3 • Notice that x~ ,x~, x3 
with respect to a ,b , c  are identical to those with 
respect to al, a2, a3 since a, b, c are the projections of 
aa, a2, a3 along directions di as shown in (4). 

In the (3 + n)-dimensional description, an atom will 
no longer be a sphere. It will be spun out continuously 
along the directions d~ of the extra dimensions with 
periodic variation in occupation and/or  position 
(xa, x2, x3). The main (average) structure is described 
by atoms with constant scattering power and constant 
coordinates x~, x2, x3 over the extra dimensions. The 

deviation of the modulated structure from the average 
one occurs on a hyperplane, i.e. the usual three- 
dimensional space perpendicular to d~. Therefore the 
al, a2, a3 components of the/zth atom in the unit cell 
can be written as 

x '{=~'{+u~{  (i = 1, 2, 3), (6) 

where ~ ' ,  ~ ,  :~  are the al,  a2, a3 components of the 
atomic position of the/zth atom in the average struc- 
ture and u~, u~, u~ are the corresponding displace- 
ments. The a3+i components of the positional vector 
are given by 

x~+i--.-=x3+iq.u~+i ( i=  1 , 2 , . . . ,  n), (7) 

where ~3+i is the (3 + i)th coordinate in the average 
structure which is a continuous parameter indepen- 
dent of/x, 

3 

--- kmum. 
m = l  

In the modulated structure, uf ,  u~, u~ are periodic 
functions of ~3+i. Now the scattering factor of the 
/zth (3+n)-dimensional atom with respect to an 
origin at ( ~ ,  g~, g~, 0 , . . . ,  0) can be written as 

1 1 

f . ( t t ) = f . ( H )  d)74.., d)73+,,P. 

0 0 

(8) 

where f~, (H) is the usual atomic scattering factor and 
P,, is the density modulation function. The structure 
factor in (3 + n)-dimensional space is thus 

F(I~I) = ~  f ,  (I?I)exp(i2~r ~ hjff~). (9) 
/x j = l  

Accordingly, the (3 + n)-dimensional electron density 
distribution can be obtained as 

p ( x ) : ( 1 / V ) ~ , F ( H ) e x p ( - i 2 7 r H . x ) ,  (10) 
1:! 

where V is the volume of the unit cell of the average 
structure. It should be noticed that since in the incom- 
mensurate modulated structure the correspondence 
between I~I and H is one-to-one, we have always 
F(H) = F(H). 

Use of the Sayre equation for an incommensurate 
modulated structure 

1. The Sayre equation in (3 q. n)-dimensional  space 

In theory, the Sayre (1952) equation will be valid 
only when the following conditions are fulfilled: (a) 
the electron density should not be negative; (b) the 
atoms should not overlap each other; and (c) the 
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crystal should be composed of equal atoms. In prac- 
tice, the third condition can rarely be fulfilled. 
However, the Sayre equation still gives satisfactory 
results in most cases. 

For modulated structures the first two conditions 
can be satisfied as well as for ordinary structures. We 
can write in (3 + n)-dimensional space that 

l~q(121) = (1 / V) ~ F(121') F(121 - I?-l'), (11) 

where Fsq(I~l) is the structure factor of the squared 
modulated structure, in which the atoms are squared 
while their positional parameters are left unchanged. 
We have thus 

FSq(l~l) = )  TM. f~q(I2l)exp (i2zr ~ high'), (12) 
j = l  

where 

1 1 

0 0 

xexp i2~- hmu~ + ~ hjg . 
= 1  j = 4  

(13) 

Suppose that the crystal is composed of equala toms 
and P - 1 .  The ratio between F(H) and Fsq(H) will 
then be independent of/z. From (13), (12), (9) and 
(8) we obtain 

F(I~l)/Fsq(I~l) = f ( n ) / f s q ( n )  = 0(H), (14) 

where f ( H )  is the usual atomic scattering factor in 
three-dimensional space and fsq(H) is the corre- 
sponding scattering factor of the 'square atom'. It 
follows from (11) and (14) that 

F(f-I)=[O(H)IV]Y.F(f-I')F(f-I-f-I'). (15) 
f-ir 

This is the ordinary Sayre equation in (3+ 
n)-dimensional space. It forms the foundation of the 
application of direct methods to modulated struc- 
tures. If the structure contains unequal atoms or P~, 
1, we can still calculate O(H) using the approximation 

0(/4) = ( F ( I t l )  )HI(( l lV)I  E F(I-t I ' )F(~-~') I) , . , ,  
ft' 

(16) 

where ( )n means the average over a shell having a 
mean radius of H. 

2. The Sayre equation on a three-dimensional 
hyperplane 

Usually in a modulated structure the modulation 
to the main (average) structure will not be very strong. 
Hence the total intensity of satellite reflections will 
be very weak in comparison with that of the main 

reflections. We can expect that a modified Sayre 
equation exists for only the main reflections, i.e. 

F(I21o) = [ 0 ( H ) / V ]  ~ F(I?t~)) F(I?to - no),"' (17) 
i:16 

A 

in which H0 denotes the reciprocal vector with all 
components hi (i > 3) equal to zero. This implies that 
the phases of main reflections can be obtained by 
ordinary direct methods. 

3. Modified Sayre equation linking main and satellite 
reflections 

Following Fan Hai-fu, He Lao, Qian Jin-zi & Liu 
Shi-xiang (1978) [see also Fan Hai-fu, Yao Jia-xing, 
Main & Woolfson, 1983) we can derive a modified 
Sayre equation which links the phases of satellite 
reflections with those of the main reflectins 

A modulated structure can be described by super- 
imposing a difference structure onto a main structure 
in (3 + n)-dimensional space. We write 

p(x) = p,,, (x) + Ap(x), (18) 

where p,, (x) denotes the electron-density distribution 
of the main structure. If both sides of (18) are squared 
and the term Ap2(x) is neglected it follows that 

pE(x) = p2(x) + 2pro (x) Ap(x). (19) 

Fourier transformation of (18) and (19) gives (20) 
and (21) respectively: 

F(h) = Fm(~) + a F(I~), (20) 
A A A ^ I 

FSq(H) = F~(H)  + (2/V) Y~ F,,(H') A F(H - H ). 

(21) 

Here the subscript m stands for the partial contribu- 
tion from the main structure. If H is a vector corre- 
sponding to o n e o f  the satellite reflections then both 
F,,,(H) and F~(H)  equal zero. Hence from (20) and 
(21) we have 

A A A t 

F]q(H)=(2/V) ~ F, , , (H')Fs(H- n ), (22) 
fi, 

where the subscript s stands for satellite reflections. 
From the substitution of (14) into (22) it follows that 

Fs(H) = [20( H) /  V] Y~ F,,,(I~I')F~(I21-I~I'), (23) 

^ 

where Fro(H), the partial contribution from the main 
structure, can be taken as the total structure factor 
of a main reflection, since the contribution from Ap(x) 
to a main reflection can be neglected. It should be 
noticed that the vectors H' in (23) will have their 
components^hi ( i > 3 )  all equal to zero, while all 
vectors H - H '  in (23) will have their components hi 
(i > 3) equal to the corresponding components of H. 
With (23) the phase derivation for the satellite reflec- 
tions can be greatly simplified, once the phases of the 
main reflections are known. 
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4. Strategy for solving incommensurate 
modulated structures 

A two-step procedure in reciprocal space can be 
used to determine an incommensurate modulated 
structure. In the first step only the phases of main 
reflections are to be derived using (17) in a way similar 
to that for ordinary structures. However there is no 
need to calculate and interpret any E map or Fourier 
map. In the second step the phases of satellite reflec- 
tions are to be derived from those of main reflections 
by making use of (23). Finally a (3 + n)-dimensional 
Fourier map is calculated, which can reveal com- 
pletely the modulated structure. 

Test and results 

All the test calculations were performed with a known 
incommensurate modulated structure, ~/-Na2CO3 
(van Aalst, den Hollander, Peterse & de Wolff, 1976). 
This is a one-dimensional displacive modulated struc- 
ture with a = 8.904(3), b = 5-239(2), c = 6.042(2) A,; 
/3 = 101.35(2)°; kl = 0.182(1), k2 : 0.000, k3 = 
0.318(1). The space group has the following eightfold 
general positions expressed in the coordinates 
xt, x2, x3, x4 in four-dimensional space: 

(o ooo), (½½o o)+ 

X ! X2 X3 X4 

- - X  1 - - X  2 - - X  3 - - X  4 

X 1 - -  X2 X3 X4 -~- 1 

- - X  1 X 2 - - X  3 --X4-~ -1.  

1. Test for the reliability of modified Sayre equations 

The modified Sayre equations (17) and (23) are the 
fundamental formulae to be used in the two-step 
procedure for solving incommensurate modulated 
structures. Equation (17) includes only the ~2 
relationships among the main reflections, i.e. it 
excludes relationships containing any satellite reflec- 
tion. On the other hand, (23) excludes only those 
relationships involving three satellite reflections. The 
self-consistency of (17) and (23) was tested with the 
theoretical data of T-Na2CO3 at about 0.7 ~ reso- 
lution, which was calculated from the final atomic 
parameters. In each test the phases (signs) of the 300 
largest structure factors were calculated and com- 
pared with the true values. The results were arranged 
in descending order of 

IZ F . F . , F . _ . ,  [ 
H' 

and sorted into six groups as listed in columns 3 and 
4 of Table 1 for (17) and (23) respectively. For com- 
parison, the result from the ordinary Sayre equation 
(15) is listed in column 5. As can be seen, (15) gives 
the most accurate result, while (17) contains the 

Table 1. Results on testing the self-consistency of the 
modified Sayre equations 

Percen tage  o f  ref lect ions  
with their  p h a s e  (sign) 

G r o u p  N u m b e r  o f  cor rec t ly  d e t e r m i n e d  
n u m b e r  ref lect ions  (I)  ( I I )  ( I I I )  

1 50 98 100 100 
2 100 98 100 100 
3 150 97 100 100 
4 200 94 99 99 
5 250 92 98 99 
6 300 87 96 97 

(I) Results from (17) on calculating 300 largest F(hlh2h30). 
(II) Results from (23) on calculating 300 largest F(hlh2h31) using 300 

F(hlh2h30) and 300 F(hlh2h31). 
(III) Results from (15) on calculating 300 largest F(hlh2h31) using 300 

F(hlh2h30), 300 F(hlh2h31) and 300 F(hlh2h32). 
The inconsistency shown in (III)  is due to the truncation effect and the 

existence of  unequal atoms. 

Table 2. Atomic coordinates in the average structure 
of T-Na2CO3 

(I)  ( I I )  
x y z x y z 

Na(1) 0 0 0 0 0 0 
Na(2) 0 0 0.5000 0 0 0.5000 
Na(3) 0.1689 0.5000 0-7404 0.1706 0-5000 0.7478 
C 0.1654 0.5000 0.2388 0.1641 0.5000 0.2496 
0(2) 0.2856 0.5000 0.1750 0.2897 0.5000 0.1771 
O(1,3) 0.0902 0-3050 0.2723 0.1016 0.2940 0.2855 

(I) Obtained from a default run of the SAPI85 program. 
(II) From Table l (a)  of van Aalst, den Hollander, Peterse & de Wolff 

(1976). 

largest error. However, it can still be concluded that 
both (17) and (23) are accurate enough for the 
purpose of phase derivation. 

2. Test on solving an incommensurate 
modulated structure 

The 300 largest IF(hlh2h30) l, 250 largest 
I F(hlh2h31)l and 150 largest IF(hlh2h32) l from the 
experimental data of "y-Na2CO3 were used. Firstly 
the phases of F(hlh2h30) were derived by an ordinary 
direct method. The program SAPI85 (Yao Jia-xing, 
Zheng Chao-de, Qian Jin-zi, Han Fu-son, Gu Yuan- 
xin & Fan Hai-fu, 1985; Fan Hai-fu, 1986), run with 
default control, gave automatically the correct 
average structure. The atomic parameters are listed 
in Table 2 in comparison with those obtained by 
Dubbeldam & de Wolff (1969). From the atomic 
parameters listed in Table 2 (I), the signs of the 300 
largest F(hlh2h30) were calculated, 90% of which 
were correct. It should be emphasized that there is 
no need to calculate and interpret an E map at this 
stage. The phases obtained from an ordinary tangent 
refinement can be passed on to the second step 
directly. In the second step, a simple symbolic addi- 
tion procedure was used to derive the phases of 
satellite reflections by making use of (23). The phases 
of F(h~h2h30) obtained in the first step were kept 
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Table 3. Results on the phase derivation of  satellite 
reflections 

Percentage of reflections 
with their phase (sign) 

Group Number of correctly determined 
number reflections F(h  I h2h31) F(h  I h2h32) 

1 50 100 100 
2 100 92 90 
3 150 81 82 
4 200 73 
5 250 70 

fixed. The result is summarized in Table 3. Finally, 
a four-dimensional Fourier series was calculated 
using 300 main reflections and 400 satellite reflections. 
Two-dimensional sections of the Fourier series 
parallel to the fourth direction x4 and passing through 
the average position of Na(1) are shown in Fig. 1. 
Sections through O(1, 3) are shown in Fig. 2. We can 
conclude immediately from Fig. 1 that, within the 
experimental error, the modulation to Na(1) is pure 
displacive with components on al and a3 equal to 
zero. The modulation function is nearly a sinusiodal 
curve; its parameters can easily be read from Fig. 
l(b).  On the other hand, Fig. 2 shows that the modula- 
tion function of O(1, 3) is a helical curve in four- 

o-o -o.1 
-o-.1 ~ [.-- x, 
[ i  x, ~ x, 

X4 

(a) ~ (b) 

0.0 0-0 

~ X 4  % 

~ ,~., 

~ - - - - -  

~ . .  

~ (c) ~ 

Fig. 1. Fourier sections through the centre line of  Na(1). (a) 
p(x,, O, O, x,); (b) p(0, x2,0, x4); (c) p(0, 0, x3, x4). 

0.1 0.2 0.3 0.3 
0:0 ~ j---x, ' 012 

F x, = - =  x, s x ,  
X4 

- - - - . - - _  X 4  ~ 

Q 

n 

,...........!.....___ 

(a) --- (b) (c) 

Fig. 2. Fourier sections through the centre line of  O(1,3). (a) 
p(x~, 0.305, 0.272, x4); (b) p(0-090, x2, 0.272, x4); (c) 
p(0-090, 0.305, x3, x4). 

Na(l) 
Na(2) 
Na(3) 
C 
0(2) 
o(1,3) 

Table 4. Modulation parameters of T-Na2CO3 

(I) (II) 
v (A) /3 (o) v (A) /3 (0) 

0.32 0-297 
0.34 0.340 
0-30 -2.3 0.361 -4.8 
0-35 -1-8 0"308 0"9 
0" 11 -20.6 0.134 - 17-7 

U=0-14 a =-108-6 U =0"295 a =-146.2 
V = 0.27 /3 = 7-2 V = 0"405 /3 = 5-2 

W = 0.15 7 = -80.2 W = 0-260 y= -119-8 

(I) Obtained from three direct-method phased Fourier sections through 
the centre line of the corresponding atoms. 

(II) From Table l(b) of van Aalst, den Hollander, Peterse & de Wolff 
(1976). 

dimensional space. Careful inspection of the Fourier 
series in the whole four-dimensional space is essential 
to find out the modulation parameters for O(1, 3). 
Table 4 lists the modulation parameters found from 
the Fourier sections compared with those from van 
Aalst et al. (1976). Good consistency between the two 
sets of parameters can be observed except for O(1, 3), 
of which the parameters cannot be accurately deter- 
mined from only three sections like those in Fig. 2. 
The accuracy can be improved by using more Fourier 
sections or by making use of partial Fourier projec- 
tions. 

Concluding remarks 

The present work points out the possibility of apply- 
ing direct methods in multi-dimensional space to 
solve incommensurate modulated structures. The 
method is straightforward, easy to automate and there 
is no need to make assumptions about the modulation 
before the Fourier map is obtained. It is reasonable 
to use this method first to derive an initial model and 
then use a least-squares method [e.g. that of 
Yamamoto (1982)] to obtain the final structure. While 
the procedure used in this paper was very efficient, 
it is by no means optimized. Hence there is still room 
for improvement. 

Two of the authors (HQ and FHF) are indebted 
to Professor Li Yin-yuan for helpful discussions. 
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