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Abstract The local structural response of Ca/Mg sub-
stitution and the energetic e�ects associated with do-
decahedral ordering in the pyrope-grossular garnet solid
solution are derived from a combination of static lattice
energy calculations and Monte Carlo simulations. We
start with a thorough analysis of the goodness of the
empirical potential models used for the modelling of
aluminosilicate garnets. The degree of polyhedral dis-
tortion was found to be a sensitive indicator for the
quality of the model and, by comparison with experi-
mental data, was used to select the best of several
available empirical potentials. The Ca/Mg substitution
on the dodecahedral site in garnet was found to produce
strong local distortions in the surrounding tetrahedral
and octahedral polyhedra. This arises from the absence
of rigid unit modes (RUMS) in the garnet structure,
because local rotations of otherwise rigid SiO4 tetrahe-
dra and AlO6 octahedra cannot occur in order to ac-
commodate di�erent-sized divalent cations in the
dodecahedral sites. Strain e�ects, therefore, mainly
govern the dodecahedral substitution, and the corre-
sponding strain ®eld around a dodecahedral site has a
minimum radius of 5 AÊ . Pyrope-grossular solid solution
compositions were modelled using a supercell approach.
For several garnet compositions many di�erent con®g-
urations representing individual disordered arrange-
ments were relaxed. The resulting energies were analyzed
in terms of di�erent-neighbour interactions to determine
the parameters of a model Hamiltonian. The corre-

sponding interaction energies were found to be virtually
independent of composition. Surprisingly, the nearest-
neighbour interaction between edge-sharing dodecahe-
dra is of no particular signi®cance in the garnets.
Instead, the strongest interaction is only via the
third-nearest neighbours, i.e. dodecahedra that are edge-
shared to a common SiO4 tetrahedron. This cannot lead
to dodecahedral long-range order in garnets, but can
produce signi®cant amounts of short-range order.
Monte Carlo simulations were performed on several
compositions to determine the macroscopic e�ects such
as NMR-based cluster occupancy, ordering energy and
con®gurational entropy of the short-range ordering
process. As expected, the samples tend to random dis-
order at high temperatures, and at low temperatures it is
compositions nearer Py50Gr50 that depart most
strongly from random mixing. For example, a maximum
reduction of 3.5 J mol)1 K)1 is predicted for Py75Gr25
and �10 J mol)1 K)1 for Py50Gr50. A comparison of
NMR cluster occupancy with experimental 29Si MAS
NMR resonance intensity is partly successful. However,
the changes in NMR cluster occupancy are relatively
low (�5%) compared to changes in con®gurational
entropy (�30%), implying that it might be di�cult to
estimate exact entropy data from 29Si MAS NMR line
intensities.
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Introduction

Being common constituents of the Earth's crust, upper
mantle and transition zone, garnets are involved in many
mineralogical phase equilibria which are used to unravel
the P,T history of rocks. With few exceptions, natural
garnets are compositionally complex multicomponent
solid solutions. For crustal garnets, their chemical
complexity can be described to a large extent in the
quaternary aluminosilicate garnet system (X3Al2Si3O12,
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X = Mg, Fe2+, Ca, Mn2+) consisting of the end-
members pyrope, Mg3Al2Si3O12, grossular, Ca3Al2-
Si3O12, almandine, Fe3Al2Si3O12 and spessartine,
Mn3Al2Si3O12. Modelling the position of mineral reac-
tions in P,T space requires an accurate knowledge of the
thermodynamic properties of the participating phases
including their dependency on pressure, temperature and
chemical composition. Considering the wide range of
garnet compositions, it is almost impossible to measure
these properties for all relevant compositions for geo-
logic P,T conditions. Therefore, in the past years in-
creasing e�ort has been put into the illumination of the
physical concepts that link the thermodynamic proper-
ties of a phase with its structure. Along these lines, the
present study shows how potential energy calculations
and Monte Carlo simulations can provide valuable in-
sight into the mixing behaviour of solid solutions.

The aluminosilicate garnets o�er a good model sys-
tem for the purpose of developing such basic concepts.
The end-member phases and the constituent binaries
have received intensive phase equilibrium, thermody-
namic and crystal-chemical study (see, e.g. Geiger 1999
for a review). For nearly all of the binaries, deviations
from ideal, i.e. linear mixing, have been reported for
either of the thermodynamic mixing properties such as
volume, Vmix, enthalpy, Hmix, free energy, Gmix and
vibrational entropy, Smix,vib (Newton et al. 1977; Ha-
selton and Westrum 1980; Geiger et al. 1987; Berman
1990; Berman and Koziol 1991; Ganguly et al. 1993;
Gavrieli et al. 1996; Geiger and Feenstra 1997). Besides,
it appears that the magnitude of the non-ideal mixing is
correlated with the size di�erence between the substi-
tuting cations on the X site (Geiger and Rossman 1994).
Indeed, the largest deviations from ideal mixing are
observed in the pyrope (Mg3Al2Si3O12)-grossular
(Ca3Al2Si3O12) binary which, therefore, makes it an
excellent model system for the study of non-ideal ther-
modynamic mixing behaviour.

Since Menzer (1928) solved the garnet structure, a
number of X-ray structure re®nements on natural and
synthetic garnets have revealed its response to variable
chemical compositions, as well as to changes in extensive
parameters like pressure and temperature (e.g. Novak
and Gibbs 1971; Meagher 1975; Geiger and Armbruster
1997; Bosenick and Geiger 1997; Hazen and Finger
1978; Ungaretti et al. 1995; Merli et al. 1995; Zhang
et al. 1998). It should be stressed that these studies deal
only with long-range structural properties which give an
averaged picture of the structure and do not account for
local structural heterogeneities. The thermodynamic
mixing properties will, however, critically depend on the
mechanism by which the garnet lattice accommodates
di�erent-sized X site cations in a solid solution. The
corresponding local structural properties have come
under investigation only relatively recently using spec-
troscopic methods such as XANES (Quartieri et al.
1995), XAFS (Quartieri et al. 1999) and HMIR (Bo�a
Ballaran et al. 1999). Since simulation studies are able to
provide highly detailed information at the level of indi-

vidual atoms and their interactions, the present study
uses static lattice energy calculations to study the local
structural response to Ca/Mg cation exchange in garnet.

Furthermore, cation-ordering processes in solid so-
lutions may have a profound in¯uence on phase-equi-
librium boundaries. Although variations in enthalpy
associated with cation ordering are relatively small, al-
ready small changes in the degree of order can result in a
considerable lowering of the con®gurational entropy.
Apart from situations where a phase exhibits long-range
order, it is not only experimentally di�cult to determine
its cation distribution but also to derive the corre-
sponding con®gurational entropy. Computational stud-
ies have proven to be a powerful tool for the study of Al/
Si ordering processes in phases such as sillimanite
(Bertram et al. 1990), leucite (Dove et al. 1993) and ge-
hlenite and cordierite (Thayaparam et al. 1994 and
1996). In these studies, static lattice energy calculations
were used to investigate the ordering interaction energies
and their di�erent contributions to ordering phase
transitions. Monte Carlo methods have been used to
determine the ordering temperatures (Thayaparam et al.
1996; Dove et al. 1996). A further combination with
statistical-mechanical methods has led directly to ex-
pressions for thermodynamic quantities such as con®g-
urational entropies (Meyers et al. 1998; Dove 1999).

Aluminosilicate garnets are cubic. Their space group
(Ia�3d) does not allow the occurrence of long-range ca-
tion order, because there is only one single independent
crystallographic dodecahedral, octahedral and tetrahe-
dral site. Any long-range order, therefore, that may
occur would result in a space group lowering. While
aluminosilicate garnets are treated as having complete
random X site cation disorder, evidence for partial ca-
tion ordering has been reported for the pyrope-grossular
solid solution. Based on the observation of forbidden
re¯ections in a single-crystal X-ray study on a synthetic
garnet of composition Py90Gr10, Dempsey (1980) pro-
posed a space group lower than Ia�3d caused by cation
ordering. However, apart from a lowering of space
group symmetry, multiple di�raction is as likely a source
for the forbidden re¯ections (Rossmanith and Armbr-
uster 1995; Nuber and Schmetzer 1982). Based on the
observation of small compositional ranges with negative
molar volumes of mixing (DV mix) in almandine-grossular
and pyrope-grossular solid solutions, Newton and
Wood (1980) introduced the model of equivalent site
substitution. According to this crystal-chemical model, a
certain degree of cation ordering should exist for com-
positions near the smaller cation end-member compo-
nent (i.e. almandine and pyrope). This is because the
substitution of the larger Ca atom into the structure of
the smaller cation end-member is thought to produce
large localized site deformations and thus ``forbidden
regions'' which prohibit the incorporation of additional
``large'' cations in the vicinity. However, more recent
investigations do not support the existence of negative
volumes of mixing in any of the aluminosilicate garnet
binaries. Direct experimental evidence that the divalent
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X site cations do not mix completely randomly, but that
short-range order of Ca and Mg exists in garnets, was
®rst given by 29Si MAS NMR spectroscopic measure-
ments on synthetic pyrope-grossular solid solutions
(Bosenick et al. 1995). Moreover, an extension of this
study showed that small di�erences in the degree of
short-range order can be quenched in from high tem-
perature and high pressure (Bosenick et al. 1999).

The analysis of the 29Si NMR spectra of pyrope-
grossular garnets is, however, not unequivocal. As
discussed by Bosenick et al. (1995), 29Si NMR spec-
troscopy records both the X site cation distribution in
the ®rst and second dodecahedral coordination shells
around the 29Si nuclei. This leads to a total of 15
chemically di�erent local dodecahedral environments,
each of which can correspond to an individual NMR
resonance. Not all of these 15 possible resonances are
experimentally observable. This is partly because for the
individual compositions some of the environments have
a very low occupancy and partly because some of the
chemical shifts of certain environments are very similar.
The ®rst aspect results in non-measurable resonance
intensities while the second results in peak overlapping.
Taken together, the measured resonance intensities
cannot be completely assigned to speci®c X site envi-
ronments which, therefore, prevents a fully quantitative
determination of the relative site occupancies. As a
consequence, the driving forces behind the short-range
ordering cannot be established in detail. This, however,
is necessary for a reliable estimation of con®gurational
entropies (Putnis and Vinograd 1999).

Accordingly, the question of Ca/Mg ordering in py-
rope-grossular solid solutions may have reached the
current limits of experimental methodology. Likewise,
we have the more general questions of dodecahedral
ordering in aluminosilicate garnets and its possible e�ect
on thermodynamic properties. Of course, additional
spectroscopic measurements could provide not only
more but eventually more accurate data. However, it is
uncertain whether they can lead to a reasonable model
for the observed short-range cation order behaviour in
garnet.

With reference to the above-mentioned simulation
studies, which analyzed the factors determining Al/Si
ordering in diverse minerals, we had hoped to unravel
the ordering behaviour of the pyrope-grossular solid
solution applying similar computational methods. As
will be shown, our attempt was partially successful. To
begin with, we analyze the goodness of the empirical
potential model for the simulation of aluminosilicate
garnets in general. Then, we will analyze the mechanism
by which the garnet structure responds to the exchange
of di�erent-sized X site cations. Subsequently, ordering
interaction energies are determined for nearest, next-
nearest and more distant neighbours of Mg-Mg and
Ca-Ca pairs. This has been done over a range of
compositions across the join and it will be shown that
the interaction energies are independent of composition.
In the second part of this study, we use the derived

interaction energies for Monte Carlo simulations. In
particular, we make use of the method of thermody-
namic integration to determine the e�ect of short-range
order on thermodynamic properties such as the con®g-
urational entropy. Finally, the e�ect of ordering on
thermodynamic properties will be discussed and an
outlook for linking NMR spectra with empirical models
will be given. We start, however, in the following section
with a summary of some crystal-chemical aspects of
aluminosilicate garnets.

The crystal structure of garnets

The response of the di�raction-averaged properties of
the garnet structure to changes in pressure, temperature
and chemical composition has been well documented
(Zemann 1962; Born and Zemann 1964; Novak and
Gibbs 1971; Hazen and Finger 1978; Meagher 1980;
Armbruster et al. 1992; Merli et al. 1995; Geiger and
Feenstra 1997; Zhang et al. 1998). In the following we
summarize some features of the garnet structure which
were used for our analysis. As mentioned above, alu-
minosilicate garnets are cubic and crystallize in space
group Ia�3d (Menzer 1928). Their structure is composed
of a three-dimensional network of alternating, corner-
sharing SiO4 tetrahedra and AlO6 octahedra. The re-
sulting large cavities, that have the shape of triangular
dodecahedra, accommodate the divalent cations
(Fig. 1). The garnet structure is characterized by exten-
sive edge-sharing between the coordination polyhedra:
each tetrahedron shares two opposite edges with do-
decahedra, each octahedron shares six edges with
neighbouring dodecahedra and, in addition, each do-
decahedron shares four edges with other dodecahedra.
Only 2 of the 18 dodecahedral edges are unshared. The
XO8 dodecahedra are interconnected such that they
build a three-dimensional network. As a consequence,

Fig. 1 Polyhedral model of the garnet structure showing the three
di�erent coordination polyhedra and their linkages
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any substitution on the X site a�ects the geometry of all
other polyhedra.

All polyhedra of the garnet structure are distorted
from an ideal geometry. In the long-range averaged
structure, the distortions of the polyhedra appear to
change continuously as a function of composition. These
structural changes can alternatively be described in
terms of varying unit-cell dimension or changes in the
average radius of the X site cations. The SiO4 tetrahedra
are elongated along their �4 axis, and they become less
distorted with increasing size of the X site cation, i.e. in
pyrope-grossular solid solutions with increasing Ca
content. The AlO6 octahedra are distorted along the
[1 1 1] direction. In garnets with small to medium-sized X
site cations, the octahedra are elongated along the �3 axis
and the unshared O-O edges are signi®cantly longer than
the shared O-O edges. For garnets having a unit-cell
dimension greater than about 11.70 AÊ or, alternatively,
an X site radius above @ 1.0 AÊ , the octahedron is ¯at-
tened along the [1 1 1] direction and the shared edges
become longer than the unshared edges (Novak and
Gibbs 1971).

Although garnets are classi®ed as orthosilicates, their
structure has been described as framework-like (Zemann
1962; Geiger and Feenstra 1997). The changes in the
framework resulting from substitution of di�erent-sized
divalent cations on the X site is then interpreted by rigid
tetrahedral rotation (Born and Zemann 1964; Geiger
and Feenstra 1997). The description rigid is, however,
slightly misleading. Unlike many true framework sili-
cates, the garnet framework is so tightly constrained,
that it does not allow for rigid unit modes (RUMS)
(Hammonds et al. 1998). Therefore, tetrahedral rotation
results in a simultaneous distortion of the tetrahedra and
octahedra that are building the framework. The garnet
structure can also be described as containing two types
of polyhedral chains which lie parallel to the three
crystallographic axes: (1) a chain of edge-sharing tetra-
hedra and dodecahedra and (2) a chain of corner-shar-
ing tetrahedra and octahedra (Fig. 1).

Interatomic potential model

Basic empirical potentials

The present lattice energy calculations have been per-
formed with the program GULP (General Utility Lat-
tice Program) written by Julian Gale (Gale 1997). The
background behind the lattice energy minimization
technique has been well documented (e.g. Price et al.
1987; Catlow 1988; Dove 1989; Winkler et al. 1991). The
pair interaction between two atoms is modelled as a sum
of long-range Coulomb interactions, short-range repul-
sive interactions, and for polarizable ions dispersive
interactions of the form:

u�r� � Q1Q2

4pe0r
� B � exp ÿ r

q

� �
ÿ A

r6
: �1�

The ®rst term in the potential function is the Coulomb
energy: Q1 and Q2 are the charges on the ions, e0 is the
permittivity of free space and r is the interionic distance.
The second term is the Born-Mayer repulsive energy
which, together with the dispersive last term in Eq. (1) is
known as the Buckingham interaction. The parameters
B, q and A are empirical constants which depend on the
atom pair. The cations are represented as rigid ions and
formal charges are assumed for their Coulomb interac-
tions. To account for the polarizability of oxygen, it is
treated using a shell model, i.e. a combination of a
massless charged shell and a central core that has all the
ionic mass and the residual ionic charge. The core and
the shell interact through a harmonic interaction of the
form:

u�d� � 1
2 Kd2 ; �2�

where d is the separation between the centres of core and
shell and K is the force constant of the interaction.
Covalent bonding is accounted for by the use of bond-
bending potentials:

u�h� � 1
2 k�hÿ h0�2 ; �3�

where h is the O-Si-O or O-Al-O bond angle and h0 is the
respective angle of the undistorted polyhedron, i.e.
h = 109.47° for SiO4 tetrahedra and h = 90° for AlO6

octahedra. The complete set of parameters used in the
calculations is given in Table 1. The lattice energy cal-
culations do not include the e�ects of lattice vibrations
and therefore correspond technically to classical simu-
lations of crystals at T = 0 K.

Search for the best Ca� � �O potential

The be-all and end-all of simulation studies is to have a
reliable model. As it is generally possible and frequently
necessary to adjust the basic model to the system of
interest, one has to ensure that the properties being in-
vestigated are not built into the model from the start. To
overcome this problem, transferable models have been
developed which use empirical potential parameters that
have been ®tted to a wide range of mineral structures
(Catlow 1988; Price and Parker 1988; Dove 1989).
Nevertheless, before applying the model with con®dence
to the system of interest, its predictive power should be
tested. Of course, depending on which questions will be
addressed, the conception about the goodness of the
model may vary. Accordingly, the issues being addressed
to prove the reliability of the model can vary as well.

Any reliable model should simulate, as well as pos-
sible, the physical and structural properties of the ma-
terial under investigation. In addition, for our purposes,
a successful model should be able to reproduce the
compositionally dependent structural properties of gar-
net, such as described above. As a start, we therefore
analyzed a variety of calculated garnet structures and
compared them with experimental data. We modelled
aluminosilicate end-member garnets with di�erent
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divalent X site cations on the dodecahedra (e.g. Fe, Mn,
Co, Ni, Zn), notwithstanding if the respective cation can
in reality be accommodated in aluminosilicate garnets
(e.g. Ba, Sr). Several published cation-oxygen (X� � �O)
pair interactions ± in the following loosely referred to as
X potentials ± were used, including, in particular, three
di�erent potentials for Mg� � �O and Ca� � �O interactions
(Table 1).

A major change in the aluminosilicate garnet struc-
ture with increasing unit-cell dimension is that the
shared O-O edges of the AlO6 octahedra become longer
than the unshared O-O edges. Figure 2 shows the vari-
ation of the two O-O bond lengths as a function of unit-
cell dimension. The data marked with an asterisk were
calculted with the Mg-1 and Ca-1 potentials, which were
previously used in simulation studies of silicate minerals
(Price et al. 1987; Dove 1989; Winkler et al. 1991). We
plotted also the mean O-O bond lengths derived from
X-ray di�raction studies undertaken at room tempera-
ture, 100 and 500 K on synthetic aluminosilicate garnets
of end-member and solid-solution compositions (Arm-
bruster et al. 1992; Geiger et al. 1992; Armbruster and
Geiger 1993; Ganguly et al. 1993). The calculated O-O
bond lengths vary nearly linearly with increasing unit-
cell dimension. This trend is in good agreement with the
experiments. The only data that do not follow this linear

Table 1 Empirical potential parameters used in this study as de®ned by Eqs. (1)±(3)

Buckingham potential between cation cores and O shells Referencea

B (eV) q (AÊ ) A (eV/AÊ 6)

Si4+ áááá O2) 1283.9073 0.3205 10.662 1
Al3+ áááá O2) 1460.3 0.2991 2
O2) áááá O2) 22764.0 0.1490 27.880 1

X2+ ááááO2)

Mg-1 1428.50 0.29 3
Mg-2 1275.20 0.30 6
Mg-3 2457.20 0.26 5
Ca-1 6958.30 0.25 4
Ca-2 15944.10 0.24 Modi®ed after (4)
Ca-3 2272.70 0.30 5
Ni 683.50 0.33 7
Co 696.30 0.34 7
Zn 499.60 0.36 7
Fe 694.10 0.34 7
Mn 715.80 0.35 7
Cd 868.30 0.35 7
Sr 17313.50 0.24 4
Ba 29573.60 0.24 4

Core-shell interaction between O core and O shell
K (eV/AÊ )2)

O�0:8482Core � � �Oÿ2:8482Shell 74.9200 1

Bond-bending interactions
k (eV/rad2) h0 (°)

O2)-Si4+-O2) 2.09724 109.47 1
O2)-Al3+-O2) 2.09724 90.9 1

a 1, Saunders et al. (1984); 2, Catlow et al. (1982); 3, Price and Parker (1988); 4, Post and Burnham (1986); 5, Bush et al. (1994); 6,
Sangster and Stoneham (1981); 7, Lewis (1984)

Fig. 2 Variation of the shared and unshared octahedral O-O edges in
garnet as a function of the unit-cell length calculated using di�erent
XáááO potentials. The labeling of the data corresponds to the labeling
of the potentials as given in Table 1. For comparison, experimental
data of various aluminosilcate garnets (Geiger et al. 1991; Ganguly
et al. 1992; Armbruster and Geiger 1993; Armbruster et al. 1992) are
plotted which indicate a nearly linear change in the octahedral O-O
edges with increasing unit-cell dimension
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trend are those calculated using an Mn2+ potential.
However, simulations with cations like Sr and Ba follow
the linear trend, although such garnet compositions have
not been found in nature or synthesized in the labora-
tory. Hence, the potential model calculations are capa-
ble of predicting the overall response of the garnet

structure to the incorporation of di�erent-sized divalent
cations onto the dodecahedral sites.

A detailed comparison of experimentally determined
structural properties of pyrope (Armbruster et al. 1992)
and grossular (Ganguly et al. 1993) with those obtained
from simulations using three di�erent potentials for Mg

Table 2 Comparison between observed and calculated structural
parameters for the garnet end-members pyrope and grossular. The
structural parameters of the observed structures were calculated
using fractional coordinates and unit-cell constants determined by
Armbruster et al. (1992) for pyrope and Ganguly et al. (1993) for

grossular. The di�erent potentials are from the following sources:
Mg-1 (Price and Parker 1988); Mg-2 (Sangster and Stoneham
1981); Mg-3 and Ca-3 (Bush et al. 1994); Ca-1 (Post and Burnham
1986); Ca-2 (modi®ed; see text)

Pyrope Grossular

Observed Calculated Observed Calculated

293 K Mg-1 Mg-2 Mg-3 293 K Ca-1 Ca-2 Ca-3

Unit-cell dimension and fractional coordinates of the oxygen atoms
a0 (AÊ ) 11.4520 11.3226 11.3504 11.1063 11.8480 11.5774 11.8378 11.7278
x 0.0329 0.0322 0.0324 0.0316 0.0382 0.0364 0.0401 0.0372
y 0.0503 0.0525 0.0519 0.0572 0.0453 0.0495 0.0460 0.0459
z 0.6533 0.6528 0.6527 0.6539 0.6514 0.6510 0.6495 0.6507

Tetrahedron
Si-O(1) 4xa 1.634 1.633 1.634 1.618 1.646 1.641 1.650 1.645
O(1)-O(2) 2x 2.497 2.501 2.502 2.483 2.572 2.563 2.617 2.566
O(1)-O(3) 4x 2.751 2.747 2.748 2.719 2.745 2.737 2.733 2.744
hO-Oi 2.666 2.665 2.666 2.640 2.687 2.679 2.694 2.685
O(1)-Si-O(2) 2x 99.62 99.91 99.93 100.23 102.71 102.65 104.93 102.53
O(1)-Si-O(3) 4x 114.61 114.45 114.44 114.28 112.95 112.99 111.79 113.05

Angular distortion (%)b 9.52 9.23 9.21 8.92 6.48 6.55 4.33 6.66
Edge-length distortion (%)b 4.23 4.10 4.09 3.96 2.86 2.89 1.90 2.94
Angle variance r2c 59.98 56.38 56.17 52.70 27.96 28.52 12.52 29.48
Tetrahedral angle of rotation ad 27.5 28.4 28.08 30.75 24.66 26.56 24.57 24.78

Octahedron
Al-O(1) 6x 1.886 1.866 1.868 1.857 1.926 1.887 1.911 1.898
O(1)-O(4) (shared) 6x 2.616 2.569 2.577 2.524 2.758 2.660 2.752 2.705
O(1)-O(5) (unshared) 6x 2.717 2.707 2.704 2.725 2.689 2.678 2.652 2.663
hO-Oi 2.667 2.638 2.640 2.624 2.724 2.669 2.702 2.684
O(1)-Al-O(4) 6x 87.85 87.01 87.26 85.62 91.44 89.62 92.11 90.90
O(1)-Al-O(5) 6x 92.15 92.99 92.74 94.38 88.56 90.38 87.89 89.10

Angle variancec 5.04 9.77 8.21 20.97 2.26 0.16 4.88 0.88
Angular distortion (%)b 2.39 3.33 3.05 4.87 1.60 0.42 2.35 1.00
Edge-length distortion (%)c 5.00 6.89 6.32 10.04 3.42 0.88 4.99 2.10
(O-O)sh ± (O-O)ush )0.10 )0.14 )0.13 )0.20 0.07 )0.02 0.10 0.04

Dodecahedron
X1-O(4) 4x 2.197 2.175 2.181 2.137 2.322 2.266 2.352 2.295
X2-O(4) 4x 2.340 2.287 2.300 2.194 2.487 2.378 2.478 2.452
hX-Oi 2.269 2.231 2.241 2.165 2.405 2.322 2.415 2.374
O(1)-O(2) 2x 2.497 2.501 2.502 2.483 2.572 2.563 2.617 2.566
O(1)-O(4) 4x 2.616 2.569 2.577 2.524 2.758 2.660 2.752 2.705
O(4)-O(6) 4x 2.707 2.643 2.662 2.508 2.971 2.823 3.007 2.929
O(4)-O(7) 2x 2.777 2.721 2.734 2.613 2.859 2.754 2.805 2.833
O(1)-O(7) 4x 3.307 3.271 3.280 3.199 3.452 3.370 3.470 3.419
O(7)-O(8) 2x 3.822 3.731 3.753 3.583 4.118 3.925 4.127 4.048
hO-Oi 2.929 2.880 2.892 2.793 3.101 2.994 3.112 3.062
O(1)-X(2)-O(2) 2x 69.24 70.18 70.01 71.06 67.24 68.88 67.62 67.99
O(1)-X(2)-O(4) 4x 70.35 70.25 70.15 71.28 69.88 69.85 69.41 69.38
O(4)-X(2)-O(6) 4x 73.19 72.57 72.83 70.77 76.22 74.84 76.95 76.10
O(4)-X(2)-O(7) 2x 72.81 72.99 72.92 73.11 70.16 70.74 68.93 70.57
O(1)-X(2)-O(7) 4x 93.51 94.24 94.07 95.23 91.66 93.03 91.81 92.10
O(7)-X(2)-O(8) 2x 109.50 109.30 109.35 109.47 111.78 111.22 112.75 111.28
(X2±0) ± (X1-O) 0.14 0.11 0.12 0.06 0.16 0.11 0.13 0.16

aMultiplicity
bRenner and Lehmann (1986)
cRobinson et al. (1971)
d Born and Zemann (1964)
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and Ca is presented in Table 2. In addition to a simple
comparison of bond lengths and angles, it appears that
the distortions of the di�erent polyhedra give a clear
indication about the appropriateness of the di�erent
potentials.

In the case of pyrope, the relation between shared and
unshared O-O bond lengths is correctly predicted with all
three Mg potentials (Fig. 2). However, on further study
of Table 2, the model with the Mg-3 shows various weak
points in comparison with theMg-1 andMg-2 potentials.
For example, with the Mg-3 potential the unit-cell
dimension is calculated as 11.1063 AÊ , which is too low. In
addition, the octahedra are distorted more than twice as
much as they should be. This is apparent from the angle
variance, which is 20.97 using the Mg-3 potential. In
comparison, it is 9.77 and 8.21 when undertaking simu-
lations with Mg-1 and Mg-2. These values are much
closer to the experimental value of 5.22. As a ®nal
example, we refer to the di�erence between the twoMg-O
bond distances of the dodecahedron, which are also
better simulated using theMg-1 andMg-2 potentials. The
simulations with these twoMg potentials (Mg-1 andMg-
2) give similar results, and it is not straightforward to
decide which provides a better model for pyrope. For our
further simulations, we decided on Mg-1, because it has
already been used in other simulation studies onminerals.

In the case of grossular, the Ca-1 potential, which has
frequently been used for simulations of Ca-containing
minerals, predicts the lengths of the shared octahedral
edges to be shorter than the unshared edges. This is
contrary to the actual situation. From a structural point
of view, this Ca potential does not simulate grossular, but
instead a garnet with a smaller X site cation radius than
Ca. From an analysis of Fig. 2 it can be estimated that a
garnet structure is modelled with an X site cation which is
slightly smaller than Mn2+. Hence, in order to get a
better model for grossular, we tried to develop a new Ca
potential. We constrained the parameter q of the Buck-
ingham potential to be 0.24 AÊ , because this is equal to the
q-value in the potentials of Sr and Ba (Post and Burnham
1986), and which is able to simulate an octahedron that is
¯attened along its �3 axis. The B value of the new potential
was obtained by ®tting to the structure of CaO. Figure 2
shows that simulations using this modi®ed potential, Ca-
2, result in octahedral O-O bond lengths that are in better
agreement with experimental ®ndings. However, al-
though this potential is able to model the relation be-
tween the shared and unshared O-O bond lengths of the
octahedron correctly, it overestimates the ¯attening of
the octahedra. This is apparent in the octahedral angle
variance (4.88), angular distortion (2.35) and edge-length
distortion (4.99), which are all considerably larger than
for the experimentally observed structure (2.26, 1.60 and
3.42, respectively). In addition, our modi®ed Ca-2
potential gives a poor representation of the SiO4 tetra-
hedron, because the Si-O bond lengths are slightly too
long and the overall distortion too small (see Table 2).

We ®nally undertook simulations of grossular using a
third Ca potential, Ca-3, taken from Bush et al. (1994).

This potential gives an octahedron that is correctly
¯attened along the [1 1 1] direction, but which should be
even more distorted. In addition, the resultant unit-cell
dimension should be longer. In the case of the Al-O
bonds, the Ca-3 potential seems to do less good than the
potential Ca-2. The Al-O bonds are calculated to be
1.898 AÊ with the Ca-3 potential and 1.911 AÊ with the
Ca-2 potential in comparison to an experimental value
of 1.926 AÊ . However, the resulting di�erences between
calculated and observed Al-O bond lengths are for both
potentials well below 2%, which is at the level of accu-
racy from potential model calculations. In the case of the
SiO4 tetrahedron, the Ca-3 potential reproduces the
experimentally observed distortions clearly better than
Ca-2. Although Ca-3 does not predict the exact degree
of distortion for the three di�erent polyhedra, it models
the overall structural trends in a correct way and, hence,
gives in total the best, albeit least bad, model for gros-
sular. A test of the general transferability of this Ca
potential to other minerals is given in the Appendix.

We checked the predictive power of our ®nal model
by calculating the energies of IR-active phonons of py-
rope and grossular. Figure 3 shows a comparison be-
tween the calculated TO phonon modes using Mg-1 and
Ca-3 and measured powder IR frequencies (Bo�a Ball-
aran et al. 1999). The observed and calculated energies
agree to better than 10% in the case of grossular,
whereas in the case of pyrope, the agreement is slightly
worse. At energies between 600 and 800 cm)1 di�erences
of up to 80 cm)1 occur. The mean deviation between
observed and calculated energies is about 20 cm)1 for
both garnets.

Finally, it is worth noting that the empirical poten-
tials being used have been developed in consideration of
the derivatives of the energy with respect to the inter-
atomic distances rather than actual energies. The ®rst
derivative of energy with respect to interatomic distance
determines the structure and the second derivative the
elastic constants. It is, therefore, not likely to get the
energies correct on an absolute scale. However, di�er-
ences in energies between di�erent phases and/or dif-
ferent structural states are more likely to be correct,
since these di�erences are closely related to the di�er-
entials of the energy. This is important for the present
study. Di�erent ordering states are modelled, while the
general structural parameters remain unchanged. We are
concerned only about the relative energy changes due to
di�erent arrangements of Ca and Mg on the dodecahe-
dral sites, and, indeed, as will be discussed later, the
energy di�erences obtained with potential model are in
good agreement with electronic structure calculations.

From the above comparison of experimental and
simulated structures, it is evident that our model is not
perfect. However, it should be kept in mind that no part
of the model has been optimized for garnet. The level of
agreement between model and experiment for structural,
as well as physical properties, such as IR frequencies,
therefore suggests that the model contains the necessary
predictive power to simulate structural and energetic
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properties related to the cation distribution in pyrope-
grossular solid solutions with con®dence.

Ordering energies

The e�ect of Ca/Mg ordering in pyrope-grossular solid
solutions was investigated by performing calculations in
a 1 ´ 1 ´ 1 supercell. This I-centred unit-cell contains
eight formula units and, hence, 64 cations and 96 oxygen
atoms. The number of oxygens has to be counted twice
because they are modelled using a core-shell model.
Therefore, the 1 ´ 1 ´ 1 supercell contains 256 species
that have to be relaxed. The use of a larger supercell, for
example a 2 ´ 2 ´ 2 supercell, would contain 2048 spe-
cies, but is limited partly because of the time and partly
because of the extensive computer memory needed for
relaxing such large systems. However, a 1 ´ 1 ´ 1 su-
percell contains 24 dodecahedral sites, which is su�cient
for the investigation of ordering e�ects. For comparison,

Al/Si ordering in cordierite was studied using 36 tetra-
hedral sites (Thayaparam et al. 1996), in gehlenite 32
sites (Thayaparam et al. 1994) and in sillimanite 24 sites
(Bertram et al. 1990) were used.

The composition of the solid-solution is controlled by
the ratio of Ca and Mg cations on the 24 X sites. For
several compositions a database of many di�erent ran-
dom arrangements of Ca and Mg on these 24 dodeca-
hedral sites was built up. For every con®guration the
coordinates of all the ``atoms'' (core and shell) and the
unit-cell size were relaxed, i.e. the calculations were done
at constant pressure. No symmetry constraints were
used, but to allow for faster relaxation, the unit-cell was
constrained to be of cubic shape. To check the validity
of this setup, we also undertook calculations without
constraining the shape of the supercell. As will be shown
later, the results were very similar.

Calculations in the dilute limit

Local structural response to the substitution
of one dodecahedral cation in a garnet end member

Since periodic boundary conditions were used in the
calculations, there is only one distinct arrangement for
replacing one dodecahedral cation by another in a
1 ´ 1 ´ 1 supercell. When replacing one Mg with Ca in
pyrope, the unit-cell expands relative to pure pyrope and
when replacing one Ca with Mg in grossular, the cell
contracts relative to pure grossular (Table 3). When the
unit-cell is allowed to relax without any constraints after
replacing one divalent cation, it undergoes a more or less
tetragonal deformation, where the c direction is parallel
to the tetrahedra-dodecahedra chain in which the sub-
stitution was performed. This is an immediate result of
the strong repulsive forces acting between the cations in
the dodecahedra-tetrahedra chain (Zemann 1962). A
detailed structural picture of how these ``foreign''
cations (Ca in pyrope and Mg in grossular) are accom-
modated in their host structures is obtained by analyzing
their local environments.

Fig. 3 Comparison between TO modes calculated using the best Ca
and Mg potentials (Ca-3 and Mg-1) and observed powder IR
frequencies of the end-member garnets pyrope and grossular

Table 3 Unit-cell dimension and total lattice energy of garnets with
one ``foreign'' X-site cation relaxed in an isotropic supercell and in
space group P1

1 Ca in
pyrope

1 Mg in
grossular

Isotropic relaxed
a0 (AÊ ) 11.3412 11.7136
Utot (eV) )5397.2091 )5324.1523

Relaxed using no constraints
a 11.3573 11.6951
b 11.3329 11.7229
c 11.3329 11.7228
Alpha 89.94 89.97
Beta 90.00 90.00
Gamma 90.00 90.00
Utot (eV) )5397.2118 5324.15755
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The substituted foreign cation ± like all other atoms
in the structure ± tries to optimize its local environment.
It individually tries to obtain energetically favourable
distances and orientations with the surrounding atoms
instead of taking on an averaged position. This is evi-
dent from Table 4, which summarizes the X-O bond
lengths in pyrope-rich and grossular-rich garnets with
one foreign X cation each. For example, the Ca-O bond
lengths of a single Ca cation in the pyrope-rich garnet
are very similar to their values in pure grossular. At the
same time, the Mg cations individually try to maintain
their distances to the oxygens rather than taking aver-
aged distances. An analogous situation exists in a gros-

sular-rich garnet with one Mg cation. The values of the
Mg-O bond lengths are similar to those in pure pyrope
and are considerably di�erent from averaged X-O bond
distances, which one would obtain from X-ray di�rac-
tion methods for this composition.

In addition, all polyhedra in the unit-cell distort rel-
ative to their shape in the end-member structures when
just one of the 24 X site cations is substituted. As will be
discussed below, this is a direct consequence of the non-
existence of RUMS in garnets. The bond lengths and
internal angles of the SiO4 tetrahedra and AlO6 octa-
hedra surrounding the substituted X cation in 1st, 2nd,
and 3rd coordination are summarized in Table 5. When

Table 4 Comparison of the calculated X-O bond length (AÊ ) in pyrope-rich and grossular-rich garnet containing one foreign cation

1 Ca in pyrope 1 Mg in grossular

X1-O(4) (AÊ ) X2-O(4) (AÊ ) X1-O(4) (AÊ ) X2-O(4) (AÊ )

Ca-O 2.295 2.347 Mg-O 2.170 2.417
Mg-O (es)a 2.167±2.181 2.284±2.301 Ca-O (es) 2.295±2.303 2.433±2.458
áMg±Oñb 2.176 (8) 2.293 (4) áCa-Oñ 2.295 (3) 2.448 (4)
Mg-Oc 2.175 2.287 Ca-Oc 2.295 2.452

aX-O bond length of the dodecahedra edge-shared to the dodecahedron containing the diluting cation
bAverage over all X-O bond lengths in the unit cell except those of the foreign cation
cX-O bond lengths calculated for pure end member

Table 5 Bond length (AÊ ) and angles (°) of the tetrahedra and octahedra surrounding the foreign divalent cation, X, in the 1st, 2nd and 3rd
coordination shell for pyrope containing 1 Ca and grossular containing 1 Mg

1 Ca in pyrope 1 Mg in grossular

1st shell 2nd shell 3rd shell 1st shell 2nd shell 3rd shell

Tetrahedra
X-Si 2.90 3.49 5.31 2.87 3.58 5.47
Si-O 1.632 1.631 1.631 1.646 1.641 1.648

1.632 1.633 1.635 1.646 1.644 1.641
1.632 1.634 1.636 1.650 1.646 1.644
1.632 1.634 1.638 1.650 1.647 1.644

O-O 2.517 2.491 2.496 2.484 2.566 2.570
2.582 2.501 2.497 2.546 2.570 2.571
2.720 2.736 2.743 2.772 2.736 2.721
2.720 2.743 2.745 2.772 2.736 2.745
2.722 2.754 2.746 2.776 2.748 2.748
2.722 2.759 2.774 2.776 2.749 2.748

O-Si-O 100.9 99.4 99.5 97.7 102.5 102.8
104.6 100.0 99.6 101.3 102.9 102.8
112.8 113.8 113.9 114.5 112.4 111.8
112.8 114.2 114.4 114.5 112.8 113.0
113.0 114.9 114.4 114.8 113.3 113.2
113.0 115.4 115.9 114.8 113.5 113.6

Octahedra
X-Al 3.20 5.13 6.50 3.25 5.27 6.71
Al-O From 1.860 1.863 1.861 1.883 1.890 1.892

To 1.877 1.872 1.872 1.906 1.906 1.900
O(1)-O(4) From 2.551 2.548 2.562 2.608 2.695 2.698

To 2.677 2.578 2.576 2.718 2.729 2.706
O(1)-O(5) From 2.653 2.701 2.702 2.653 2.648 2.661

To 2.721 2.724 2.710 2.720 2.663 2.665
O(1)-Al-O(4) From 86.0 86.2 86.8 87.4 88.5 89.1

To 90.5 87.3 87.2 90.0 89.5 89.3
O(1)-Al-O(5) From 91.1 92.5 92.8 90.3 90.6 90.7

To 93.7 93.7 93.0 91.9 91.6 90.9
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a large Ca cation is placed in a pyrope-rich host struc-
ture, it pushes all neighbouring cations away and
thereby deforms the surrounding SiO4 tetrahedra and
AlO6 octahedra. The largest distortion is in the two
tetrahedra that are edge-shared with the dodecahedron
in which the substitution takes place (i.e. 1st shell). The
Si-O distances in these tetrahedra stay almost constant
relative to those in the pyrope end-member (cf. Tables 2
with 4 and 5) but both of the shared O-O edges expand.
In pure pyrope they measure 2.502 AÊ . In the pyrope-rich
garnet with one dissolved Ca cation, the O-O edge
shared with the Mg dodecahedron lengthens to 2.517 AÊ

and that shared to the Ca dodecahedron on the opposite
side to 2.582 AÊ . The corresponding O-Si-O angles also
increase. The angle towards the Ca dodecahedron wid-
ens from 99.9° to 104.6°, while that towards the Mg
dodecahedron becomes 1.0° larger and measures 100.9°.
In addition, to compensate for the incorporation of the
larger Ca cation the edge-sharing tetrahedra undergo a
slight torsion. This is recognizable through very small
changes of the tetrahedral angle of rotation, a, which
measures 28.3° at the O-O edge shared to the Mg
dodecahedron and 28.1 at the edge shared to the Ca
dodecahedron compared to 28.4° in pure pyrope. The
four tetrahedra that are corner-shared to the Ca do-
decahedron (i.e. 2nd shell) show a greater scatter in the
unshared O-O edges lengths than the tetrahedra of the
third coordination shell. The latter still show some
variation in the Si-O bond distances. The AlO6 octahedra
surrounding the Ca dodecahedron are also deformed
relative to their shape in pyrope. As in the case of the
tetrahedra, the octahedra are most a�ected through an
expansion of the O-O edges shared to the Ca dodecahe-
dron. These O-O edges measure 2.677 AÊ , which is closer
to the length in grossular (2.705 AÊ ) than to their length in
pyrope (2.569 AÊ ). The Al-O distances, the two di�erent
O-O edge lengths and the two di�erent O-Al-O angles are
also a�ected. The variation in these lengths and bond
angles becomes smaller with increasing distance from the
substituted foreign cation. For example, the O(1)-Al-
O(4) angles of the octahedra edge-shared with the Ca
dodecahedron (1st shell) vary between 86.0° and 90.5°,
while those of the octahedra in the 2nd coordination shell
vary between 86.2° and 87.3° and those of the 3rd shell
have nearly similar values between 86.8° and 87.2°.

On the other hand, when 1 Mg is substituted in a
grossular supercell it draws the surrounding cations
nearer. By this means, the shape of the neighbouring
tetrahedra and octahedra becomes more similar to those
in pyrope. In analogy to the substitution of 1 Ca in a
pyrope-rich host structure, it is observed that the Si-O
bond lengths remain almost constant but the O-O edges
show distinct changes. Here, however, both of the
shared O-O edges shorten. The O-O edge shared with
the Mg dodecahedron shortens more than that shared to
the Ca dodecahedron. The O-Si-O angles also change in
an opposite manner. In grossular the smaller of the two
O-Si-O angles measures 102.5°. With the substitution of
Mg it decreases to 97.7° towards the Mg dodecahedron,

but on the side of the Ca dodecahedron it decreases less
by about 1° to 101.3°. The O-O edges shared between
the Mg dodecahedron and the six surrounding octahe-
dra decrease to 2.608 AÊ compared to a value of 2.705 AÊ

in grossular. More analogies between the local structural
changes around a substituted Ca atom in an Mg-rich
host structure and a substituted Mg in a Ca-rich host
structure can be extracted from Table 5.

To summarize, the substitution of Mg or Ca as
``foreign'' cations produces strong local distortions in
the host structure e�ecting all polyhedra in the unit-cell.
This leads, in particular, to a range of cation-oxygen
bond lengths, which in turn leads, for example, to
measurable line broadening of the absorbance bands in
infrared spectra (Bo�a Ballaran et al. 1999). The strain
®eld induced by a foreign X cation can be estimated to
have a minimum radius of 5.5 AÊ , because distortions
from the end-member geometry are visible throughout
the whole 1 ´ 1 ´ 1 supercell. The calculated changes in
the tetrahedra and octahedra can be interpreted such
that Ca cations preserve grossular-like and Mg cations
pyrope-like local environments.

Relative arrangement of two foreign X cations
and their interaction

If one substitutes two Ca cations in a pyrope-like
structure (or two Mg in a grossular-like structure), one
has seven di�erent ways to arrange the two foreign
cations in a 1 ´ 1 ´ 1 supercell. Each of these arrange-
ments corresponds to a distinct distance between two X
sites. Figure 4 shows a section of a polyhedral model of

Fig. 4 Portion of the garnet structure showing the dodecahedral
framework and its linkage to the SiO4 tetrahedra. The AlO6

ocatahedra are, for clarity, not shown. Within one unit-cell, the
con®guration of two dodecahedral sites is de®ned by one of seven
arrangements which correspond to di�erent distances (d): d1 between
(X-1) and (X-2); d2 between (X-2) and (X-4); d3 between (X-3) and (X-
4); d4 between (X-1) and (X-5); d5 between (X-2) and (X-5); d6
between (X-3) and (X-6) and d7 between (X-3) and (X-7). See Table 5
for approximate distances between the sites and the total number of
the di�erent neighbours
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the garnet structure that illustrates the di�erent possible
cation arrangements. The closest arrangement of two
Ca cations in a pyrope host structure results, when they
are placed in two dodecahedra that are edge-shared to
each other. We de®ne this arrangement as distance 1 or
d1. The second-nearest arrangement of two foreign X
cations (distance 2 or d2) results from placing them in
two dodecahedra that are shared to the same tetrahe-
dron, where one is edge-shared and the other corner-
shared. Two dodecahedra that are edge-shared to the
same tetrahedron are described as distance 3 neighbours
(d3). Distance 4 (d4) and distance 5 (d5) neighbours are
edge-shared to the same dodecahedron, whereby the
®rst are, in addition, corner-shared to the same tetra-
hedron. Dodecahedra of distance 6 (d6) and distance 7
(d7) neighbours share no common polyhedron or edge
but belong to neighbouring dodecahedra-tetrahedra
chains.

For these seven di�erent possible arrangements, lat-
tice energy calculations have been undertaken for 2 Ca
cations in a pyrope host and for 2 Mg cations in a
grossular host. The calculations were made both by
constraining the unit-cell to be of cubic shape and by
allowing a unit-cell of P1 symmetry. The relative total
lattice energies of the di�erent arrangements are com-
pared in Fig. 5 as a function of the interatomic distance
between the two foreign cations. The relative total lattice
energy is given as the di�erence between the total lattice
energy of the respective arrangement and that of the
lowest energy arrangement (i.e. con®guration d1) di-
vided by the multiplicity, z, of the arrangement ac-
cording to periodic boundary conditions. For example,
only two tetrahedra and two dodecahedra of a tetrahe-
dra dodecahedra chain ®t into one unit-cell. For a cer-
tain dodecahedron (e.g. X-3 in Fig. 4), the distance 3
neighbour in one direction (X-4 in [1 0 0] direction) is,
because of periodic boundary conditions, in a 1 ´ 1 ´ 1
supercell identical to the dodecahedron in opposite di-
rection (X-4¢). Hence, the distance 3 con®guration has a
multiplicity z = 2. The multiplicity of distance 4
neighbours is also 2, that of distance 5 and 6 neighbours
is 4 and that of distance 7 neighbours is 8. The multi-
plicity of the other arrangements is unity.

It can be seen from Fig. 5 that there is no direct
correlation between the relative lattice energies and the
interatomic distance between the two foreign cations.
Moreover, the relative total energy of four of the seven
arrangements (d1, d2, d6 and d7) is almost the same,
indicating that these arrangements are equally likely to
occur. The most surprising result is, however, that the
nearest-neighbour interaction is of no particular sig-
ni®cance. Unlike, for example, our experience with Al/
Si ordering, where the Al-Al repulsion is strongest for
nearest neighbours, both dodecahedral cations, Ca as
well as Mg, like to be placed directly next to a cation
of the same kind. Exactly the opposite behaviour is
predicted for the placement of large Ca cations in py-
rope-rich garnets according to the equivalent site
model (Newton and Wood 1980). From our simula-

tions, the energetically most unfavourable con®gura-
tion is d3, which is only via the third shortest distance.
Here, the two substituted foreign cations occupy
dodecahedra that are edge-shared to the same SiO4

tetrahedron. The con®gurations d4 and d5 are also
associated with higher energies, but these additional
terms are only about half that of arrangement d3. In-
terestingly, the relative lattice energies for the di�erent
con®gurations are approximately the same whether two
Ca atoms are placed in a pyrope-rich structure or two
Mg cations occur in a grossular-rich structure. The
calculations using P1 symmetry and those constraining
the unit-cell to maintain its cubic shape give very
similar results (Table 6). Since the latter are much
faster (by a factor of 20 and more), we used isotropic
constraints in calculations of arrangements in less
dilute systems.

Fig. 5 Relative total lattice energy of the di�erent arrangements (top)
for two foreign Ca cations in pyrope-rich structure and (bottom) for
2 Mg substituted in a grossular-rich structure. The energies are plotted
as a function of the interatomic distance between the two foreign X-
site cations
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Calculations in long supercells

To ensure that the ®nding that con®guration d3 is
energetically the most unfavourable con®guration, is
not an artefact resulting from the use of an insu�ciently
large supercell, additional calculations were performed
in long supercells. As discussed above, only two do-
decahedra of a dodecahedra-tetrahedra chain ®t into
one unit-cell. In a 2 ´ 1 ´ 1 supercell the chain contains
four dodecahedral sites along [1 0 0]. Placing two foreign
cations in neighbouring dodecahedra in such a tetrahe-
dra-dodecahedra chain corresponds to a single d3 ar-
rangement. This arrangement is equivalent to a d3
arrangement in a perpendicular chain, albeit having the
multiplicity 2. Hence, the relative lattice energies of the
two arrangements, accounting for their multiplicity,
should be the same. The relative total lattice energy for
two Ca cations in a pyrope-rich supercell is 9.2 kJ mol)1

per Ca-pair for the d3 arrangement in [1 0 0] direction
and 11.0 kJ mol)1 per Ca-pair perpendicular to it. Al-
though these two values di�er by �18%, they are clearly
larger than the relative lattice energies of any of the
other con®guration (Fig. 5). Hence, the arrangement d3
is, indeed, energetically the least favourable of the seven
possible relative arrangements for a system with two
foreign X cations.

The calculations were further extended to a
3 ´ 1 ´ 1 supercell. Here, the tetrahedra dodecahedra
chain in [100] direction contains six dodecahedral sites.
Total lattice energies were determined as a function of
the interatomic distance between the two foreign X
cations in this chain. Calculations were undertaken for
the following three distinguishable arrangements: (1)
placing two foreign cations in the ®rst two, i.e.
neighbouring dodecahedra, (2) placing them in the ®rst
and the third dodecahedra and (3) placing them in the

®rst and the fourth dodecahedra. Figure 6 shows the
relative lattice energies of these arrangements for 2 Ca
in a pyrope host and for 2 Mg in a grossular host
structure. The total lattice energies of the di�erent
arrangements decrease linearly as a function of the
reciprocal cubed interatomic distance (1/r3). This im-
plies that the di�erences in the lattice energies for the
di�erent cation con®gurations result primarily from
strain e�ects.

Table 6 The relative atomic interaction constants Ji (kJ mol)1 per X-pair). The Js have been normalized so that J1 equals zero for all
compositions

d(X-X)b

(AÊ )

Nc No. of Ca

2a 3 4 6 12 20 21 22
No. of Mg

22 21 20 18 12 4 3 2

J1 3.511 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
J2 5.314 8 0.06 0.12 0.05 )0.14 0.26 0.02 0.05 0.01
J3 5.680 2 1.32 1.28 1.23 1.31 1.50 1.34 1.28 1.33
J4 6.356 8 0.48 0.31 0.29 0.17 0.43 0.27 0.17 0.31
J5 6.679 4 0.46 0.39 )0.01 0.33 0.39 )0.06 0.24 0.25
J6 8.032 4 0.03 )0.02 )0.03 0.01 0.24 0.11 )0.04 0.02
J7 9.837 8 0.04 0.03 0.11 0.01 0.30 0.08 )0.02 0.02

Con®gurationsd 7 26 20 50 60 20 26 7
R valuee 1 0.786 0.976 0.972 0.985 0.969 0.735 1

Fig. 6 Variation of total lattice energies (per pair of foreign atoms) of
garnets with two foreign cations in a 3 ´ 1 ´ 1 supercell as a function
of the separation of the foreign dodecahedral cations in a tetrahedra-
dodecahedra chain parallel [1 0 0]. U¥ represents the lattice energy of
the con®guration with in®nite separation between the foreign cations
and was determined by linear regression

a The interaction constants were determined for the more dilute
cations in the supercell, i.e. those which are in boldface
bDistance between corresponding dodecahedral sites in the case of
pyrope
cNumber of type Ji neighbours

dNumber of con®gurations that have been calculated and relaxed.
In the case of two and three foreign atoms all possible con®gura-
tions were calculated. For the less dilute compositions, the given
number of arbitrary con®gurations were calculated
eR value for multilinear regression of J values to Eq. (4)
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Interpretation of interaction energies in the dilute limit

In general, any distortion of coordination polyhedra is
associated with changes in the total lattice energy. This
basic knowledge provides an interpretation for the rel-
ative total lattice energies observed in the dilute limit.
The analysis of the local structural environment around
the foreign X cations (Mg in grossular-rich structure and
Ca in pyrope-rich structure) showed that the neigh-
bouring tetrahedra and octahedra are distorted relative
to their geometries in the respective endmember struc-
tures. The distortions are greater the closer the polyhe-
dra are to the foreign X cation. Using the model which
describes the garnet structure as a three-dimensional
{[6]Al2

[4]SiO4}
6) framework, one could expect that the

underlying mechanism for accommodating di�erent-
sized divalent X site cations is a local tilting or rotation
of rigid SiO4 tetrahedra and AlO6 octahedra. The garnet
framework has, however, no degrees of freedom to allow
for such localised motions. Like other structures con-
sisting of edge-sharing octahedra, the garnet framework
does not allow for rigid unit modes to occur (Ham-
monds et al. 1998). Therefore, any tilting or rotation of
a tetrahedron or octahedron at any place in the frame-
work to accommodate locally a di�erent-sized dodeca-
hedral cation requires all polyhedra in the framework to
make exactly the same movement. For the long-range
average of the garnet structure, X-ray di�raction meth-
ods have well documented the simultaneous e�ect of
polyhedral rotation and deformation (e.g. Novak and
Gibbs 1971; Geiger and Feenstra 1997). Apart from the
fact that at least the Ca-bearing dodecahedral sites
cannot take any shape but, because there is a minimum
Ca-O bond length, have to remain large enough to ac-
commodate the larger Ca cations, a collective distortion
of all framework-building polyhedra would involve rel-
atively large changes in the total lattice energy of the
system. Much smaller changes in the total energy are
needed, however, when only those tetrahedra and octa-
hedra distort which are direct neighbours of the foreign
X cation. As a result of the strong connectivity between
the di�erent polyhedra in the garnet structure, more
distant-neighboured polyhedra are a�ected as well.
Thereby, the amount of distortion decreases with
increasing distance from the substituted site.

The cation exchange process in solid-solutions can be
separated into: (1) a mechanical or strain-energy e�ect
due to local distortion of the lattice; (2) a chemical e�ect,
which results from an interaction (attraction or repul-
sion) between the atoms of neighbouring sites and (3) a
Coulombic e�ect, when cations with di�erent valences
are interchanged (e.g. Swalin 1966). The ®rst two e�ects
will contribute to the total energy of pyrope-grossular
garnets. Although the two e�ects cannot be completely
separated, we can use this division to interpret the short-
range interaction energies in garnets.

The substitution of a single foreign X site cation
produces localized distortions, which give rise to a
strain-energy term that contributes to the total lattice

energy. When a second foreign X site cation is placed in
the host structure, it will again cost a certain amount of
energy. If the two foreign X site cations are so far away
from each other that they do not interact, no chemical
energy term has to be taken into account. This should be
the case for con®gurations d6 and d7.

On the other hand, if the two foreign X site cations
are close enough to interact with each other, an addi-
tional, repulsive energy term arises. This is the case for
arrangement d3, where two like X cations occupy two
dodecahedra that are corner-shared to the same tetra-
hedron. In the case where these are two big Ca cations in
a pyrope host, the tetrahedron becomes compressed
between the two dodecahedra, while in the case where
the two foreign cations are Mg cations in a grossular
host, the tetrahedron will be expanded. For arrange-
ments d4 and d5, the repulsive energy term is smaller
because of the larger interatomic distance between the
two foreign X site cations in these arrangements.

According to their shorter interatomic distances, one
could expect, therefore, that arrangements d1 and d2
have the largest interaction energies. However, exactly
the opposite is the case. Their lower interaction energies
can be interpreted as follows. Imagine, for example,
placing a second foreign Ca cation in the part of the
pyrope host-structure which has already been expanded
and distorted by a ®rst Ca cation. Instead of having to
generate a completely new distorted and expanded
environment, this second foreign Ca cation will only
need to slightly enlarge the already distorted region
around the ®rst foreign Ca cation. The incorporation of
the second cation in the vicinity of the ®rst should
therefore require a smaller ``incorporation'' energy term.
Hence, if the smaller amount of strain energy needed to
generate con®gurations d1 and d2 balances their repul-
sive energies, these arrangements can be energetically
favourable.

Calculations in less dilute cases

Simulations for less dilute systems were made in
1 ´ 1 ´ 1 supercells for garnet compositions where 3, 4,
6 and ®nally 12 Ca atoms were substituted for Mg on the
24 dodecahedral sites and vice versa. For the di�erent
compositions, random con®gurations of Ca and Mg
cations on the dodecahedral sites were generated and the
relative arrangements of like cation pairs were analyzed
in terms of the number of the seven di�erent pair in-
teractions. These tasks were automated using the pro-
gramming tools of Microsoft EXCEL. For the di�erent
garnet compositions the total lattice energies of the
di�erent con®gurations were ®nally analyzed in terms
of the pair interaction by ®tting the energies to the
following model Hamiltonian:

E � E0 �
X

i

niJi : �4�

The ordering energy is given by
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DEord �
X

i

niJi ; �5�

where i denotes the type of pair interaction (®rst, second,
third, . . . or seventh-distant neighbour) and ni are the
number of Ca-Ca pairs (or Mg-Mg pairs for grossular-
rich compositions) for the i-th interaction. In this man-
ner, we obtained interaction energies, Ji, for the seven
di�erent interrelations between the dodecahedral sites.
In Eq. (4), E0 is an arbitrary energy chosen such that the
J1 value is 0 for all compositions. In this way the relative
interaction energies for the di�erent compositions can be
directly compared. The Ji values obtained for the dif-
ferent compositions are listed in Table 6. Table 6 also
contains further information on how many con®gura-
tions were relaxed for every individual composition,
what R value the ®ts to Eq. (4) resulted in, what the
approximate distances between the di�erent interacting
sites are and how many of neighbours of each kind the
di�erent sites have. The Ji values are also presented
graphically in Fig. 7. Some of the J values are in very
good agreement with each other, while others show
more di�erences. In the case of calculations with two
and three foreign cations in a supercell, all possible
con®gurations were calculated. This was not possible for
less dilute compositions because of the large number of
possible con®gurations. Hence, it is possible that the J
values would be modi®ed slightly if they were deter-
mined on the basis of other or more con®gurations.
However, it can be concluded that the J values are
barely dependent on the garnet composition.

The strongest repulsion of like cations is between
dodecahedral sites that are linked via an edge-shared
tetrahedron. In contrast to previous crystal-chemical
solid-solution models such as the equivalent site model,
we determined that it is not unfavourable to place large
Ca cations next to each other in neighbouring edge-

sharing dodecahedra. The quality of the ®ts of the
interaction energies to the database of lattice energies
indicates that the Hamiltonian given in Eq. (4) reason-
ably describes the dodecahedral cation interactions in
garnet. This is illustrated in Fig. 8, which compares the
total energies of the di�erent con®gurations obtained
from the GULP simulations with the energies calculated
using Eq. (4) for the 50:50 mixture, i.e. Py50Gr50
composition.

We are con®dent that the values for the interaction
constants Ji are reasonable, especially after our results
for the simulations in the dilute limit were cross-checked
with electronic structure calculation using the program
SIESTA. The J values were found to be within 20% of
the values determined.

Finally, it should be noted that in previous simulation
studies, which investigated cation-ordering e�ects in
minerals, pressure was not a matter of concern. This is
because the calculations were undertaken at constant
volume and/or the minerals studied were stable at room
pressure. However, pyrope-grossular garnets are meta-
stable at room pressures, and only thermodynamically
stable at higher pressures. For example, pyrope and
pyrope-rich garnets are only stable above 15 kbar (Boyd
and England 1959). We tested, therefore, for the ®rst
time the in¯uence of pressure on the interaction energies.
This was done in a less rigorous study because it became
rather quickly known that pressures of up to 100 kbar
produce only minor variations in the interaction ener-
gies. Accordingly, we refrain from presenting these
results in detail.

Monte Carlo methods

The simulation of the cation ordering process was per-
formed using the Monte Carlo method. A pseudospin
variable was assigned to each site, with value r = 1 if

Fig. 7 Comparison of the interaction energies of the seven di�erent
types of dodecahedral neighbours for di�erent numbers of Ca andMg
atoms in a 1 ´ 1 ´ 1 supercell. The numbers in the legend refer to the
number of Ca atoms per unit-cell and indicate the garnet composition

Fig. 8 Comparison of the observed modelled lattice energies of 60
random con®guration with those calculated using Eq. (4) and the
®tted J values of Table 6 for Py50Gr50
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the site is occupied by one type of cation, and r = )1 if
occupied by the other type. Because the model is sym-
metric in composition, it actually is not relevant whether
a positive value is assigned to occupancy by Mg or Ca. It
can be shown (see, for example, Dove 1999) that within
the J formalism given earlier, the Hamiltonian for an
ensemble of interacting cations can be expressed in terms
of the pseudospins as

H � 1

4

X
hj;ki

Jjkrjrk ; �6�

where the sum is over all pairs of cation sites, j and k,
avoiding counting each pair twice. Symmetrically related
pairs of sites will, of course, have the same J values.

The Monte Carlo simulations were performed using
the Ossia98 code on the Hitachi SR2201 parallel su-
percomputer of the Cambridge High-Performace Com-
puting Facility (details are given in http://
www.esc.cam.ac.uk/ossia). The simulations were based
on the three dominant exchange energies (J3, J4 and J5)
and were performed in a 6 ´ 6 ´ 6 supercell using peri-
odic boundary conditions and repeated for many dif-
ferent temperatures. Analysis routines were used to
calculate the probabilities of di�erent ®rst- and second-
coordination shells consistent with those given by the
NMR results during the progress of the Monte Carlo
simulation at each temperature, and to average these
over many con®gurations. The energy was recorded as a
function of temperature in order to use it in the ther-
modynamic integration we now describe.

Derivation of thermodynamic functions
by thermodynamic integration

The free energy, F, for a given model at a particular
temperature, T, can be calculated in a Monte Carlo
simulation using the method of thermodynamic inte-
gration. The starting point is to separate the model
Hamiltonian, H, into two parts

H �H0 � DH ; �7�
where H0 is the Hamiltonian of a model that is similar
to the model, but which can be solved exactly, and DH
is the remainder of the Hamiltonian. The free energy can
be calculated from this separated Hamiltonian using a
result that follows from the Bogoliubov inequality:

F � F0 �
Z1
0

hDHikdk ; �8�

where F0 is the free energy associated with the Hamil-
tonian H0. Conceptually, the tricky part is to obtain
hDHik, which is the average of �HÿH0� calculated
from a distribution function for the system determined
by the Hamiltonian

Hk � kH� �1ÿ k�H0 �H0 � kDH ; �9�

where k ranges in value from 0 to 1. In order to calculate
hDHik, the distribution function can be obtained using a
Monte Carlo simulation of the Hamiltonian Hk. That
is, a simulation is performed using the Hamiltonian Hk,
and the con®guration of atoms generated by the simu-
lation is used to calculate the energy �HÿH0�. For the
simulation of order±disorder behaviour, the Hamiltoni-
anH can be taken to represent a small perturbation of a
system with random disorder, i.e. of a system with
H0 � 0. Therefore, if the Hamiltonian is given by

H � 1

4

X
hj;ki

Jjkrjrk ; �10�

it follows that

Hk � 1

4
k
X
hj;ki

Jjkrjrk : �11�

The free energy is obtained by performing a set of sim-
ulations with the HamiltonianHk at a ®xed temperature
but di�erent values of k, and to calculate the average
hDHik = hHki=k from the atomic con®gurations gen-
erated by the simulation. The integral is then performed
by numerical integration of the results from the simu-
lations performed over the range of values of k.

In order to obtain the free energy as a function of
temperature, F(T ), we note that a simulation performed
at a temperature T using a Hamiltonian with the ex-
change constant LJ is equivalent to a simulation per-
formed with the exchange constant J at a temperature T/
L. Therefore, by varying the range of the integral in the
equation above, we can obtain the free energy as a
function of temperature. Formally, this procedure is
represented by the equation

F �T=K� � Kÿ1F0�T � �
ZK

0

hkHiT ;kdk ; �12�

where L < 1, and the subscript T on the average
hDHiT ;k denotes that the average was obtained using a
distribution obtained at the temperature T.

The free-energy function F0(T) in the calculation of
the actual free energy corresponds to the free energy of a
random distribution of two types of cations of propor-
tion x and (1 ) x) and is given by the usual result
(expressed here as per atom):

F0�T � � E0 ÿ TS0 � kBT �x ln x� �1ÿ x�ln�1ÿ x�� :
�13�

Hence, we have

F0�T=K� � Kÿ1F0�T � : �14�
This method has been used previously to calculate the
free energy and entropy in simulations of the ordering
of Al and Si atoms over the tetrahedral sites in the
feldspar structure (Myers et al. 1998), where the focus
was on the e�ects of having non-equal numbers of Al
and Si atoms.
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Monte Carlo results

In Figs. 9 and 10 we plot the Monte Carlo results for the
ordering energy and con®gurational entropy for a
number of solid-solution compositions. While the dif-
ferent mixtures cool down, their energies decrease ac-
cording to the increasing avoidance of energetically
unfavourable Mg-Mg and Ca-Ca third-nearest-neigh-
bour pairs. For concentrations nearer Py50Gr50 these
energy changes become larger, because the formation of
Mg-Mg and Ca-Ca pairs is more easily avoidable. Al-
though Fig. 9 shows clear evidence for increasing devi-
ations from complete random disorder with decreasing
temperature, no long-range order is formed in the dif-
ferent mixtures. This is because the third-nearest-neigh-
bour sites, which correspond to the dominant interaction
energy J3, are arranged along a linear chain of edge-
sharing tetrahedra and dodecahedra. Hence, the inter-
acting sites are arranged in a quasi one-dimensional
structure which cannot have long-range order above 0 K
(Dove et al. 1996). It is clear from the plots of Fig. 10
that all garnet compositions tend towards random dis-
order at high temperatures, as expected, and that at
lower temperatures it is the samples with concentrations
nearer 50% that depart most strongly from random
mixing. This is in line with our earlier work on the role of
changing concentration of two cation types on ordering
phase transitions (Dove et al. 1996; Myers et al. 1998).

The interesting correlation is between the changes in
entropy and the changes in the NMR spectra, although,
as we will see, the correspondence between experiment
and calculation is not good for some compositions. The
29Si MAS NMR spectra show resonances for two-shell
clusters of Mg and Ca surrounding the 29Si nuclei. These
clusters consist of two dodecahedral sites that are edge-
shared to a SiO4 tetrahedron (1st shell) and four
dodecahedra that are corner-shared to the same tetra-
hedron (2nd shell). The ®rst shell can be occupied by
2Mg0Ca, 1Mg1Ca or 0Mg2Ca and the 2nd shell by 4Mg0Ca, 3Mg1Ca, 2Mg2Ca, 1Mg3Ca or 0Mg4Ca.

Hence, there are 3 ´ 5 = 15 di�erent clusters. The
intensity of any NMR resonance is proportional to the
relative occupancy of the type of cluster to which it is
assigned. In principle, the NMR spectra should show 15
resonance lines, but there is considerable overlap which
means that assignments of the NMR lines to speci®c
clusters cannot be done unambiguously. In addition,
depending on garnet composition, some of the clusters
have a very low occupancy and are not experimentally
detectable. The cluster occupancies can readily be cal-
culated in the Monte Carlo simulations, and these are
shown for several compositions and as functions of
temperature in Fig. 11. The clusters have been labelled
according to the dominant cation in the ®rst and second
shell. For the pyrope-rich compositions, for example, in
cluster 2, 4 all six dodecahedra are occupied by Mg ca-
tions and in cluster 1, 0 the 1st shell is occupied by one
Mg and one Ca and the second shell by 0 Mg and 4 Ca
cations, etc. We have indicated in Fig. 11 the data
obtained from NMR experiments. In the case of Mix

Fig. 9 Monte Carlo results of the ordering energy,
DEord � 1

4

P
hiji rirjJij, for a number of compositions

Fig. 10 Monte Carlo results of above con®gurational entropy for
di�erent compositions and below reductions of con®gurational
entropy due to short-range ordering
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85:15 and Mix 75:25 we have indicated the experimental
NMR line intensities of Py85Gr15 and Py75Gr25 at
their di�erent temperatures of synthesis (Bosenick et al.
1999). In the case of Mix 60:40 we have plotted the

experimental results of Py60Gr40 at 1000 K and those
of Gr60Py40 at 1300 K although both garnets were
synthesized at 1323 K (Bosenick et al. 1995). In all
cases, the cluster populations for a completely random

Fig. 11 NMR cluster occupance for di�erent garnet
compositions as a function of temperature. The size of
the clusters and their labelling is described in the text.
The results of the Monte Carlo results are shown as
straight lines. Experimental NMR intensities are
shown on the graph as various open symbols. On the
plots of Mix 85:15 and Mix 75:25 the experimental
NMR intensities for Py85Gr15 and Py75Gr25 are
marked at their respective temperature of syntheses
(Bosenick et al. 1999). Experimental NMR data for
the other compositions are taken from Bosenick et al.
(1995). For Mix 60:40 we plotted, for the sake of
clarity, the experimental values for Py60Gr40 and
Py40Gr60 at di�erent temperatures although both
were synthesized at the same temperature (1150 °C)
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system are given by the results for high temperatures,
and clearly some of the populations signi®cantly depart
from the random values on cooling.

The important aspects of the comparison between the
calculated and observed NMR populations are in the
extent to which they depart from their random values.
Clearly, some clusters become more populated, and
others less populated, on changing temperature, and the
critical point is the extent to which the simulations can
re¯ect the changes measured in the NMR experiment. In
this regard, the simulations have mixed success. For the
15% composition, the simulations are consistent with
the NMR result that there is little departure from the
random structural state and very little variation with
temperature. For the 25% composition the trends on
lower synthesis temperature seen in the NMR spectra
are in agreement with those of the simulations. For ex-
ample, the occupancy of cluster 2, 4 increases, while that
of cluster 2,3 decreases simultaneously. However, while
for the lowest temperature of the experiment the inten-
sity for cluster 2, 4 becomes larger than those of cluster
2, 3, this crossover is not predicted with the simulations.

In total, the correspondence between the NMR in-
tensities and the experimental data is not as good as one
might have hoped for, particularly when comparing with
the di�erences between the cluster proportions at a
speci®c temperature and at in®nite temperature. Clearly,
the occupancies of some clusters are reduced, and others
are increased, on cooling, and the changes obtained in
the Monte Carlo simulations are not always correlated
with the occupancy derived from the NMR spectra. This
may be due to inadequacies in the MC method (and in
this respect we note that the MC simulations force a
symmetry between Mg and Ca which may not be present
in the data), or it may be that the overlapping of lines in
the NMR spectra has led to unidenti®ed systematic er-
rors in the determination of line intensities. For exam-
ple, in Py50Gr50, the clusters 1, 1 and 1, 3 should be
identical according to symmetry, but in the experimental
data the cluster 1, 3 has clearly a higher occupancy than
1, 1. On the other hand, in the 75:25 mix, the changes in
the top four clusters are similar in the simulations and
NMR data, although the absolute numbers are not a
perfect match.

It is interesting to note that some of the cluster oc-
cupancies change signi®cantly at low temperatures. For
example, in the 50:50 mix, the 1, 2 cluster occupancy
initially increases on cooling above that found in a
random con®guration, but suddenly at 600 K it drops
down to below its random value. This e�ect is most
prominent for the compositions near Py50Gr50, and is
not seen in the 75:25 or 85:15 mixes. It is interesting,
though, that this e�ect does not obviously show itself in
the entropy. In fact, one can comment that changes in
entropy are far more dramatic than changes in cluster
occupancies. For example, if one considers the 70:30
mix, the largest change in the cluster occupancy on
cooling from high temperatures is around 4% for the
most signi®cant clusters (this is an absolute value ± at

high temperatures the occupancy is around 50%). Yet
the change in entropy on cooling to 400 K is around
30% of its value at high temperatures. This might sug-
gest that NMR data are relatively insensitive to changes
in entropy, implying that it could be very di�cult to
estimate entropy from NMR line intensities.
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Appendix

Since the Ca potential, Ca-3, of Bush et al. (1994) has not been
previously used in simulation studies on minerals, we tested
its transferability by calculating the structures of diopside and

Table 7 Comparison of cell dimension and atomic coordinates of
the diopside structure calculated using di�erent CaáááO-potentials
with experimentally determined values. (Clark et al. 1969)

Observed Calculated

Ca-1 Ca-2 Ca-3

a (AÊ ) 9.746 9.572 9.649 9.678
b (AÊ ) 8.899 8.693 8.957 8.862
c (AÊ ) 5.251 5.170 5.164 5.212
b (°) 105.63 104.62 104.02 105.17

Si
x 0.2862 0.2858 0.2821 0.2839
y 0.0933 0.0971 0.0955 0.0951
z 0.2293 0.2306 0.2073 0.2206

O1
x 0.1156 0.1140 0.1125 0.1132
y 0.0873 0.0945 0.0872 0.0902
z 0.1422 0.1437 0.1383 0.1404

O1
x 0.3611 0.3598 0.3541 0.3572
y 0.2500 0.2550 0.2505 0.2516
z 0.3180 0.3260 0.2918 0.3072

O2
x 0.3505 0.3574 0.3535 0.3534
y 0.0176 0.0185 0.0155 0.0143
z 0.9953 0.9965 0.9752 0.9919

Mg
x 0.0000 0.0000 0.0000 0.0000
y 0.9082 0.9071 0.9062 0.9057
z 0.2500 0.2500 0.2500 0.2500

Ca
x 0.0000 0.0000 0.0000 0.0000
y 0.3015 0.3030 0.3073 0.2990
z 0.2500 0.2500 0.2500 0.2500

Table 8 Comparison of the bond lengths and bond angles within
the diopside structure calculated using di�erent CaáááO-potentials
with experimental data determined by Clark et al. (1969)

Observed Calculated

Ca-1 Ca-2 Ca-3

Si-O(1) 1.602 1.591 1.589 1.595
Si-O(2) 1.585 1.566 1.567 1.570
Si-O(3) 1.664 1.679 1.680 1.675
Si-O(4) 1.687 1.700 1.707 1.701

Mean 1.635 1.634 1.636 1.635

O(1)-Si-O(2) 118.2 118.0 118.7 118.1
O(1)-Si-O(3) 110.3 112.4 112.0 112.2
O(1)-Si-O(4) 109.9 110.7 110.3 109.4
O(2)-Si-O(3) 109.7 108.6 107.7 108.5
O(2)-Si-O(4) 103.6 103.6 103.6 102.8
O(3)-Si-O(4) 104.0 102.2 102.7 104.4
Mg-O(1) 2.16 2.10 2.10 2.12
Mg-O(2) 2.06 2.05 2.02 2.04
Mg-O(3) 2.05 1.99 2.03 2.01

Mean 2.08 2.05 2.05 2.06

Table 9 Comparison of the elastic constants (Mbar) of diopside
calculated using di�erent CaáááO potentials with experimental data.
(Levien et al. 1979)

Observed Calculated

Ca-1 Ca-2 Ca-3

c11 2.23 2.38 2.48 2.19
c22 1.71 1.96 2.29 1.88
c33 2.35 3.30 3.01 3.06
c44 0.74 0.70 0.77 0.70
c55 0.67 0.55 0.75 0.57
c66 0.66 0.86 1.04 0.78

c12 0.77 1.11 1.20 1.03
c13 0.81 0.83 0.97 0.82
c23 0.57 0.83 0.87 0.77
c15 0.17 0.32 0.17 0.25
c25 0.07 0.17 )0.02 0.10
c35 0.43 0.45 0.33 0.38
c46 0.07 0.15 )0.07 0.10

Table 8 (continued)

Ca-O(1) 2.36 2.25 2.38 2.29
Ca-O(2) 2.35 2.31 2.49 2.40
Ca-O(3) 2.56 2.48 2.55 2.54
Ca-O(4) 2.72 2.60 2.58 2.69

Mean 2.50 2.41 2.50 2.48

Table 10 Comparison of the crystal structure of gehlenite calcu-
lated using di�erent CaáááO potentials with experimental data
(Swainson et al. 1992). T(1) is occupied by equal numbers of Al
and Si atoms. To model this site an e�ective potential was used in
the calculation. (see Winkler et al. 1991)

Observed Calculated

Ca-1 Ca-2 Ca-3

a (AÊ ) 7.685 7.592 7.700 7.679
c (AÊ ) 5.064 4.896 5.090 5.061

Ca
x 0.339 0.341 0.339 0.338
y 0.161 0.159 0.161 0.162
z 0.510 0.517 0.512 0.514

T(1)*
x 0.143 0.143 0.141 0.142
y 0.357 0.357 0.359 0.358
z 0.954 0.957 0.962 0.961

Al
x 0 0 0 0
y 0 0 0 0
z 0 0 0 0

O(1)
x 0.5 0.5 0.5 0.5
y 0 0 0 0
z 0.177 0.196 0.176 0.181

O(2)
x 0.143 0.141 0.141 0.142
y 0.357 0.359 0.359 0.358
z 0.284 0.300 0.287 0.288

O(3)
x 0.088 0.093 0.087 0.091
y 0.168 0.165 0.170 0.167
z 0.808 0.795 0.811 0.810
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gehlenite. The structure of diopside has been a challenging task for
modelling (Dove et al. 1989) and, hence, is a good test phase.
Tables 7±10 compare the results obtained with the three di�erent
Ca potentials and experimental data. In the case of diopside it is
not possible to decide whether the modi®ed Ca potential (Ca-2) or
the commonly used potential (Ca-1) gives a better representation of
the structure. When comparing the elastic constants of diopside,
the latter is superior because the modi®ed potential gives negative
values for some of the constants. On the other hand, the results for
the gehlenite structure are better with the modi®ed potential Ca-2.

However, the Ca potential, Ca-3, that models the grossular struc-
ture best also gives the best model for diopside and gehlenite. This
is evident from a simple comparison of the unit-cell parameters. In
addition, for diopside the bond lengths and angles and the elastic
constants are always closer to experimental values than those
calculated using one of the other Ca potentials. Hence, the Ca
potential, Ca-3, of Bush et al. (1994) is not only transferable to
other minerals, but it also gives better results than the potential of
Post and Burnham (1986), at least in the case of garnet, diopside
and gehlenite.
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