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Origin of the T1¿a dependence of the heat capacity of glasses at low temperature
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We address the issue of the experimentally observed deviation of the heat capacity of glasses from linearity
at low temperaturesT;1 K. The energy spectrum of an anharmonic oscillator in a double-well potential is
calculated, using parameters from recent molecular dynamics simulations of two-level systems in silica glass.
A model that accounts for the contribution of more than two lowest-energy levels of a single anharmonic
oscillator to the heat capacity atT;1 K is proposed and is shown to describe the experimentally observed
}T1.3 behavior of the heat capacity of silica glass.
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All glasses show anomalous behavior of the heat capa
C at low temperatures;1 K, seen as an additional contribu
tion to the Debye law1 ~Fig. 1!. This contribution is ex-
plained in the model of two-level tunneling-states,3 which
assumes that certain objects in the glass move in double-
potentials~DWP’s!, giving rise to two-level tunneling states
It has been difficult to identify the existence of DWP’s
glasses using atomistic simulations, which has contribute
the growth of a literature doubting their existence. Recen
we performed molecular dynamics~MD! simulations of
silica glass4,5 and have found that it can maintain larg
amplitude reorientations of several tens of connected S4
tetrahedra. We suggested that these motions are those g
rise to the two-level tunneling states of Ref. 3.

In this work we use the insights into the nature of DWP
in silica glass gained in Refs. 4 and 5, including the size
participating objects, barrier height, and hopping frequen
to address another issue related to the observed anom
heat capacity at low temperature. In the model of two-le
tunneling states,3 the heat capacity for a single tunnelin
state,C0, is calculated assuming that at low temperature
dynamics in the two-level system~TLS! includes only tran-
sitions between the two lowest-energy levelsE1 and E2.
Since topological disorder in the glass results in the prese
of DWP’s with different parameters, and hence different v
ues ofE1 ,E2, the heat capacity is derived by averagingC0
with the density of two-level states:

C5E C0~DE!n~DE!d~DE!5
p2

6
kB

2n~0!T, ~1!

where DE5E22E1, and n(0) is the density of states a
DE;1 K, which is assumed to be approximately constan
the range ofDE.3 According to Eq.~1!, the contribution to
the heat capacity due to two-level tunneling states is lin
with temperature. However, experimentally the depende
of C on T at low temperature shows a deviation from linea
ity as}T11a, where for silica glass,a50.3 ~see Fig. 1!. No
generally accepted explanation exists so far for t
deviation.2

In this paper we show that deviation from linearity m
be explained if the dynamics of the object in DWP’s in gla
involves transitions between more than two lowest-ene
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levels atT;1 K. We start by numerically finding the energ
spectrum of a single anharmonic oscillator, using the ra
of model parameters from our recent MD simulation
DWP’s in silica glass, as well as from experimental data4,5

The low-lying part of calculated spectrum of symmetric a
harmonic oscillators is a set of close pairs of energy lev
Using this property of the spectrum, we analytically deri
the expression for the energy and show that our model
dicts the observed}T1.3 behavior of the heat capacity.

We start by noting that the difference between the t
lowest-energy levels of the object in a DWP construc
from the superposition of two harmonic wells is given by

DE52\vA 2V

p\v
exp~2dA2MV/\!, ~2!

whereM is the mass of the object,v is the oscillation angu-
lar frequency for one harmonic well,V is the barrier height,
and 2d is the separation between two minima, such thaV
5 1

2 Mv2d2 ~see, for example, Ref. 6!. Expression~2! is de-
rived in the approximationdA2MV/\@1, and henceDE is
very sensitive to the object’s massM. As mentioned earlier,

FIG. 1. Specific heat of silica glass and quartz as a function
temperature~from Ref. 2!.
©2002 The American Physical Society01-1
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BRIEF REPORTS PHYSICAL REVIEW B 65 092201
we have seen that the object moving in DWP’s in silica gl
consists of several tens of connected SiO4 tetrahedra,4,5 giv-
ing a mass that is larger by an order of magnitude than
usually assumed. Larger values ofM lead to a substantia
decrease ofDE, and the energy levels that are next to t
first pair are expected to lower, so that they start gett
excited at;1 K and hence contribute to the heat capacity.
demonstrate this, we need to derive the energy spectrum
anharmonic oscillators explicitly.

An alternative Hamiltonian that describes an object m
ing in a DWP is

H52
\2

2M

d2

dq2
1Mv2q21A exp~2gq2!, ~3!

whereq is the coordinate,M is the object’s mass,v is the
angular frequency of oscillation in the harmonic well wh
A50, andA andg are parameters that determine the form
the DWP. The matrix elements of Hamiltonian~3! using har-
monic oscillator basis functions are

Hmn5dmn\vS n1
1

2D1AVmn ,

Vmn5
1

Ap2n1mn!m!
E e2~11 \g/Mv!x2

Hn~x!Hm~x!dx,

whereHn(x) are Hermite polynomials.7 The integral ofVmn
exists in analytical form as a function ofj511\g/Mv.
Note that the reason for choosing the DWP in the form of E
~3! is that it is essentially harmonic at higher values of e
ergy. Using harmonic oscillator basis functions, the anh
monicity in Eq. ~3! becomes a vanishing perturbation
higher energy values, which results in good convergency
energy values as the size of the Hamiltonian matrix
creases.

We introduce the barrier heightV and a requirement tha
the energy minima of DWP’s be separated by a certain
tanced, thus reducing the model parameters toM, V andn,
wheren5v/2p. The range of these parameters can be cho
using our recent MD simulations of silica glass,4,5 in which
the motions in DWP’s involve several tens of connec
SiO4 tetrahedra, with typical values of atomic jumps fro
one minimum to another of about 1 Å, giving us the range
valuesM andd. We choose the upper limit ofV at 0.05 eV,
consistent with our estimations from MD.4,5 The upper limit
of n may be estimated by noting that the motion in DWP
being a soft potential, does not involve any distortions
SiO4 tetrahedra. The mode that can propagate without S4
units having to distort is called a rigid unit mode~RUM!, and
we have previously found that the structure of silica glas
essentially RUM floppy.4,5 From a comparison of calculate
and experimental dynamic structure factors in silica gla
we have found that the frequencies of the RUM’s spre
from zero up to the boson peak at;1 THz.5 Values ofn are
determined by the superposition of RUM’s with different fr
quenciesn i , leading to the appearance of modes with f
quencies that start from minuni2nju.
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For each set of (M ,V,n), we numerically diagonalize
Hmn . We find that in the range of model parameters cons
ered, the values of the lowest-energy levels converge w
with increasing size ofHmn . We are interested in whethe
the range of parameters (M ,V,n) requires that more than th
two lowest-energy levels give a contribution to the heat
pacity at;1 K. This would be true if

l5E32E1'kBT0 , ~4!

where E1 and E3 are first and third energy levels, andT0
;1 K. By varying the values of (M ,V) at a given value ofn
we have found that the condition~4! can be satisfied within
the range of parameters described above, with the valuen
up to ;0.1 THz. The latter value ofn is consistent with the
one we derive from constructing the profile of the potent
energy over the jump event.

We find that within the considered range of model para
eters, the structure of the low-lying part of the energy sp
trum can be well approximated as a set of close pairs
levels, with the energy difference within a paire significantly
smaller than the distance between different pairsl, e!l ~see
Fig. 2!. Such a structure of the energy spectrum of symme
anharmonic oscillators was noted in Ref. 7. It is also con
tent with the structure of the spectrum derived using the
tential of two superimposed harmonic wells, if the objec
mass is large.6 The latter condition is given asdAMv/\
>4 ~Ref. 6! and is well satisfied for values ofM ,V,n in the
considered range.

We now derive the energy of the glass arising from t
spectrum of energy levels shown schematically in Fig.
assuming thatl;1 K:

E5E E0~$Ek%!n~$Ek%!dE1•••dEN , ~5!

whereE0 is the energy of a single anharmonic oscillator, a
n($Ek%) is the density of states of the configuratio
$E1 , . . . ,EN%.

As was noted above, within the range of consider
model parameters, the low-lying part of the energy spectr

FIG. 2. Schematic representation of the low-lying part of t
energy spectrum$Ek% of symmetric anharmonic oscillators.
1-2
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BRIEF REPORTS PHYSICAL REVIEW B 65 092201
can be represented in terms ofe andl ~see Fig. 2!. ThusE0
becomes a function ofe and l only, and the energy can b
written as

E5E E0~e,l,N!n~e,l!de dl, ~6!

wheren(e,l) is the density of states that yields the ener
spectrum with the structure shown in Fig. 2 and parametee
and l. For N pairs of energy levels in the spectrum, th
partition function is

Z5 (
k50

N21

exp~2bkl!@11exp~2be!#

5@11exp~2be!#
12exp~2Nbl!

12exp~2bl!
, ~7!

whereb51/kBT. Formally the summation in Eq.~7! should
be extended to infinity, but in what follows we preserveN as
a parameter for reasons that become apparent later.E0 is
given as

E05E01~e,b!1E02~l,b,N!, ~8!

where

E01~e,b!5
e

exp~be!11
~9!

and

E02~l,b,N!5
l

exp~bl!21
2

Nl

exp~Nbl!21
. ~10!

SinceE0 can be written as a sum of two terms, each
them separately dependent one andl, the integration~6! is
easily performed as it splits into two separate terms:

E5E E01~e,b!n~e!de1E E02~l,b,N!n~l!dl. ~11!

At low temperature,kBT;e, only the first term in Eq.
~11! is significant, sincee!l ~note that this condition has no
been used until now! and, as will be shown later, the inte
grand in the second term in Eq.~11! is significant only when
kBT;l. The integration overe can be done by extendin
the range ofe from zero to infinity, since the dependence
E01 on e in Eq. ~9! is well centered aroundẽ'1.3kBT. For
this reason the behavior ofn(e) is not important in the range
beyondẽ. As the line of argument in Ref. 3, we assume th
n(e) is approximately constant for the contributing stat
Becauseẽ,DE;1 K, we can setn( ẽ)'n(0), wheren(0)
is the density of states introduced in Eq.~1!. The energy at
kBT;e is

Ee5E
0

`

E01~e,b!n~e!de5
p2

12
n~0!kB

2T2. ~12!

The resultant heat capacity is identical to Eq.~1! and corre-
sponds to the case when only the lowest-energy pair is
cessible to the system.
09220
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As kBT becomes comparable withl, the contribution
from the second term in Eq.~11! becomes significant. To
evaluate the integral overl, we note that, similar toE01, E02

has a well-defined maximum for finiteN. Indeed,
E02(l,b,N52)5E01(l,b), and the peak position decreas
slowly with N, remaining aroundl'kBT for severalN. Thus
for finite N the integration overl in Eq. ~11! can be carried
out in the same manner as overe above. ForN5`, E02 has
its maximum value of 1 atl50. On the other hand, we find
from the calculated energy spectra of Eq.~3! that all sets of
physical model parameters given(l)→0 for l,l̃'1 K and
give n(l) constant forl.l̃. Qualitatively this may be un-
derstood by noting that the value ofv2 in Eq. ~3! has a
natural lower limit. This imposes the limit on the separati
between different energy pairs and hencel ~in the case of
harmonic oscillators, the corresponding level separation
simply proportional tov!, thus suppressing the states wi
small values ofl. That n(l)→0 when l,l̃ means that
the productE02(l,b,N5`)n(l) in Eq. ~11! is centered
aroundl̃. Therefore forN5` the integration overl can also
be carried out in the same way as overe. Note thatl̃'1 K
corresponds to the system with effective two energy pa
contributing at 1 K. Thus we can writeE02(l,b,N
5`)n(l)5E02(l,b,N52)n(l̃). From calculations we find
n(l̃)'n( ẽ), and the energy atkBT;l is then given as

E5Ee1E
0

`

E02~l,b,2!n~ l̃ !dl5
p2

6
n~0!kB

2T2. ~13!

The main point is illustrated in Fig. 3. At low temperatur
the product ofE02(l,b,N5`) andn(l) is small for alll,
so that the contribution to the energy, Eq.~11!, is negligible.
In this limit, the TLS model3 is a good approximation. At
higher temperatures, the product ofE02(l,b,N5`) and
n(l) is peaked at a nonzero value ofl and could be said to
resemble the form ofE02(l,b,N52) at the same tempera
ture ~or indeed, if appropriate, the same function for sligh

FIG. 3. Left shows an(l) ~dashed line! and E02(l,b,N5`)
~solid line! for low temperature~high b!. The product is vanishingly
small, leading to a negligible contribution to the energy, Eq.~11!.
The right side shows the samen(l) ~dashed line!, but with
E02(l,b,N5`) at a temperature of around 0.5 K~solid line!. The
product of the two is very similar toE02(l,b,N52) at the same
temperature~chain curve!.
1-3
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BRIEF REPORTS PHYSICAL REVIEW B 65 092201
higher values ofN). Thus the energy function crosses ov
from the TLS function to something resembling the st
with N pairs of energy levels.

Based on Eqs.~12! and~13!, the observed deviation of th
heat capacity from linearity can be described as follows.
the temperature increases frome to l, the energy deviates
from the parabola E5xT2 to E52xT2, where x
5(p2/12)n(0)kB

2 . This is shown schematically in Fig. 4. I
the crossover regime betweenT1;e and T2;l we might
expect to find the energy}T21a. We have (T2 /T1)21a

52(T2 /T1)2 or a5 log 2/log(T2 /T1). From Fig. 1, T2/T1
'10 and we obtaina50.3 ~see Fig. 4!. The resultant form
E}T2.3 leads to the heat capacity varying as}T1.3. This is
exactly as is seen in Fig. 1, and thus we conclude that
proposed model correctly describes the experimentally
served behavior of heat capacity. This argument has b

FIG. 4. Energy as a function of temperature~solid line! varying
asT2.3, shown as a crossover between two parabolasxT2 and 2xT2

~dashed lines! in the rangeT150.03 K andT250.3 K.
V.
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supported by numerical calculations using a form ofn(l)
that givesn(l)E02(l,b,N5`);E02(l,b,N52) at 0.5 K,
resulting in a crossover fromE}T2 to E}T2.3 at T
;0.1 K.

Before concluding, we discuss what effect the asymme
of DWP’s may have on our model. Generally, the asymme
changes the structure of energy levels, Fig. 2, with the se
ration between two lowest-energy pairs equal to

DE5Ae21D0
2, ~14!

whereD0 is the potential asymmetry, ande is the tunneling
contribution. Due to isotropic atomic arrangements in gla
the density of statesn(D0) with asymmetry betweenD0 and
D01dD0 is equal for positive and negativeD0. Together
with the condition thatn(D0) be a monotonous function
which decreases asuD0u increases, sinceuD0u is limited by its
maximum value in glass, this means that there is a nonz
number of states withD0;0. Sincee!1 K, the typical val-
ues ofe are below 0.1 K, and the values of asymmetry up
0.1 K would not have a significant effect on the value
separation between two lowest-energy levels~14!, as well as
on the overall structure of energy spectrum in Fig. 2 a
hence, on our model.

In summary, we have addressed the issue of the non
earity of the heat capacity of glasses at low temperature;1
K. We have shown that within the range of parameters t
describe the DWP’s in silica glass, more than two lowe
energy levels need to be taken into account when calcula
the heat capacity at;1 K. We have proposed a model th
accounts for the contribution of higher-energy levels and
scribes the experimentally observed}T1.3 behavior of the
heat capacity.
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