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Abstract The main driving force behind Al/Si ordering
in tetrahedral framework aluminosilicates is nearest-
neighbour Al/Al avoidance. Computer simulation is used
to explore the direct consequences of such Al/Al avoid-
ance. The main result is that the order-disorder transition
temperature Tc falls dramatically as the concentration x of
Al in the structure is reduced, and if the only interactions
are those associated with nearest-neighbour Al/Al avoid-
ance, Tc becomes zero for x less than some critical value
xc, where xc=0.31 for the feldspar framework and xc=0.34
for cordierite. Also a large degree of short range order is
found above Tc. Both results differ radically from the
standard Bragg-Williams model. Plots of entropy and en-
thalpy of ordering are given as functions of x and T, which
may be used to interpret experimental data or for extrap-
olation into ranges of x and T inaccessible to experiment.

Key words Loewenstein's rule ´ Al/Al avoidance ´
Al/Si ordering ´ Bragg-Williams

Introduction

Al/Al avoidance is very important in aluminosilicates,
and is the main driving force behind order-disorder phase
transitions in tetrahedral framework silicates. The Loe-
wenstein energy J or J1 is the energy cost associated with
the formation of a nearest-neighbour Al�O�Al linkage; it
is defined as the energy given out in the reaction

Al�O�Al+Si�O�Si®2 Al�O�Si. (1)

Energies J2, ... Jr associated with interactions between
more separated tetrahedra can be defined in a similar
way. Computer simulations have been performed using

empirical interatomic pair potentials to determine values
of J1, J2, ... Jr for sillimanite (Bertram et al. 1990), gehle-
nite (Thayaparam et al. 1994), and cordierite (Thayapar-
am et al. 1996). These simulations showed that J1 is of
the order of five times greater than next-nearest-neigh-
bour interactions.

The main objective of this paper is to determine how
Al/Al avoidance influences the formation of long range
order below the phase transition temperature, Tc, and
the formation of short range order above Tc. The motiva-
tion for this work follows our earlier computer simulation
work on Al/Si ordering phase transitions (Dove et al.
1996) in which we identified the crucial rôle that Al con-
centration x (i.e., the concentration of Al on tetrahedral
sites, with 1�x as the concentration of Si) plays in deter-
mining the transition temperature. In particular, it was
suggested that when x<0.5, Tc is much lower than the es-
timate given by the Bragg-Williams model because of the
possibility of forming local configurations with complete
Al/Al avoidance without precipitating long range order.

The main result of this paper is that there is a dramatic
fall in the order-disorder transition temperature Tc with re-
duced Al concentration x. In fact, Tc becomes zero for x
less than some critical value xc. This dramatic fall in Tc
is the ªdilutionº effect discussed by Dove et al. (1996).
The other significant result presented in this paper is that
there is a great deal of short range order even above Tc.

In this paper we also use the model to produce results
for long and short range order and thermodynamic quan-
tities such as the enthalpy and entropy as functions of x
and T. These results can be used to interpret experimental
data, and for extrapolation into regions of x and T where
experiment is not possible.

Computational method

The Al/Al avoidance model

In our computer simulations, we define a network of sites
with the same topological structure as the aluminosilicate
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being investigated; in this paper we specifically consider
the feldspar and cordierite frameworks. To calculate the
internal energy of a configuration, we associate an energy
of J with each Al�O�Al linkage and zero with each
Al�O�Si and Si�O�Si linkage, specifically excluding
all other possible interactions. Thus in the model, the en-
ergy E of a configuration is

E� E0� J
X

i jh i
hihj; �2�

where the sum is over all nearest-neighbour pairs, and hi
is 1 if atom i is Al and 0 if it is Si. Energy and enthalpy
are equivalent for this model, since it does not include
volume effects. Note that this model can be mapped onto
the standard Ising spin model where si is 1 for Al and �1
for Si by substituting hi � 1

2 1�si� �:
The term E0 is a constant, and has no consequences for

the evolution of the computer simulation, so we can set it
equal to zero. Therefore E will be zero for any state with
complete Al/Al avoidance, and NAl�AlJ for a state with
NAl�Al Al�O�Al linkages.

We investigated the model using the Monte Carlo
method for fixed values of x and T. We initially assigned
Al and Si atoms to the sites with a distribution corre-
sponding to a totally ordered state with concentration x,
and then allowed the system to equilibrate at a given val-
ue of T. The reason for this was that if we had started in a
disordered state (corresponding to T=¥), domain struc-
tures might have formed at low temperatures, and these
would not have been recognised as ordered. Equal length
runs were used for equilibration and analysis.

Definitions of order parameter

We measure the degree of order of a configuration by a
long range order parameter Q. The definition of Q is dif-
ferent for different frameworks. Most of the frameworks
we considered can be divided into two sublattices A
and B in such a way that all the nearest neighbours of at-
oms on the A sublattice are on the B sublattice and vice
versa; we will refer to frameworks with this property as
ªABAB frameworksº. For ABAB frameworks, a state
has long range order if one sublattice is preferentially oc-
cupied by Al atoms, and the definition of Q we use is

No: of Al atoms on A sublattice� �ÿ No: of Al atoms on B sublattice� �
Total number of Al atoms

:

�3�
Here Q can vary between 1 and �1 for any value of x.

This definition of Q does not apply, for example, to the
cordierite framework, since it contains nine-membered
rings and therefore is not an ABAB framework. In this
case, we define Q in terms of the correlations between at-
oms which are as far apart as possible. Since we used pe-
riodic boundary conditions in our computer simulation,
this distance was half the sample size. If we define

PAA � hihi�lx=2

D E
; �4�

where lx is the length of the sample in the x direction, then
the definition of Q we used for cordierite was

Q� PAA sample� �ÿPAA random� �
PAA ordered� �ÿPAA random� � : �5�

Here 0£Q£1 for any value of x. This equation can be sim-
plified if we write PAA(random)=x2, and we can then cal-
culate PAA(ordered) as follows. If x� 4

9; there exists at
least one ordered state with total Al/Al avoidance and a
repeat unit of one orthorhombic unit cell with 36 tetrah-
edra; for such a state PAA � 4

9: Ordered states with x< 4
9

can be formed by removing randomly chosen Al atoms
from an ordered state with x� 4

9; and hence

PAA ordered� � � 4
9
� 9

4
x

� �2

�5
9
� 0� 9

4
x2: �6�

Therefore (5) reduces to

Q� 4
5x2

hihi�lx=2

D E
ÿ x2

� �
: �7�

Statistical analysis

Running simulations at constant x and T gave us Q(x, T)
and E(x, T), where E is the internal energy per atom.
We estimated Tc(x) by running simulations at constant x
over a range of T and determining where Q fell to zero.
The results were checked by comparision with the calcu-
lation of the susceptibility

c T� � � Q2

 �ÿ Qh i2

T
: �8�

c(T) will diverge at Tc, so plots of c�1(T) provide an inde-
pendent measurement of Tc, in a fully self-consistent man-
ner. If necessary, this process was repeated over a smaller
range of T to estimate Tc more precisely.

The free energy F of the model can be calculated by
thermodynamic integration. The general principle of this
method for any model is to separate the Hamiltonian H in-
to a sum of a term H0 that corresponds to an approxima-
tion to H that can be solved exactly, and a term
DH=H�H0. The free energy can be obtained from this
separated Hamiltonian using a result that follows from
the Bogoliubov inequality (Yeomans 1992):

F � F0�
Z 1

l�0
DHh ildl; �9�

where F0 is the free energy corresponding to a system
governed by the Hamiltonian H0, and DHh il denotes the
average of (H�H0) obtained over a distribution function
determined by the Hamiltonian

Hl �H0� lDH: �10�
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In its practical implementation, the distribution function
can be obtained by performing a Monte Carlo simulation
subject to the Hamiltonian Hl, and evaluating at each step
the energy corresponding to the Hamiltonian H.

In our system the implementation of this approach was
relatively straightforward. The Hamiltonian describing
the system was equivalent to the energy given by (2).
Our approximate Hamiltonian H0 was that for a non-inter-
acting system, i.e. H0=0, in which at any temperature the
Al and Si cations would be distributed at random in the
structure. The free energy for this Hamiltonian, F0, is then
obtained from the entropy of a completely random system
with zero energy, and is therefore given by

F0 � EÿTS� kBT x lnx� 1ÿ x� � ln 1ÿ x� �� �: �11�
The Hamiltonian Hl is therefore identical in form to

the Hamiltonian of the system as given by (2), except that
the exchange constant J is replaced by the smaller value
lJ. The average DHh il was evaluated for each value of
l at a fixed temperature by running the Monte Carlo sim-
ulation using the Hamiltonian Hl. This had an average
number of Al�O�Al linkages, from which the Hamiltoni-
an H, required for the evaluation of DHh il; could be cal-
culated. In effect, since H0=0, the energy given by the
Monte Carlo simulation performed with the exchange
constant lJ was simply divided by l to give DHh il: The
process was repeated for many values of l ranging from
zero to unity, and the resultant DHh il was then integrated
over l to give the free energy using (9). The entropy of
the model could then be calculated from the data for F
and E.

Results for transition temperatures

Graphs of Tc(x) for the feldspar and cordierite frameworks
and the two-dimensional square lattice are shown in
Fig. 1. The value of Tc drops rapidly with falling Al con-
centration x. This dramatic fall in Tc is similar to the ex-
perimental plot of Tc(x) for feldspar over a narrow range
of x shown by Carpenter and McConnell (1984), although
the experimental Tc falls more rapidly. From Carpenter
and McConnell (1984) we have Tc(x=0.5)>1823 K (the
melting point for pure anorthite) and also
Tc(x=0.4375)=1663 K. So the ratio

r� Tc x� 0:5� �
Tc x� 0:4375� � �12�

has experimentally a value greater than 1.10, but the com-
puter simulation gives r=1.06. However, our results for
Tc(x) are not very different from experiment, and are cer-
tainly much better than the Bragg-Williams prediction for
Tc(x), which is also shown for the feldspar framework in
Fig. 1.

This dramatic fall in Tc occurs because frameworks
with low coordination can have a lot of short range order
without any long range order when the Al concentration is
low; however, Bragg-Williams theory ignores short range
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Fig. 1a Tc(x) for the feldspar framework (solid line), compared with
Tc(x) for the Bragg-Williams model (dashed line). The latter has
been scaled by a factor of 0.64 to give the correct Tc for x=0.5. b
Tc(x) for the cordierite framework. c Tc(x) for the two-dimensional
square lattice
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order. The predictions of Bragg-Williams theory are bet-
ter for frameworks with higher coordination, since it be-
comes exact in the limit of each atom having infinitely
many neighbours.

We define xc as the critical concentration at which
Tc(x) falls to zero. It was determined by plotting Q(x) at
T=0 and seeing where Q fell to zero, and, for confirma-
tion, where the variance of Q was largest. We estimate
that the error in xc is �0.01.

Table 1 shows xc for various frameworks. Our values
of xc are high, i.e., these results are very different from
the prediction of Bragg-Williams theory that xc=0. This
breakdown of the standard Bragg-Williams model is so
pronounced because the coordination number of most of
the frameworks we consider is only 4; note that xc for
the body-centred cubic framework is much lower than
for the other frameworks because this framework has a
higher coordination number. This is a different type of
breakdown of Bragg-Williams theory from the one that
occurs for the face-centred cubic framework, where it
breaks down because of ªfrustrationº in the sense of Wan-
nier (1950). Of the frameworks we consider, only cordie-
rite is frustrated, and therefore its value of xc is slightly
higher than those of the other tetrahedrally coordinated
structures.

What are the physical reasons that there is no ordered
state for x<xc? Qualitatively, if x is sufficiently low then
the Al atoms can be arranged more or less at random
without any Al�O�Al linkages, i.e., the requirement of
complete Al/Al avoidance does not lower the entropy
very much. We can define an entropy S0(Q, x) for a sys-
tem at T=0 with the order parameter constrained to some
chosen value Q. Then the equilibrium value of Q will be
such as to maximise S0(Q, x). This idea is discussed in
more detail in the following paper (Myers 1998), where
it is used to find an approximation for xc.

Our results were anticipated, at least in a qualitative
sense, by the large body of work on ªpercolationº (e.g.
Stauffer and Aharony 1994). For a lattice with vacant
sites, only for a concentration of occupied sites greater
than some typical threshold will a single cluster extend
throughout the whole lattice; for lower concentrations
the system will break up into small clusters with no long
range order. We have mapped our A and B sublattices on-
to a site-percolation model in order to obtain an estimate
for the lowest value of x that will sustain long range order
(unpublished work). We have found that this mapping
does not give a very close lower bound for xc, but it gives
an alternative demonstration that xc>0.

Application to enthalpy and short range order

The short range order parameter s is a measure of the de-
gree of Al/Al avoidance. It must be unity for a structure
with no Al�O�Al linkages, and zero for a totally random
structure. We define it as:

s� 1ÿ Proportion of AlÿOÿAl bonds in the sample� �
Proportion of AlÿOÿAl bonds in a totally random state� � :

�13�
This definition is the full short range order that would be
measured experimentally by 29Si NMR, for example. Be-
low Tc it includes a component from the long range order,
and so we also define a short range order parameter s© that
excludes the local ordering that arises from the long range
order as

s0 � sÿQ2

1ÿQ2
: �14�

Since the energy E of the model is directly proportional to
the number of Al�O�Al bonds, E and s are essentially
different measures of the same quantity for this simple
model, related by

E� 1
2
zJ x2 1ÿs� �; �15�

where z is the coordination number.
Unlike Bragg-Williams theory and Landau theory, the

model gives us an approximation for s both above and be-
low Tc, and our Monte Carlo calculations show that there
is a great deal of short range order even above Tc. Figure 2
shows how the short range order of the feldspar frame-
work falls with increasing temperature for low and high
x. Note that above Tc, s is lower for higher values of x,
because the difference in entropy between states with

Table 1 Values of the critical
concentration xc for various
frameworks

Framework xc

Feldspar 0.31
Cristobalite 0.29
Nepheline 0.29
Cordierite 0.34
Body-centred cubic 0.18
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Fig. 2 Short range order versus temperature for different values of x
for our computer simulation of the feldspar framework. Note that
even when T>Tc(x=0.5), s is much greater than zero, although
s®0 as T®¥
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much and little short range order is greater, but that s is
much greater than zero even for x=0.5 at high tempera-
ture.

Figure 3 illustrates that the enthalpy of the model at
T=1.1 Tc(x) is much less than at T=¥, because of the large
degree of short range order. This enthalpy, which is effec-
tively an enthalpy of ordering, is approximately linear in
x. We can compare it with experimental values of DHord
of anorthite-rich feldspars (Carpenter 1994). For pure
anorthite (x=0.5) the theoretical value of DHord is
0.294 J per atom, and Carpenter's experimental value is
37.3 kJ/mol, where one mole contains 4NA Al and Si at-
oms. Thus we can calculate an approximate value for J:

J � 37:3� 1000
4� 6:023� 1023� 1:602� 10ÿ19� 0:294

eV� 0:33eV: �16�

This value is within the range of 0.4�0.1 eV obtained by
Phillips et al. (1992). Therefore the model gives a reason-
ably good approximation to DHord at the anorthite end.
However, the experimental enthalpy of ordering drops
more steeply with falling x.

Figure 4 shows Q2 versus s over a range of tempera-
tures for the feldspar framework with x=0.5 from our
computer simulation, compared with the prediction of
the Bragg-Williams model that Q2=s. The curve predict-
ed by the computer simulation is much steeper than the
Bragg-Williams curve, again because there is a great deal
of short range order without any long range order.

The curve shown in Fig. 4 is for samples in equilibri-
um at various temperatures. Samples formed by incom-
pletely annealing disordered anorthite glass must appear
to the right of the curve, since short range order varies
much faster than long range order. Experimental results
from annealing anorthite glass at 1400 ëC (Phillips et al.
1992) confirm this, and are shown as dots in Fig. 4.

Results for entropy

It is not possible to measure S experimentally, but our
Monte Carlo computer simulations enable us to estimate
S(x, T) for any chosen framework. Figure 5 shows the en-
tropy per atom S(x) of the feldspar framework for three
different temperatures. Note that for low x, S(x) is fairly
high even at T=0. For example, when x=0.25, S/kB=0.4
at T=0 compared with 0.562 for a fully disordered system.
The high entropy at T=0 for low x arises because the at-
oms can easily be arranged so as to have complete Al/
Al avoidance, as has already been discussed in connection
with the absence of long range order for x<xc.

Figure 6 shows how the entropy of the feldspar frame-
work varies with T for x above and below xc. For x<xc,
the temperature dependence of S is fairly weak, since
the entropy is high even at T=0 (as discussed in connec-

T = 1.1T (x)c

T = ∞
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Fig. 3 Enthalpy of our computer simulation of the feldspar frame-
work at 1.1 Tc(x), compared with the enthalpy at infinite temperature
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Fig. 4 Q2 versus s at x=0.5 for our computer simulation of the feld-
spar framework (solid line), as predicted by Bragg-Williams theory
(dashed line), and experimental results obtained by annealing
anorthite glass at 1400 ëC (filled circles)
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Fig. 5 Variation of entropy with composition for the feldspar frame-
work at various temperatures
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tion with Fig. 5). For x>xc, the temperature dependence
of S is much stronger, and S(T) increases rapidly at Tc.
It continues to increase above Tc, and is well below
S(T®¥) even at quite high temperatures, unlike S(T)
for low x.

Discussion and conclusions

Our model gives values of Tc(x) for the feldspar frame-
work which are considerably higher than its values of
Tc(x) for the cordierite framework or the two-dimensional
square lattice. In the case of the cordierite framework, Tc
is reduced by the frustration effect, and in the case of the
square lattice, Tc is smaller because of the low dimension-
ality. Comparision of the graphs of Tc(x) for the cordierite
framework and the square lattice suggests that the frustra-
tion effect is more pronounced at higher concentrations,
while the effect of low dimensionality is more pro-
nounced at lower concentrations.

It seems plausible that the frustration effect would in-
crease with x, since at low concentrations only small clus-
ters of adjacent Al atoms are present in a random config-
uration, and these can be eliminated by small local adjust-
ments that don't depend on the details of the structure. In
other words, when x is low the entropy of a frustrated
framework is about the same as that of an ABAB frame-
work with the same coordination number, but when x is
high the entropy of the frustrated framework is less for
the same degree of short range order.

Low dimensionality reduces Tc(x) because for a system
to have long range order, there must be a non-zero prob-
ability that two atoms at any distance from each other are

0
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0.40.20
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Fig. 6 Entropy of our computer simulation of the feldspar frame-
work versus temperature for different values of x. The dots on the
right-hand side represent the asymptotic values of S(T) as T®¥
for x=0.25 (filled square) and x=0.5 (filled circle)

Table 2 1000|Q(x, T)| for the feldspar structure

kBT=J Percentage Al concentration

30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

0.000 279 615 726 798 848 885 914 936 953 966 975 983 989 993 996 998 999 1000 1000 1000 1000
0.025 30 601 724 798 846 885 914 936 953 965 975 983 989 993 996 998 999 999 1000 1000 1000
0.050 40 611 722 795 847 885 915 936 952 965 976 983 989 993 996 998 999 1000 1000 1000 1000
0.075 239 613 721 798 847 885 913 935 953 965 975 983 989 993 996 998 999 1000 1000 1000 1000
0.100 219 431 726 797 847 883 914 936 953 966 975 983 989 993 996 998 999 1000 1000 1000 1000
0.125 158 603 720 797 848 885 913 936 952 965 975 983 988 993 996 998 999 1000 1000 1000 1000
0.150 97 119 722 793 846 883 912 934 952 965 975 982 988 993 995 997 999 1000 1000 1000 1000
0.175 64 207 712 787 840 880 911 933 950 964 974 982 988 992 995 997 999 999 1000 1000 1000
0.200 29 289 705 780 837 874 906 929 948 961 973 980 987 991 995 997 998 999 1000 1000 1000
0.225 5 5 678 765 825 868 900 924 944 958 970 978 985 990 994 996 998 999 1000 1000 1000
0.250 61 219 653 746 810 853 890 917 938 954 966 976 983 989 993 995 997 999 999 1000 999
0.275 25 35 497 712 788 839 879 906 930 947 961 972 980 986 991 994 996 998 999 1000 999
0.300 0 65 240 675 760 820 862 895 920 939 955 966 976 983 988 992 995 997 998 999 997
0.325 7 5 143 613 722 789 840 878 907 928 946 960 970 979 985 990 993 995 997 998 995
0.350 9 11 89 436 667 754 813 856 889 915 935 951 963 973 980 986 990 993 995 996 992
0.375 3 7 14 65 588 704 776 828 868 897 921 939 953 965 974 981 986 990 992 993 987
0.400 7 2 8 45 197 623 729 795 839 873 903 924 941 955 965 974 980 985 988 989 980
0.425 1 3 6 5 36 83 667 742 802 845 879 905 926 942 954 964 972 978 981 981 972
0.450 6 3 4 10 11 65 357 674 751 806 849 879 904 924 939 951 960 967 971 971 960
0.475 0 2 4 2 20 23 41 145 685 756 806 846 878 901 919 933 945 953 957 956 944
0.500 1 5 3 1 5 7 9 15 442 675 749 800 839 870 892 910 923 933 938 936 924
0.525 2 1 2 3 9 7 12 69 72 305 662 734 786 826 855 878 894 905 911 910 897
0.550 1 1 1 6 6 4 9 15 0 177 148 631 712 765 804 832 853 868 874 871 861
0.575 0 0 3 0 1 7 5 3 11 7 21 221 579 669 725 765 793 813 822 821 812
0.600 0 1 0 2 1 4 2 3 5 11 4 13 17 405 162 664 703 732 747 750 741
0.625 0 0 1 0 3 1 2 3 7 2 4 15 7 16 43 78 191 586 618 632 630
0.650 0 1 0 0 1 1 1 0 4 3 2 2 2 7 11 27 51 75 66 192 41
0.675 0 1 1 1 1 2 2 0 1 2 2 2 4 2 7 12 14 3 3 5 2
0.700 1 1 1 1 1 0 0 0 1 2 2 3 2 2 2 1 0 5 2 10 2
0.725 0 0 0 1 1 0 1 1 1 2 1 2 0 3 0 4 2 1 2 1 2
0.750 1 0 1 0 1 1 0 1 2 1 2 0 2 3 1 1 2 2 4 1 1
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connected by an unbroken chain of Al�O�Si linkages,
and there are more possible paths when the dimension-
ality is greater. The system will exhibit long range order
if at least a certain proportion of the bonds are Al�O�Si;
the required proportion is higher for a two-dimensional
system than for a three-dimensional system. At low x,
more of the bonds will be Si�O�Si even if there is total
short range order. So it will take less short range disorder
to induce long range disorder, and this effect will be much
more pronounced in the two-dimensional system.

Our simplified model based on exploring the conse-
quences of nearest-neighbour Al/Al avoidance while ig-
noring all other interactions gives fully quantitative re-
sults for enthalpy, entropy, and long and short range or-
der. Moreover these are in semiquantitative agreement
with experimental observations such as the data of Phil-
lips et al. (1992) for Q2 versus s, and Carpenter and
McConnell's (1984) plot of Tc(x).

Landau theory and Bragg-Williams theory are often
used to interpret and extrapolate experimental data be-
cause they give specific convenient functional forms for
the free energy and other thermodynamic quantities (Car-
penter 1992). Our model supplies computed results for all
thermodynamic quantities which can be used to interpret
data in a similar way. It should be significantly better than

the Landau or Bragg-Williams forms because the latter do
not properly take short range order into account. For this
purpose we include Tables 2, 3 and 4 of Q, E and S as
functions of x and kBT/J, from which the short range order
parameters s and s© can be derived. Copies of these tables
are available on the World Wide Web at
http://www.esc.cam.ac.uk/deposit/myers97.html,
and copies of our Monte Carlo programs are available at
http://www.esc.cam.ac.uk/software/bogomc.html
and
http//www.esc.cam.ac.uk/software/isingmc.html.
We have computed these for the feldspar framework but
there seems to be little difference among four-fold coordi-
nated frameworks of tetrahedra.
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Table 3 1000 E(x, T)/J for the feldspar structure

kBT=J Percentage Al concentration

4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

0.000 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0
0.025 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0
0.050 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0
0.075 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0
0.100 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0
0.125 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0
0.150 0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 0
0.175 0 0 0 0 1 1 1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 0
0.200 0 0 0 1 1 1 1 1 1 1 1 2 2 2 2 1 1 1 1 1 1 1 1 0
0.225 0 0 0 1 1 1 1 1 2 2 2 3 3 3 3 2 2 1 1 1 1 1 1 0
0.250 0 0 1 1 1 1 2 2 2 3 4 4 5 5 4 3 3 2 2 1 1 1 1 1
0.275 0 0 1 1 1 2 2 2 3 4 5 6 7 7 7 5 4 3 3 2 2 1 1 1
0.300 0 0 1 1 2 2 3 3 4 5 7 8 9 10 9 7 6 5 4 3 2 2 1 3
0.325 0 1 1 1 2 3 4 4 6 7 9 10 12 13 13 10 9 7 6 4 3 2 2 5
0.350 0 1 1 2 3 3 5 5 7 9 11 13 15 17 17 14 12 10 8 6 5 4 3 8
0.375 0 1 1 2 3 4 5 6 8 10 13 15 18 21 22 19 16 13 11 9 7 6 5 12
0.400 0 1 1 2 3 5 6 8 10 12 15 18 21 25 27 25 21 18 15 12 10 8 8 18
0.425 0 1 2 3 4 5 7 9 11 14 17 21 25 29 32 33 28 24 20 17 14 12 12 25
0.450 1 1 2 3 4 6 8 10 13 16 20 24 28 33 38 40 37 32 27 23 20 18 18 34
0.475 1 1 2 3 5 7 9 11 14 18 22 27 32 37 43 47 48 41 36 31 28 25 27 45
0.500 1 1 2 4 5 7 10 12 16 20 24 29 35 41 48 54 59 54 47 41 38 36 38 60
0.525 1 1 2 4 6 8 11 13 17 22 27 32 39 46 53 60 68 69 61 55 50 49 54 77
0.550 1 1 3 4 6 9 11 14 19 23 29 35 42 50 58 66 75 83 80 71 66 66 73 98
0.575 1 2 3 4 7 9 12 16 20 25 31 38 45 53 63 72 83 94 101 94 88 88 97 124
0.600 1 2 3 5 7 10 13 17 21 27 33 40 48 57 67 78 90 102 115 123 117 116 127 155
0.625 1 2 3 5 7 10 14 18 23 29 35 43 51 61 72 83 96 110 126 142 153 156 166 194
0.650 1 2 3 5 8 11 15 19 24 30 37 45 54 64 76 88 102 118 135 153 174 195 215 250
0.675 1 2 4 6 8 12 16 20 25 32 39 47 57 68 80 93 108 124 143 163 187 213 243 280
0.700 1 2 4 6 9 12 16 21 27 33 41 50 60 71 83 97 113 130 150 172 196 225 257 294
0.725 1 2 4 6 9 13 17 22 28 35 43 52 62 74 87 101 118 136 156 179 205 234 268 305
0.750 1 2 4 6 9 13 18 23 29 36 44 54 65 77 90 105 122 141 162 186 213 243 276 314

¥ 3 7 13 20 29 39 51 65 80 97 115 135 157 180 205 231 259 289 320 353 387 423 461 500
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Table 4 1000 S(x, T)/kB for the feldspar structure

kBT=J Percentage Al concentration

4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

0.000 165 219 265 303 334 360 379 393 401 405 403 396 384 367 349 329 306 280 253 218 179 133 65 0
0.025 165 219 265 303 335 360 379 393 402 405 403 396 384 367 349 326 306 271 253 218 182 123 78 0
0.050 165 219 265 303 334 360 379 393 401 405 403 396 384 368 350 330 307 282 253 215 182 135 78 0
0.075 165 219 265 303 334 360 379 393 402 405 403 396 384 367 350 329 307 283 251 220 184 140 83 0
0.100 165 219 265 303 334 360 379 393 402 405 403 396 384 368 349 328 308 281 255 221 185 138 81 0
0.125 165 219 265 303 335 360 380 393 402 405 403 397 384 368 350 329 308 282 254 223 184 140 81 0
0.150 165 219 265 303 335 360 380 394 403 406 405 398 386 370 351 331 308 283 256 222 184 137 84 0
0.175 165 220 265 304 335 361 381 395 404 408 407 400 389 373 353 332 309 285 257 223 185 139 84 0
0.200 165 220 266 304 336 362 382 397 406 411 410 404 393 377 358 336 313 286 257 224 185 140 86 0
0.225 165 220 266 305 337 363 384 399 409 414 414 409 399 383 363 340 315 289 258 225 186 141 85 0
0.250 165 220 266 305 338 365 386 402 413 418 419 415 406 390 369 345 320 292 260 227 188 143 86 2
0.275 165 220 267 306 339 366 388 404 416 423 425 422 413 399 377 352 325 297 266 230 189 144 88 2
0.300 165 221 267 307 340 368 390 407 420 428 431 429 421 408 387 360 332 302 269 233 192 144 87 9
0.325 165 221 268 308 341 369 392 411 424 433 437 436 430 419 398 369 340 309 275 237 195 149 88 16
0.350 165 221 268 308 343 371 395 413 428 437 443 443 439 429 411 381 350 318 282 243 200 152 91 25
0.375 166 221 269 309 344 373 397 416 432 442 449 450 448 440 424 395 361 327 290 251 207 157 99 37
0.400 166 222 269 310 345 374 399 419 435 447 454 458 456 450 437 411 375 340 301 260 216 164 106 53
0.425 166 222 270 311 346 376 401 422 439 452 460 464 465 460 450 429 391 354 314 271 226 173 117 69
0.450 166 222 270 311 347 378 403 425 442 456 465 471 472 470 462 446 411 371 328 285 238 186 130 90
0.475 166 222 271 312 348 379 405 427 445 460 470 477 480 479 473 461 436 391 348 302 254 203 149 115
0.500 166 223 271 313 349 380 407 430 449 464 475 483 487 488 484 475 458 417 371 323 275 224 173 144
0.525 166 223 271 313 350 382 409 432 451 467 479 488 494 496 494 487 475 448 398 350 299 249 202 178
0.550 166 223 272 314 351 383 410 434 454 471 484 493 500 503 503 498 490 473 433 380 330 281 237 217
0.575 166 223 272 314 352 384 412 436 457 474 488 498 506 510 511 509 503 492 471 420 368 321 280 263
0.600 166 223 272 315 352 385 413 438 459 477 491 503 511 516 519 518 514 507 495 470 417 369 331 317
0.625 166 224 273 315 353 386 415 440 461 479 494 507 516 522 526 527 525 520 513 501 476 433 395 380
0.650 167 224 273 316 354 387 416 441 463 482 498 510 520 528 532 534 534 531 526 519 509 494 473 469
0.675 167 224 273 316 354 388 417 443 465 484 501 514 525 533 538 541 543 541 538 534 528 522 516 514
0.700 167 224 273 317 355 389 418 444 467 487 503 517 528 537 544 548 550 550 549 546 542 539 536 535
0.725 167 224 274 317 355 389 419 446 469 489 506 520 532 542 549 554 557 558 558 557 554 552 551 550
0.750 167 224 274 317 356 390 420 447 470 491 508 523 535 546 553 559 563 565 566 566 565 563 562 562

¥ 168 227 279 325 367 405 440 471 500 527 551 573 593 611 627 641 653 664 673 680 686 690 692 693


