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Abstract The use of quantum mechanics methods within
the formalism of density functional theory requires a
method to represent the electron wave functions. We
compare the use of strictly localized basis functions
based on atomic orbitals with the use of plane waves for
the study of mineral properties and behaviour. Strictly
localized functions enable the computational resources
to scale linearly with the size of the system, whereas
plane-wave methods scale more as the cube power of the
system size, and for this reason the use of localized
functions will be preferred for studies of large sizes. We
present test results obtained from studies of cation or-
dering in spinel, garnet and amphibole phases, the high-
pressure displacive phase transition in cristobalite, and
the intercalation of organic molecules into pyrophyllite.
We conclude that the use of localized basis sets provides
a useful route forward for quantum mechanical studies
of large-scale mineral problems.

Keywords Linear scaling Æ SIESTA Æ Density-functional
Theory Æ Atomic Orbitals

Introduction

In recent years, simulation studies of minerals using
quantum mechanics have become increasingly important
in helping to understand the behaviour and properties of
minerals. Many of the studies in this area have used
density-functional theory (DFT) (Payne et al. 1992),
which allows exchange and correlation effects to be
incorporated directly and efficiently, although in an
approximate way. These studies sometimes also use
pseudopotential methods to represent the inner (core)
electrons in order to reduce the computational demands
of the calculations. By contrast, Hartree–Fock methods
incorporate exchange interactions exactly, but correla-
tion effects are either neglected or incorporated as an
a posteriori correction (Chartier et al. 1999). In appli-
cations to studies of minerals, density-functional theory
calculations have typically represented the electron wave
functions by superposition of plane waves, allowing the
amplitude of each wave to be adjusted in the calculation
in order to minimize the energy (the variational principle
of DFT of Hohenberg and Kohn 1964). Plane waves are
a natural choice for a system with periodicity, but they
suffer from the fact that the time taken for a calculation
scales with the cube of the number of atoms. Electronic
structure calculations are demanding of computer
power, and the scope of such calculations is always
limited by the availability of computing resources. De-
velopments in hardware (such as the availability of large
parallel supercomputers) and developments in algo-
rithms enable larger calculations to be performed.
However, neither types of development can grow at a
sustained rate to allow significant increases in N3.
Instead, it is necessary to look again at the basic
methodology, in order to seek for methods that
enable computational demands to scale linearly with
sample size. The most promising methods are those that
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represent the electron wave functions by localized
functions rather than by plane waves (Ordejon 1998;
Goedecker 1999).

Attaining linear scaling is possible by making explicit
use of the near-sightedness principle (Kohn 1996), by
which the effect of a local perturbation becomes negli-
gibly small in a region sufficiently far away. The simplest
way to relate this locality with linear scaling is thinking
about studying a large system piecewise, the size of the
(overlapping) pieces being determined by the range of
the interactions. The computational effort then becomes
proportional to the number of pieces and scales, there-
fore linearly with the system size. This argument gives a
simple image for understanding linear scaling, but most
methods nowadays use more elaborate ways of exploit-
ing locality (Ordejon 1998). The main point in any case
is to use strictly localized wave functions at every level of
the calculations. Paradoxically, the long-range electro-
static interactions do not pose particular problems: the
corresponding term in the energy and in the one-electron
potential can be treated efficiently in linear-scaling
fashion (White et al. 1994; Ordejon et al. 1996; Goe-
decker 1999).

Effective linear scaling is obtained when the size of
the system becomes larger than the locality range. This
gives a crossing size below which conventional meth-
odologies are of advantage. This crossing point depends
on system characteristics (most importantly whether the
system is metal or insulator) and on differences among
the particular implementations. It is clear, however, that
the importance of these techniques will only grow with
time as more powerful computers allow the study of
larger and more complex systems.

Strictly localized numerical atomic orbitals have
already proven able to provide efficient basis sets, well
adapted to linear-scaling techniques (Sankey and Nik-
lewski 1989; Artacho et al. 1999; Kenny et al. 2000;
Junquera et al. 2001). The present study offers a com-
parison of the representation of the electron wave
functions by plane waves and these localized functions.
The comparison is centred on some mainstream prob-
lems in mineral physics, namely (1) cationic substitution
and ordering, using a spinel and an amphibole as rep-
resentative examples, (2) displacive phase transitions,
studying cristobalite and (3) surface adsorption and in-
tercalation, particularly for small aromatic molecules in/
on pyrophyllite. The implementation of the localized
atomic basis sets used in this study is in the program
SIESTA, which has been described by Ordejon et al.
(1996) and Artacho et al. (1999).

We have several aims in presenting this comparison
of the two approaches: (1) to compare them in terms of
accuracy, exploring levels of accuracy for different
atomic basis functions, (2) to compare also their per-
formance in terms of computational demands, and (3) to
contrast methods in different types of applications. This
evaluation of the performance of the linear-scaling
method, as implemented within the SIESTA program,
will allow the consideration of more complex systems,

like surfaces and other non-periodic systems, for which
the standard plane-wave techniques are not as applica-
ble. In addition, the atomic-orbital method offers con-
trolled accuracy, allowing less accurate but quicker
calculations.

To conclude this introduction, it is worth making a
few comments on the wider context of simulation
methods. Empirical models have been used to tackle
a number of problems concerned with mineral proper-
ties, such as cation ordering, with considerable success
(Bosenick et al. 2001; Warren et al. 2001). However,
there are cases where quantum mechanics are certainly
necessary, for example when investigating effects asso-
ciated with changing chemical bonds, or where pressure
changes bond lengths beyond the limits over which the
empirical model was fitted. Certainly, in these cases,
quantum-mechanical methods are expected to give much
more accurate calculations of energies. Unfortunately,
there are many problems that are simply too large for
the use of plane-wave implementation of DFT; some of
these are used as examples in this paper. It is hoped that
by using linear-scaling methods with localized basis
functions it will be possible for quantum-mechanics
methods to have a greater impact in studies of mineral
behaviour. In this paper we use examples from a number
of areas of potential interest to demonstrate the power
of linear-scaling methods.

Methods

Both methods compared in this work belong to the family of first-
principles methods based on density-functional theory (DFT).
The essential ingredients and approximations common to both
techniques are outlined in the following. Firstly, the adiabatic
approximation is assumed to decouple electronic from nuclear
degrees of freedom, i.e. the quantum-mechanical ground-state
energy of the electrons for given nuclear positions defines the
potential energy for the motions of the nuclei. By virtue of this, not
only electronic properties are accessible to these methods, but also
the properties associated to preferred positions and dynamics of the
nuclei, namely, structural, vibrational and elastic properties, for
example. Furthermore, if the dynamics of the nuclei are solved
for their classical time evolution (called molecular-dynamics sim-
ulations), these methods offer thermodynamic information as well.

The basic goal is thus finding the quantum-mechanical ground-
state energy of the electrons in the system for given nuclear
positions. To deal with the many-electron problem, the density-
functional theorem is employed (Hohenberg and Kohn 1964) which
asserts that the energy of the ground state of a many-body system
can in principle be obtained as a functional of its particle density.
The local density approximation (Kohn and Sham 1965) provides a
practical (albeit approximate) implementation of that functional. It
proposes an alternative system of formally non-interacting particles
under the influence of a local potential, which depends on the
electron density at the point where it is evaluated, and which in-
cludes the electron–electron interaction in an effective way. The
essentially non-local effects of electron exchange and correlation
are described by an effective local potential obtained by fitting
(Perdew and Zunger 1981) to the result of an independent, very
accurate calculation for the full many-body problem of the free
electron gas (Ceperley and Alder 1980). The original many-particle
problem is thus approximated by a one-particle problem that has to
be solved self-consistently (the potential depends on the density
which, in turn, depends on the solution).
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This scheme proved successful beyond expectations, consider-
ing the inherent complexity of the many-electron problem. Many
implementations of it have been used for studying a large variety of
systems (see Payne et al. 1992), showing accuracy of around 1% in
structural properties of many materials, 5–10% in binding energies,
and below 5% in elastic and vibrational properties. The general-
ized-gradient approximated (GGA) functionals proposed by sev-
eral authors represent a step towards the exact DFT functional, by
considering that the exchange-correlation potential at a point de-
pends not only on the electronic density but also on its gradient and
(in some cases) on higher derivatives. The scheme of Perdew et al.
(1996) (PBE) is used below.

The inclusion of core electrons in the calculation increases the
computational load since (1) the number of electrons is higher, and
(2) their wave functions vary very rapidly. They are, however, very
insensitive to variations in the chemical environment. Therefore,
core electrons are not explicitly considered in the calculations but
are replaced by non-local norm-conserving pseudopotentials, also
calculated from first principles. In this work the pseudopotentials
within the linear-scaling method were obtained according to the
improved Troullier and Martins scheme (1991), whereas the ones
within the PW method were the ultrasoft pseudopotentials of
Vanderbilt (1990).

When some core electrons are shallow in energy and overlap-
ping in space with the valence electrons, better accuracy can be
obtained by including a part of the core in the particle density for
the computation of the (non-linear) exchange-correlation potential,
the so-called partial-core exchange-correlation correction (Louie
et al. 1982). Additionally, scalar relativistic effects of the core
electrons can also be included in the calculations (Bachelet and
Schluter 1982).

After all these considerations, the problem to be solved is a one-
particle quantum-mechanical problem with an effective potential.
This problem is solved by expanding the one-particle wave func-
tions in a finite basis and diagonalizing the Hamiltonian matrix
that results. It is in these two steps (building the H matrix and
solving it) that the methods compared here diverge. The PW
method is a more mature and quite efficient one, but cube-scaling.
The basis set it uses is made of plane waves up to a certain kinetic-
energy cutoff (Payne et al. 1992). This gives a basis with the virtue
of its systematic improvability (higher cutoff gives a better basis)
but quite inefficient (many plane waves needed per electron) and
made of delocalized functions. The linear-scaling method, on the
other hand, is based on strictly localized, numerical atomic orbitals
(NAOs, see below).

In the SIESTA program, the building of the Hamiltonian and
overlap matrices is performed using a combination of two tech-
niques (Ordejon et al. 1996; Sanchez-Portal et al. 1997). On one
hand, the overlap matrix and some terms of H including the kinetic
energy (the so-called two-centre integrals) allow a very efficient
numerical integration in one single variable and as a function of
just the distance between every two atoms. The remaining terms are
calculated by replacing the three-dimensional integrals by sum-
mations over a finite grid, a discretization of 3-D space. One pa-
rameter controls the precision of these integrations, namely, the
fineness of the grid, usually expressed as an energy cutoff, an index
borrowed from PWs, the square root of which gives the inverse of
that fineness.

The linear-scaling solution of the eigenvalue problem posed by
the Kohn–Sham Hamiltonian requires abandoning the standard
diagonalization procedure. In fact, for the ground-state properties
sought in these calculations there is no need of knowing all the
eigenvalues separately, it is just the sum of the occupied ones that is
of relevance to the total energy, i.e. the trace of the Hamiltonian in
occupied space, TroccfHg. Since this trace is invariant under any
change of basis of occupied space, a localized basis in the line of
Wannier functions can be sought instead. They are obtained by
minimizing TroccfHg under the constraint that the wave functions
vary within localized regions of space. Finally, it is necessary to
avoid the localized-wave-function orthogonalization (quadratic
scaling), and this is accomplished by minimizing a slightly modified

functional instead of TroccfHg, which shares the same minimum
with it (Ordejon 1998).

The linear-scaling solution just described is obviously more
efficient than the cube-scaling diagonalization for large systems.
For small systems, however, the diagonalization is competitive and
more convenient. The critical size separating these two regimes
depends on the kind of system. Large-gap insulators present highly
localized electrons and allow efficient linear scaling, thereby re-
ducing the critical size. As a general rule of thumb for the SIESTA
method for non-metallic systems, the critical sizes are to be found
around 100 atoms. Many of the calculations presented below have
been performed on smaller systems and are therefore solved with
diagonalization. This is of no relevance for the purpose of this work
of comparing the behaviour of the different basis sets. It is im-
portant to stress, however, that within SIESTA, the building of the
Kohn–Sham Hamiltonian is always done in a linear-scaling fash-
ion.

For given atomic positions, the self-consistent solution of the
electronic problem gives the electronic total energy. Using the
Hellmann–Feynman theorem derivatives of the energy are also
obtained, most importantly the forces on the atoms and the stress
tensor. This allows the relaxation of the system including atomic
positions and/or lattice parameters, with the possible additional
constraints of externally applied pressure, hydrostatic, uniaxial etc.

Both SIESTA and codes based on the plane-wave schemes, such
as the CASTEP code used in this study, have been implemented for
parallel computers. The results presented below were obtained us-
ing two such machines, namely a Cray T3E (up to 64 nodes in a
single job) and an SGI Origin 2000 (up to 16 nodes in a single job).

Atomic-orbital basis sets

There are three main aspects that determine the NAO
basis sets: (1) the number of orbitals, (2) their extent
(cutoff radii) and (3) their radial shape. The shape is
defined by solving the isolated atomic problem within
DFT and for the same pseudopotential as used in the
calculations. This procedure gives reasonable shapes
well adapted to the pseudopotentials. To control their
extent, the isolated atom is put into a spherically sym-
metric confining potential that forces the orbitals to
become strictly zero beyond a certain cutoff radius. A
reasonably balanced definition of all the cutoff radii for
different orbitals and different atomic species is obtained
by defining one single parameter, the energy shift DE.
This is the raise in energy that the orbital suffers when
confined (Artacho et al. 1999). In the studies presented
in this paper, different values of the energy shifts were
used for different systems.

The number of orbitals per atom in a basis set is
defined by the number of angular-momentum channels
and the number of different orbitals in a channel.
Starting by the simplest, the minimal basis incorporates
only those atomic-orbital shells needed for the free at-
om, with one single orbital per shell (also called single-
zeta or SZ). For example, one s orbital and one p shell
(one px, py and pz) for C, O or Si, one s orbital and a
d shell for Fe. The basis can then be doubled (DZ),
introducing two different orbitals for an s channel, or
tripled (TZ), using three different orbitals. It is possible
to use mode complex basis sets, and some of these were
investigated in this study.
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To add angular flexibility to the basis, it is customary
to include polarization orbitals, additional basis func-
tions of higher angular momentum. The procedure to
obtain the shape of the polarization orbitals as well as
higher zeta ones is explained by Artacho et al. (1999).
Typically, we included one polarization orbital with a
double zeta basis, hence DZP. For TZP we used two
polarization orbitals rather than just one.

In the cationic substitution problem (see below), the
energy is calculated for the exchange of different cations
between different positions. Since the orbitals are asso-
ciated to the atoms, the exchange involves not only the
atoms but also the basis, and therefore, the energy
obtained has an undesired added term due to this, the
so-called basis set superposition error (BSSE). It can be
corrected by introducing the basis set of both cations
simultaneously, so that both positions have the same
orbitals independent of which atom sits on them. In
addition to correcting the deficiency, the change in en-
ergy obtained by introducing BSSE will gauge the
quality of the basis. In practice we found that the BSSE
was not significant in our example problems.

Calculations using the localized orbital method of the
SIESTA code were compared with those of conventional
plane wave methods (mostly using the CASTEP code)
for several mineral systems of current interest. In each
case the main intention was to compare the predictions
of the methods rather than to make an in-depth scientific
study of the system. We also investigate the convergence
of results with the size of the basis set used for the
SIESTA calculations, since this is less straightforward
than in plane-wave codes where we have a single para-
meter (the plane-wave cutoff) to determine the basis size.

In the following, results are presented for the com-
parison between both methods. The problems have been
selected to be challenging and delicate in the compari-
son, with small energy differences and subtle rear-
rangements of atoms, representative of questions of
interest to the mineral physics community.

Results and discussion

Selection of test systems

In this section we report a number of test calculations.
As we noted in the introduction, these have been chosen
to be representative of a wide range of problems that are
currently being studied by various methods, and we are
focusing on properties that are not easy to calculate. The
range of examples includes cation ordering and solid
solutions (spinel, garnets and amphiboles), mineral in-
teractions with organic molecules (benzene in pyro-
phyllite) and pressure-induced displacive phase
transitions (cristobalite). In each case we are focusing on
the need to calculate small changes in energies, in ad-
dition to the calculations of basic structures. These are
not easy to measure experimentally, and quantum-me-
chanics methods will have a significant role to play in

providing information about energetics associated with
transition processes. Our starting point, Mg/Al ordering
in spinel, is useful because we have a benchmark against
our own previously published studies performed with
plane-wave methods (Warren et al. 2000a, b) – it was the
computational demands of this earlier study that indi-
cated than an alternative method for large systems is
necessary. We have used this example to carry out a
detailed test of the accuracies of different basis sets. The
example of cation ordering in amphibole is a case where
plane-wave methods could not have been performed
with existing resources. This is also true for the example
of cation ordering in the garnet solid solution, and in
this case the quantum-mechanical calculations per-
formed using siesta have been used to support the results
of an earlier extensive study using empirical potentials
(Bosenick et al. 2000). The study of the pressure-induced
displacive phase transition in cristobalite was motivated
by recent experimental results (Dove et al. 2000), and in
this case we were able to compare the SIESTA results
with plane wave ab initio calculations. The example of
organic molecules interacting with pyrophyllite surfaces
is an example of the type of study one would like to
perform in order to tackle the issue of the binding of
pollutant organic molecules to the surfaces of soil min-
erals (Craig and Dove 2002). In all cases bar one (one set
of calculations on spinel) we always allow both the
atomic positions and lattice parameters to relax in the
calculations.

Cation ordering in spinel

Spinel, MgAl2O4, contains both tetrahedral and octa-
hedral sites, normally occupied by Mg and Al cations
respectively. The structure is shown in Fig. 1. On heat-
ing, there is progressive exchange of the Mg and Al sites,
which has been studied recently using a combination of
ab initio plane-wave methods and Monte Carlo simu-
lations (Warren et al. 2000a, b). For this reason, it is a

Fig. 1 Structure of spinel, showing the tetrahedral and octahedral
cation sites
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useful test case for calculations of cation-ordering en-
ergies with SIESTA. We have therefore performed a
series of calculations comparing the energy of the or-
dered structure with that of an inverse structure in which
all the tetrahedral sites are occupied by Al cations, and
half the octahedral sites by Mg cations. A set of simu-
lations with different localized basis sets, and with a fully
converged plane-wave basis (using a modification of
SIESTA rather than CASTEP in order to ensure con-
sistent use of equivalent pseudopotentials) was per-
formed, within the LDA. Only the G point was sampled
in the electronic band structure, with the intention of
systematically testing the basis set rather than producing
a more accurate, but slower, calculation.

Geometry optimization simulations of the normal
ordered structure using SIESTA gives an initial indica-
tion of the effect of basis sets – the results are presented
in Table 1. These may be compared to the experimental
volume of 133.0 Å3. It is clear from the results that the
polarized basis sets all give reasonable volumes, much
better than those given by the basis sets without polar-
ization. In this regard, it should be noted that SZP gives
a better result than DZ, with both having the same
number of orbitals.

To study these effects in more detail, single-point
energies (i.e. with no structure relaxation) were calcu-
lated for both a normal and an ordered inverse struc-
ture with the different basis sets. The results are
presented in Fig. 2. The absolute energy of a single
structure will obey the variational principle and so can
give insight into general factors affecting basis set effi-
ciency. Firstly, we found that the number of different
orbitals used had a much greater effect on the total
energy than the energy shift, which determines the size
of an individual orbital. Secondly, adding polarization
orbitals to the cations, i.e. d on Al or p on Mg, was
more effective in lowering the energy than doubling the
number of atomic orbitals with the double-zeta meth-
od, i.e. SZP is a better choice than DZ. This effect was
also found in the geometry optimization described
above. Finally, when constructing a polarization orbital
for Al, the atomic d orbitals were more efficient than
polarization of the p orbitals.

From a DZP set, it was also found that doubling the
polarization orbitals had a great effect on converging
DE. Even if no d orbitals were used for Mg, increasing
the maximum angular momentum component consid-
ered to ‘ ¼ 3, also improved the result. With an energy
shift of 0.2 eV and a basis set of DZ with double po-
larization, a value for DE of 0.2 eV (20%) away from the
plane-wave value was obtained. When using a TZP basis

set, the value of DE was reduced to 0.08 eV (6%) away
from the plane-wave value.

The sensitivity of DE to the choice of basis functions
is due to the fundamental changes in bonding between
the two structures. Mg and Al ions are being exchanged
between tetrahedral and octahedral sites, so good rep-
resentation of the bonding in both coordinations is
needed for both ions. The addition of ghost cations to
correct for BSSE, which allows both sets of orbitals to
be present in both sites, did not dramatically improve
the result.

This example highlights the differing sensitivity to a
basis set of total energy, optimized geometry and small
energy differences. The information required from such
calculations must thus be considered when choosing
basis sets.

High-pressure phase transition in cristobalite

These calculations were motivated by the recent solution
of the high-pressure phase of cristobalite (Dove et al.
2000), whose crystal structure is shown in Fig. 3. The
calculations were intended to test the relative stability of
the new monoclinic structure compared to the low-
temperature tetragonal structure. Calculations were
performed at pressures of 0 and 2 GPa, with the ex-
periments predicting the transition to be in this range.
The simulation cell contained 24 atoms (i.e. two unit
cells of the tetragonal structure), and a k-point sampling
grid of 1 · 2 · 2 was used. For the SIESTA calcula-
tions, convergence was obtained with a TZP basis set
and an energy shift of 0.03 eV. These calculations were
compared with plane-wave results calculated with

Fig. 2 Convergence of energy difference between normal and inverse
phases of spinel, DE, with basis set and energy shift. A value from
equivalent plane-wave calculations acts as the fully converged
standard. The initial DZP basis set consists of s2p3 orbitals on Mg
and s2p6d5 on Al and O. The improvements added for each calculation
are shown against each point, with d2 representing a doubling of the
polarization (d-orbital) set

Table 1 Optimized volumes of spinel calculated with different basis
sets, compared with experiment. Volumes are in Å3. The experi-
mental (Exp) value is from Sawada (1995)

SZ DZ SZP DZP Exp

126.9 127.1 132.5 133.1 132.3
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CASTEP using ultrasoft pseudopotentials and a plane-
wave cutoff of 380 eV.

Relative enthalpies at both pressures are shown in
Fig. 4. This highlights the fact that both calculations
predict the existence of the phase transition, although
both results predict a transition pressure closer to 0 GPa
than the experimental pressure (0.5–1.5 GPa, with
considerable hysteresis). The enthalpy differences
between the two phases are similar in both types of
calculations.

The main differences are seen in the crystal struc-
tures. The lattice parameters and Si–O bond lengths
are given in Table 2. The main difference is the a
lattice parameter, which is the lattice parameter that is
most sensitive to pressure, leading to relatively large
differences in volumes. These can be accounted for by
noting that the volume of the high-pressure phase of
cristobalite is particularly sensitive to the degree of
buckling of the network of SiO4 tetrahedra, which is
itself a low-energy process and hence easily changed.
Differences in the two types of calculation appear to

correspond to an effective pressure offset. This may be
due to the use of different pseudopotentials, as plane-
wave calculations using an alternative set also gave
large differences in the a lattice parameter. The length
of the Si–O bond is consistent across both structures
and pressures. Again, the difference between plane
waves and SIESTA can probably be attributed to
pseudopotentials, as bond lengths can be very char-
acteristic of these. The experimental bond length is
1.603 Å.

Crystal structure of pyrophyllite

Pyrophyllite, AlSi2O5(OH), is an example of a simple
layered clay mineral, which we have used as part of our
ongoing project studying adsorption properties of such
surfaces. Its structure is shown in Fig. 5. It is also known
to be a difficult type of material to model using empirical
potentials, as the aluminosilicate layers are held together
by weak van der Waals forces. We compare the structure
predicted by CASTEP and SIESTA. GGA was used for
these calculations, as it is known to be superior to LDA
for problems with surfaces where there is a large gradi-
ent in electron density. Two k points were used to
sample the band structure (using a 2 · 1 · 1 grid in re-
ciprocal space), and a DZP basis with an energy shift
0.14 eV was used.

The calculated structures (Table 3) are similar to each
other, and compare well with the experiment. The
agreement includes lattice parameters, bond lengths and
the interlayer spacing.

Benzene intercalated into pyrophyllite

Clay minerals such as pyrophyllite can have the ability
to intercalate small molecules between the aluminosili-
cate layers, accompanied by an expansion of the inter-
layer region to accommodate the molecule. Pillared clays
give an example of this behaviour. We tested the effect of
inserting a benzene molecule in between the layers of

Fig. 3 Crystal structure of the high-pressure phases of cristobalite.
(Dove et al. 2000)

Fig. 4 Enthalpies of the two phases of cristobalite calculated at
pressures of 0 GPa and 2 GPa using SIESTA and CASTEP (lines
are drawn to connect the two points in each calculation)

Fig. 5 Structure of pyrophyllite (left), and with intercalated
benzene (right)
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pyrophyllite, with full cell relaxation to enable the layers
to be pushed apart. The structure is shown in Fig. 5, and
the resultant geometries predicted by SIESTA and CA-
STEP are shown in Table 4. Both show good agreement
for the cell parameters and interlayer separation. These
are about 3 Å larger than pure pyrophyllite. Calculation
of an isolated benzene molecule also allows the calcu-
lation of the energy change in inserting a benzene mol-
ecule into the structure. This was calculated to be
0.74 eV for CASTEP and 0.36 eV for SIESTA, i.e. en-
ergetically unfavourable in both cases. These two results
are in reasonably good agreement, given that the energy
difference being measured is quite small. Moreover, in
contrast to the comparison of energy differences in spi-
nel, different pseudopotential sets were used in the two
sets of calculations. This was necessary in principle be-
cause the CASTEP allows the use of ultrasoft pseudo-
potentials in order to improve the speed of the
calculation, whereas ultrasoft pseudopotentials are not
built into SIESTA.

Cation ordering in garnet solid solutions

This is another example of a study of cation ordering, in
this case Ca–Mg ordering over equivalent sites in pyrope

and grossular garnets. The purpose of this calculation
was to confirm a striking result obtained using empirical
calculations, which predicted an unusually significant
third-nearest-neighbour interaction (Bosenick et al.
2000). The unit cell contained 160 atoms, which would
make the calculation computationally challenging using
conventional plane wave methods. The SIESTA calcu-
lations used a DZP basis and an energy shift of 0.27 eV.

The experimental lattice parameters of pyrope and
grossular are 11.456 and 11.846 Å, respectively. The
corresponding values calculated by SIESTA were 11.359
and 11.728 Å, respectively. The calculated values are 1%
lower in both cases. Other structural details are com-
pared with experiment in Table 5.

We produced configurations of 2 Mg cations in a
cubic cell of grossular and of 2 Ca cations in a cubic cell
of pyrope. One set of configurations had the two dilute
cations in nearest-neighbour sites (distance 3.4 Å) and
the other set had the two cations in third-neighbour sites
(distance 6.4 Å) – these two distances are shown in
Fig. 6. For both pyrope and grossular we calculated the
energy associated with replacing one nearest-neighbour
pair with one third-neighbour pair as 0.13 eV. This is
close to the value of 0.11 eV calculated using empirical
pair potentials (Bosenick et al. 2000), and confirms the
detailed analysis carried out with the pair potentials.

Cation ordering in the amphibole glaucophane

SIESTA was used to calculate the energies of ordering of
Mg and Al cations over the octahedral sites in the am-
phibole glaucophane, Na2(Mg3Al2)Si8O22(OH)2. The
structure is shown in Fig. 7. There are three distinct
octahedral sites, labelled M1 M2 and M3 (see Fig. 7).
Experimental evidence points to ordering of Al cations
in M2 and Mg cations in M1 and M3. We have

Table 2 Comparison of calculations of the two phases of cristo-
balite using both SIESTA and CASTEP. The structure of phase II
is from Dove et al. (2001), and experimental data for lattice para-
meters are after Palmer and Finger (1994)

SIESTA CASTEP Exp

Low cristobalite 0 Gpa
a (Å) 4.790 4.990 4.972
c (Å) 6.579 6.960 6.922
Si–O (Å) 1.626 1.589 1.603

Vol (Å3) 301.961 346.296 342.160

Cristobalite II (2 GPa)
a (Å) 8.386 8.453 8.457
b (Å) 4.516 4.675 4.706
c (Å) 8.737 9.252 9.312
b (�) 124.638 125.387 125.19
Si–O (Å) 1.626 1.590 –

Vol (Å3) 272.187 298.100 302

Table 3 Comparison of calculations of pyrophyllite structure.
Experimental data (Exp) from Wardle and Brindley 1972

SIESTA CASTEP Exp

a (Å) 5.17 5.12 5.16
b (Å) 9.00 8.91 8.96
c (Å) 9.25 9.52 9.35
a (�) 91.09 90.64 91.03
b (�) 100.81 100.56 100.37
c (�) 89.89 89.67 89.75
Si–O (tet–tet) (Å) 1.65 1.59 1.63
Al–O (Å) 1.92 1.85 1.96
O–H (Å) 0.95 0.96 –
Interlayer spacing (Å) 2.30 2.80 2.50

Table 4 Comparison of the structures of pyrophyllite with inter-
calated benzene

CASTEP SIESTA

a (Å) 10.249 10.370
b (Å) 8.915 8.992
c (Å) 12.508 12.603
Layer separation (Å) 5.8 (1) 5.6 (1)

Table 5 Comparison of garnet structures calculated by SIESTA
and obtained by experiment (Exp) (Armbruster et al. 1992 for
pyrope; Ganguly et al. 1993 for grossular)

Pyrope Grossular

SIESTA Exp SIESTA Exp

a (Å) 11.359 11.452 11.728 11.848
Si–O (Å) 1.656 1.634 1.694 1.646
Al–O (Å) 1.877 1.886 1.891 1.926
(Ca,Mg)–O (Å) 2.228 2.269 2.348 2.405
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performed calculations of the ordering energies using
empirical pair potentials, obtaining energies of forming
different neighbours (exchange interactions) and ener-
gies of cations on specific sites (chemical potential). The
empirical models suggested a lowest-energy state with
M1 and M2 sites having half occupancy of Al and Mg,
in contrast to the experimental result. This state was
calculated to have an energy lower than the experi-
mentally ordered state by 0.08 eV per formula unit.

Nine configurations were analyzed using SIESTA.
Each configuration contains 328 atoms, which is too
large for plane-wave codes to calculate in a reasonable
time. The experimentally ordered structure was found to
be the lowest-energy in these calculations. The lowest-
energy state from the empirical models was also found to
be low compared with other configurations, but was
higher by 0.06 eV for formula unit than the experi-
mentally ordered structure. From these calculations it
was possible to extract chemical potentials for Al cations
on each of the three octahedral sites, taking into account
the neighbouring exchange energies obtained from the
empirical calculations. In fact, the exchange interactions
favour ordering of Al on both M1 and M2 sites by
0.44 eV per formula unit, but the chemical potentials
favour ordering of Al on M2 sites over M1 sites by

0.48 eV per site. There is thus a fine balance between the
ordering preferred by the exchange interactions and the
ordering preferred by the chemical potentials. SIESTA
appears to have succeeded in properly reproducing this
balance as judged by experiment.

The structure of the ordered configuration is com-
pared with experiment in Table 6, again showing a
reasonable level of agreement.

Computational resources

In practice it is very difficult to make a simple compar-
ison of the computational resources required to run a
plane-wave code such as CASTEP with those of SIES-
TA. For example, SIESTA can be reasonably used at
various levels of convergence from very fast minimal
basis set calculations, to highly converged calculations,
comparable with converged plane-wave calculations.
Furthermore, the scaling of resources required with
system size is, as described, different for plane-wave
codes and those using localized basis functions, so plane
waves are more efficient for smaller systems, localized
basis functions for larger systems. Also, we have typi-
cally run these simulations on different machines, and
using different numbers of processors. Finally, it is im-
portant to note that while CASTEP is a mature and
highly optimized code, SIESTA is still rather new, and
comparisons of computer time may not accurately re-
flect the relative efficiencies of the underlying methods.

Tests of scaling with system size confirmed the result
that a plane-wave code such as CASTEP scales ap-
proximately with the cube of the system size (with the
square if volume is added containing no new atoms).
When used in diagonalization (non-order-N) mode,
SIESTA scales approximately with the square of the
system size. Addition of vacuum does not have any
significant effect on the resources required, which is of
great importance in modelling surfaces and molecules.
Linear scaling can also be obtained, as described pre-
viously, though we have not used it in this work as it is
less efficient for systems of the size of that we have
considered.

Fig. 6 Structure of garnet, showing octahedral and tetrahedral sites
and the dodecahedral Mg/Ca cation sites. The nearest- and third-
neighbour distances are indicated

Fig. 7 Structure of glaucophane, showing octahedral and tetrahe-
dral sites. The three octahedral sites involved in Mg/Al ordering are
indicated (M1, M2, M3)

Table 6 Comparison of glaucophane structure calculated by
SIESTA and obtained by experiment (Exp) (Papike and Clark
1968)

SIESTA Exp

a (Å) 9.647 9.541
b (Å) 17.815 17.740
c (Å) 5.304 5.295
b (�) 105.8 103.6
Si–O (Å) 1.649 1.621
Al–O (Å) 1.935 1.944
Mg–O (Å) 2.025 2.092
Na–O (Å) 2.581 2.498
O–H (Å) 0.985 –
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A direct comparison between converged calculations
can be attempted for the calculation of benzene inter-
calated in pyrophyllite. This was run with CASTEP and
SIESTA on a Cray T3E using eight nodes. The CPU
time per minimization step was about three times larger
for CASTEP than SIESTA (35741s to 10218s). This
system (92 atoms) is therefore at a point where a con-
verged calculation using the two methods is currently of
comparable speed. Memory requirements were also
similar for these calculations (139 Mb node)1 for CA-
STEP to 150 Mb node)1 for SIESTA), and are expected
to scale similarly to time.

Conclusions

In this paper we have reported a number of tests of the
SIESTA approach to ab initio simulations of minerals.
These tests have been chosen to be reasonably
challenging, particularly with respect to the calculation
of small energy changes associated with displacive phase
transitions and cation-ordering processes. Where
practical, the results have been compared with plane-
wave calculations, but for the larger systems only the
SIESTA approach can give results in a reasonable time
scale.

As far as crystal structures are concerned, SIESTA is
reasonably accurate, and compares well with plane-wave
calculations. As a rough guide, our results show that
DZP basis sets are capable of giving good results for
structures. In the examples, SIESTA also performs
reasonably well in calculation of energy differences in
the cases where we can compare with plane-wave results.
The example of spinel has given an idea of the need to be
careful with choice of basis sets. DZP basis sets give
acceptable results for energy differences, and TZP gives
good energy differences. The example of cristobalite has
shown that SIESTA is able to capture small energy
differences associated with displacive phase transitions,
where there is a balance between changes in bonding
energy and volume energy at high pressure. In cases
where we have not been able to compare with plane-
wave calculations, we have been encouraged by agree-
ment with experimental data (glaucophane) or with
empirical calculations (garnet). However, we have also
performed a study of Al–Si ordering in a pyroxene, and
do not find the same level of agreement between SIES-
TA, plane waves and empirical potential calculations,
for reasons that are not clear to us.

We have shown that SIESTA is able to be used to
tackle computationally demanding systems that are
currently out of the reach of plane-wave codes. Often it
is useful to perform calculations for a range of condi-
tions, such as pressure, composition or degree of order.
Such parametric studies require relatively rapid turn-
around of results, and the examples presented in this
paper have shown that SIESTA is able to produce
results of suitable quality in a reasonable time scale for
mineralogical research. We will present results for

simulations of cations and molecules on mineral surfaces
obtained using SIESTA in later publications.
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