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Abstract A theoretical analysis and computer modelling
of quartz gives a picture of the a�b phase transition in
terms that would appear to be widely applicable to other
silicate framework structures. The picture is based upon
the fact that the structure of the b-phase can distort to
the a form through the rotations of the SiO4 tetrahedra
without necessitating any distortions of the individual tet-
rahedra. A simple model based upon this premise and
augmented by lattice energy calculations of the ordering
potential gives a value for the phase transition tempera-
ture that is in semi-quantitative agreement with experi-
ment. The reasons for the success of this model are then
explored using a full anharmonic lattice dynamics calcu-
lation of the phase transition using renormalised phonon
theory, highlighting the particular significance of the soft
phonon branch compared to all the other phonon branch-
es. The basic picture also explains the variation of the
transition temperature with cation concentration in other
aluminosilicates, and gives further insight into the validity
of the mean-field description in these phase transitions.
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Introduction

The study of structural phase transitions extends back
more than a century to the first studies of the displacive
phase transition in quartz (see Dolino 1990). Since that
time, refined experimental studies and theoretical initia-
tives have shown that there is a rich diversity of unexpect-
ed behaviour associated with structural phase transitions.
For example, over the past decade it has been appreciated

that the classical a�b phase transition in quartz is really
two separate phase transitions, with a stable intermediate
incommensurate phase that exists over a temperature
range of 1.5 K (Dolino 1990). The soft mode model de-
veloped in the 1960s has provided a general mechanism
for displacive phase transitions. Much of the later exper-
imental and theoretical work on structural phase transi-
tions, as summarized in the reviews of Bruce and Cowley
(1981) and Dove (1997a, b), has been concerned with
what happens at temperatures close to the transition, the
so-called ªcritical-point phenomenaº.

Despite these decades of work we can come back to
quartz and still ask some fundamental questions about
the a�b phase transition that have some bearing on many
phase transitions we encounter in framework aluminosil-
icates. For example, why does the phase transition occur
at all? If we start in the high temperature b-phase, why on
cooling will we get to a point where the structure will
want to start buckling? There is a viewpoint that the b
phase is no more than a disordered array of small domains
of the a form. This view has been countered by recent ex-
periments (Salje et al. 1992), but even so, there has been
no attempt to provide a quantitative theory for the domain
viewpoint. Then we can ask what determines the size of
the transition temperature Tc? In general we might simply
argue that the interatomic potentials work that way, and
indeed a big calculation would doubtless get the right an-
swer. However, many components of such a calculation
will be irrelevant, so our aim is to determine the funda-
mental factors that determine the value of Tc. Further-
more, in systems that have simple solid solutions, such
as the alkali feldspars, KxNa1�xAlSi3O8, and the leucite se-
ries, (K,Rb,Cs)AlSi2O6 (Palmer et al. 1997), the transition
temperature is a function of cation concentration. It is
found in these examples that the larger the average size
of the cation site the lower is the size of Tc. One might
have argued that the opposite could be expected, because
the larger cations cations stiffen the structure and conse-
quently may require greater thermal motion to distort it.
Finally, we also need to consider how close to the soft
mode limit these phase transitions are, and in conse-
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quence explain why Landau theory appears to provide
such a good description of the phase transitions in these
materials.

In order to tackle these issues we are going to focus
mainly on quartz, and make use of a simple model appro-
priate for any framework silicate (or aluminosilicate)
crystal that was first proposed by Grimm and Dorner
(1975). The fundamental idea is that the displacive phase
transition occurs as the framework of connected SiO4 tet-
rahedra buckles by rotations and translations of the tetrah-
edra, which do not themselves distort significantly. This
model was taken a significant step forward by the work
of Vallade and coworkers (Vallade et al. 1992; Dolino
et al. 1992; Berge et al. 1986), who showed that this sim-
ple model can also account naturally for the incommensu-
rate phase in quartz. These workers showed that the soft
mode that drives the phase transitions in quartz can prop-
agate as a phonon that moves the SiO4 tetrahedra as rigid
units. They also showed that these phonons, the so-called
Rigid Unit Modes (RUMs) (Dove et al. 1991, 1992,
1997b; Giddy et al. 1993; Hammonds et al. 1996), occur
for a number of wave vectors in the Brillouin zone, and
not only at the wave vector of the soft mode. We have
shown that the existence of rigid unit modes in any frame-
work silicate can have a number of other important impli-
cations (Dove et al. 1991, 1992; Hammonds et al. 1996),
which we develop quantitatively in this paper.

The first stage is to examine the essential physical ef-
fects involved in RUM rotations of stiff tetrahedra and re-
duce these to a few variables and parameters. An expres-
sion for the crystal energy in terms of these parameters is
shown to enable a mapping of a Rigid Unit structure onto
a simple model for displacive phase transitions. It is seen
that the phase transition temperature calculated using the
simple model is remarkably close to the true value and the
reasons for this are examined in subsequent sections. The
importance of the maximum rotation angle of the SiO4
and AlO4 tetrahedral units of aluminosilicates emerges
from this analysis, and the theory is further corroborated
through results from alkali feldspars. Finally, as seen
above, the crucial role played by the stiffness of the tetra-
hedral units is shown to cause several framework alu-
minosilicates to fall within the displacive (soft mode) lim-
it of phase transitions and subsequently to follow the sim-
plest form of Landau theory very closely.

A model Rigid Unit system

Before examining a�b phase transition in quartz we for-
mulate a simple model of a displacive phase transition
based upon physical principles alone and involving stiff
molecular units at each site. This model provides great in-
sights into the important factors dictating the nature of
these transitions and opens the way for the further inves-
tigations of the rest of the paper. We begin by considering
a pair of SiO4 units joined by a common oxygen atom
within a framework crystal structure of such units. Rota-
tions of both units in the same direction will result in dis-

tortions of the tetrahedra since they must maintain their
linkage. RUM type rotations, however, preserve the tet-
rahedra and their energy cost is zero to first order. We la-
bel the rotations of a pair of adjacent tetrahedra about a
common axis qi and qj, using the convention that equiva-
lent rotations of neighbouring units are assigned opposite
signs (this may appear to be an odd convention, but it has
the merit that it gives us a final result that has an identical
appearence to another popular simple model of a phase
transition). With this convention, a Rigid Unit Mode type
rotation is such that qi=qj. The potential energy expression
associated with a general motion is given by

1
2

L qiÿ qj
ÿ �2

; �1�

where L is a large restoring force constant against defor-
mation of the tetrahedra. In any structure which under-
goes a displacive phase transition there must also be a
force which encourages rotations of the stiff tetrahedral
units to occur. An associated energy expression would be

ÿ1
2

S qi� qj
ÿ �2

; �2�

where S is a small force constant driving the rotations.
The origin of this force can be thought of as inter-tetrahe-
dral and it is known that intra-tetrahedral force constants,
such as L, are considerably larger (Dove et al. 1991; Hei-
ne et al. 1992). Hence S is small compared with L and the
picture becomes one in which the tetrahedra are encour-
aged to rotate but, due to the large energy penalty in-
curred in deforming, they do so cooperatively so that
qi=qj. The total contribution to the energy of the crystal
from these terms (E) is equal to the sum over all individ-
ual sites
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where Z is the number of nearest neighbours of each tet-
rahedron (=4 for framework silicates). In addition to the
two energy terms above, it is necessary to add a term rep-
resenting the repulusion experienced when the tetrahedra
rotate through large angles. Considering the rotation at
site i only, this repulsive energy takes the form bq4

i where
b is a constant which subsumes both the contribution of
the fourth order anharmonic energy associated with tetra-
hedral distortions and also the steric repulsions. In the lat-
ter case, a quartic term has been chosen since (1) rep-
ulsive energies build up rapidly when atoms are close to
one another so the exponent should be large, (2) the expo-
nent must also be an even number given the rotational
symmetry of the energy and (3) a quartic term is easily
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incorporated into the calculations that follow. The total
energy for the crystal becomes

Etot �
X

i

Z
2

Lÿ S� �q2
i �bq4

i
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i; j

L� S� �qiqj: �6�

Rearranging in terms of this expression gives
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X
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This has the physically intuitive form of a much-stud-
ied model of a structural phase transition alluded to
above, which is sometimes referred to as the `f4 model'
(see, for example, the review by Bruce and Cowley
1981). The energy consists of a double-well single-parti-
cle potential and a purely harmonic component bonding
each of the sites with spring constant (L+S). Following
Bruce and Cowley (1981), a useful measure of the extent
to which the system is order-disorder or displacive in
character is given by the ratio

s� E1

E2
; �8�

where E1 is the energy change in taking the variable qi
from a minimum of the single particle double well to
the maximum at qi=0 and E2 is the subsequent change
in the harmonic energy of the bonds joining the sites un-
der the assumption of a completely homogeneous ordered
state i.e., all of the surrounding variables qj occupy the
minimum of the double-well as does qi initially. In the
model of Eq. 7 the two energies E1 and E2 are given by
the following expressions

E1 � ZS� �2
4b

; E2 � Z2S L� S� �
4b

: �9�

The displaciveness measure follows:

s� S
L� S� � : �10�

In the limit s� 1, the model shows behaviour similar to a
typical order-disorder phase transition. In this case the
depth of the single-particle double-well potential is much
larger than the bond energy increment associated with en-
ergy E2. In the other limit, s� 1 (the so-called displacive
limit), where the depth of the single-particle double-well
potential is much smaller than the energy E2, the model
has many features found in typical displacive phase tran-
sitions, such as underdamped soft modes. As mentioned,
L is the large spring constant associated with high energy
tetrahedral deformations and is considerably larger than S,
which is loosely viewed as inter-tetrahedral. Therefore,
s� 1 and the system is firmly at the displacive end of
the spectrum. Since Rigid Unit systems map onto the f4

model we examine this model further in the next section.

A simple theory of structural phase transitions

Outline of the theory

The generalised model of that obtained in Eq. 7 states that
each unit cell has one relevant structural variable, fi,
which is most simply thought of as an atomic displace-
ment, but which can be any other structural quantity, such
as a rotation of a rigid body or a group of molecules.
These variables represent the motions in each unit cell
that freeze in as the temperature is reduced and the phase
transition occurs. Therefore, when discussing real phase
transitions in the context of this theoretical model, each
on-site variable fi will have components corresponding
to the eigenvector of the soft mode of the transition.
The Hamiltonian H consists of three parts, a kinetic ener-
gy term, a single-particle double-well potential, and a har-
monic nearest-neighbour interaction. A general form ap-
pears as follows:
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where k2 and k4 are the constants that define the single-
particle potential, J is the constant for interactions be-
tween neighbours and Z is again the number of nearest
neighbours. Comparing Eq. 7 and 11 it is seen that the
mapping of the RUM model onto this simple theory can
be effected if:

2ZS$ k2;
4b$ k4;

L� S� �$ J;
�13�

and Z=4 for tetrahedral framework structures. The quanti-
ty s of Eq. 8 is given in the above case, by

s� k2

2ZJ
: �14�

If we define the normal mode coordinates fk:

fk �
����
m
N

r X
j

fj exp ik �Rj
ÿ �

; �15�

we can write Eqs. 11 and 12 in the form:

H� 1
2
P
k

_fk
_fÿk� 1

2m
P
k

Jkÿk2� �fkfÿk

� k4
4m2N

P
k���k000

fkfk0fk00fk000D k�k0 �k00 �k000� � �16�

where

Jk � 1
N

Xnn

i; j

J 1ÿ exp ik � RjÿRi
ÿ �ÿ �ÿ � �17�



347

and

D k�k0 �k00 �k000� � �

� 1 if k�k0 �k00 �k000 � a reciprocal lattice vector
0 otherwise:

�
(18)

From renormalised phonon theory (e.g. Dove 1997a) we
find

Tc � k2

3kBk4

1
N

X
k

Jÿ1
k

 !ÿ1

� k2~J
3kBk4

; �19�

where ~J is defined as an average squared frequency (mul-
tiplied my the constant m) over the phonon branch and is
calculated by averaging the funciton 1/Jk over the disper-
sion surface. For many framework silicates the existence
of points, lines and planes of RUMs causes the phonon
dispersion surface frequently to exhibit extremely low ly-
ing regions which correspond to the very low frequencies
of these modes. It is essential to take the specific system
geometry, and hence the RUMs, into account when aver-
aging Jk over the dispersion surface and the section on
calculation of Tc for quartz outlines how this is done for
the case of quartz.

The canonical model of a phase transition gives us an
important physical interpretation of the transition temper-
ature as given by Eq. 19. We note that the ratio k2/k4 is
equal to the squared maximum distortion at zero temper-
ature, which we write as F2

0: Thus we have

3kBTc � ~JF2
0: �20�

There are just three factors involved in the value of Tc.
The first is the stiffness of the tetrahedra given by the con-
stant J (which is equal to the sum of the two stiffness
(L+S) in Eq. 13 but we have established that L�S). The
second is the geometric factor specific for any system
and inherent in the calculation of ~J: The third is the value
of F0, which is determined by factors such as steric hin-
drance. In pure silicates such as quartz and cristobalite
this is determined by the closest approach of nearest oxy-
gen atoms. In aluminosilicates it is determined by the ex-
tent to which the framework can collapse around a cation
in a cavity, and is thus determined by the size of the cat-
ion.

Test of the simple theory:
application to the alkali feldspars

An illustration of the result obtained above is found in the
displacive phase transitions of solid solutions. An exam-
ple is the C2=mÿC�1 phase transition in the alkali feld-
spar solid-solution series, KxNa1�xAlSi3O8. As the K con-
tent increases, the size of the maximum distortion is ex-
pected to decrease in proportion, as observed experimen-
tally (Carpenter 1988). From Eq. 20 we expect the transi-
tion temperature to scale as the maximum distortion. In

this specific phase transition, the order parameter varies
as cos a*, where a* is the reciprocal unit-cell angle of
the triclinic low-temperature phase. If cos2 a�0 /F0 is
the value at zero temperature, we expect that
Tc / cos2 a�0: Data for both Tc and cos a* at T=300 K have
been collected for a small number of samples and were
obtained from the review by Carpenter (1988). The corre-
sponding values of cos2 a�0 can be obtained by extra-
polation from the experimental relationship that
cos2 a� � cos2 a�0 TcÿT� �=Tc: In Fig. 1 we plot both Tc
and cos2 a�0 as functions of K content, x. It can be seen
that both lie on the same straight line, which confirms
the theory and the remarkable fact that Tc essentially de-
pends only upon the three factors listed above.

The same explanation can also be applied to the substi-
tution of alkali cations (K, Rb, Cs) in leucite. The larger
ions reduce both the transition temperature for the cu-
bic-tetragonal displacive phase transition, and the size
of the tetragonal distortion consistent with this discussion
(Hammonds et al. 1996).

Application of the simple theory to quartz

In this section we take the simple model further by at-
tempting to use it to calculate specific quantities pertain-
ing to the a�b phase transition in quartz. It should be
stressed that the model, as outlined in the previous sec-
tion, involves only one phonon branch whereas in true
quartz there are 27 branches, so the theory represents a
very significant simplification.

In order to perform calculations using Eq. 20 it is first
necessary to obtain the coefficients k2 and k4 of the sin-
gle-particle double-well potential. The known experimen-
tal value for Tc of 858 K then allows us to find a value for
~J which can be compared with experimentally determined
phonon frequencies in quartz.

Fig. 1 Plots of the transition temperature and order parameter
cos2 a� /Q2

0

ÿ �
of the alkali feldspars as a function of K content (x)
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Calculations of the ordering potential V(Q)

We have used the model silica potential of Tsuneyuki et
al. (1988), which was obtained by parameterising the en-
ergy surfaces obtained from ab initio calculations of small
clusters containing Si and O. These have been shown to
give reasonable (albeit not perfect) structures and proper-
ties such as phonon dispersion curves and elastic proper-
ties, and Molecular Dynamics Simulations have shown
that the potentials lead to the existence of the a�b phase
transition at around the correct temperature (Tsuneyuki et
al. 1990). We have found, moreover, that this model po-
tential contains all the ingredients essential to predict the
incommensurate phase transition (Tautz et al. 1990).

Here we present calculations of the ordering potential
V(Q), where Q is the order parameter of the a�b phase
transition in quartz. A technical disucssion of the defini-
tion of the order parameter appropriate for this work is
given in Appendix A. For each value of Q we have per-
formed energy minimisation calculations to give the fully
relaxed structure, which includes allowing the cell param-
eters to vary and allowing the SiO4 tetrahedra to distort in
response to the anisotropic local fields. The results of the
calculations are given in Fig. 2. The curve represents the
empirical function

V Q� � � 4V0 ÿ1
2

Q
Q0

� �2

�1
4

Q
Q0

� �4
" #

; �21�

where V0 is the energy difference between the minima and
central maximum of the double well (1.542 kJmol�1) and
Q0 is equal to the order parameter value at the minima. If
the energy is written as

V Q� � �ÿ1
2
k2Q2� 1

4
k4Q4; �22�

then �Q0 ��
������������
k2=k4

p
: In principle V(Q) can be extended

to higher order in Q, but the agreement between the cal-
culated and empirical data is sufficiently good in the re-
gion |Q|£Q0 to not warrant additional terms.

There are three contributions to the function V(Q): the
long-range Coulomb interactions; the long-range �r�6 in-
teractions, which are principaly between the oxygen at-
oms; and the short-range repulsive interactions, of which
the most important will be the steric repulsions that come
into play as atoms get to close together when the structure
distorts. We have decomposed V(Q) into the separate
components, which are drawn in Fig. 3. The important
point about this figure is that it shows that the dominant
contribution to the ordering potential is the long-range
term, whereas the Coulomb interactions, which are pre-
sumably dominated by the nearest-neighbour oxygen-
oxygen interaction, oppose ordering.

Calculation of Tc for quartz

It is straightforward to apply Eq. 19 to the case of quartz,
but we need to make one important modification. The
phonon dispersion surface given by Eq. 17 has a mini-
mum at k=(0, 0, 0) with no valleys for particular direc-
tions in reciprocal space. However, we know from exper-
imental results (Vallade et al. 1992) and from the RUM
determination program CRUSH (Giddy et al. 1993; Ham-
monds et al. 1996) that for quartz the phonon dispersion
surface that contains the soft mode has valleys along
á1, 0, 0ñ and á0, 0, 1ñ. We can model these assuming a
phonon dispersion surface for quartz of the form:

Fig. 2 The on site double-well potential calculated by relaxing the
quartz structure for given values of the order parameter Q. The value
of Q is set to �1.0 at the minima of the double well. The units of
energy are kJ/(mol of atoms)

Fig. 3 Contributions to the double-well potential of Fig. 2 from
Coulomb, attractive �r�6 and short range repulsive energies

J k� � � J sin 2 k � a
2

� �
� sin 2 k �b

2

� �
� sin 2 k � a�b� �

2

� �
� sin 2 k � c

2

� �� �
� 1ÿ 1ÿ d� � f� � �23�
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where a, b and c are lattice vectors, and f and 0£d£1 de-
fine the anisotropy of the phonon dispersion surface, with

f � cos 2 3Fk� �sin 2 qk� �� cos 2 qk� �: �24�
Here (qk, Fk) are the polar coordinates of k, such that for
the á1, 0, 0ñ directions, qk=p/2 and Fk=n p/3 (this is cor-
rect for the region 0£Fk£p/3 which is the region sampled
in the calculations which follow), and for á0, 0, 1ñ, qk=0.
If the `dispersion measure' d=1 there are no valleys cor-
responding to the positions of RUMs on the phonon dis-
persion surface, and in the other extreme when d=0 the
phonon frequencies are zero for all wave vectors along
the bottoms of the valleys. From experiment (see Appen-
dix B) we find that d�0.1.

The value for ~J can be obtained from this new disper-
sion surface by summation over all k of the function
J/J(k) as shown in Eq. 19. We estimated this value by nu-
merically integrating and finding the average value of
J/J(k) for different dispersion measures d. The results of
these integrations are shown in Fig. 4 and ~J itself may
be obtained by multiplying the displaced values by
J (the maximum angular frequency squared of the rele-
vant phonon branch). We now have four parameters to
use in our calculation of Tc. If we use our calculated
values for k2 and k4, and assume that s=0.1, the experi-
mental value of Tc=858 K implies a value for
~J

1
2= 2p

����
m
p� � of 1.3 THz (where m is the correct mass for

the mode fi as in Eq. 11). This corresponds to a typical
frequency of a phonon lying on the soft mode's branch
for quartz, so is a reasonable estimate. However, accord-
ing to lattice dynamics data (see Appendix B) a better es-
timate for ~J

1
2= 2p

����
m
p� � is 2.2 THz. It was not expected that

the theory would give exactly correct results given the ap-
proximations inherent to it but it is important to note that
a value for Tc is obtained that is in semi-quantitative
agreement with the true value despite its simplicity. This
is a very surprising result given that such a large number

of vibrational modes have been left out the calculation.
How is it possible that so simple a model can give us sen-
sible results? We seek to answer this question by looking
into a much more complete calculation of the transition
temperature.

Model calculations of the ab phase transition in
quartz

Our goal in this section is to understand the reasons why
the simple f4 model works so well for the complicated
quartz structure. To this end, the transition temperature
of the a�b phase transition is calculated using a lattice
dynamics program by including every phonon branch in
a mean field approximation of Tc (see e.g. Dove 1997a).
We will use the simplest form of anharmonic phonon the-
ory within the mean-field approximation, and with the
known problems of this approach we have effectively lim-
ited the expected accuracy of the calculation. The analysis
of the relevant parameters contributing to Tc reveals why
the reduced model of the previous section proves to be so
useful.

Calculation of the transition temperature Tc

The simplest approach to calculating the transition tem-
perature Tc is to use renormalised (quasiharmonic) pho-
non theory, in which we apply a mean field approxima-
tion to anharmonic phonon theory taken to fourth order.
The basic ideas have been described elsewhere (Dove
1993, 1997a), and we simply cite the results. We first
need to define terms. Any phonon frequency wk, where
k labels both the wave vector and phonon branch, will
be modified by anharmonic coupling to the order param-
eter:

�w2
k �w2

k �
1
2
akQ2 �25�

where wk is the phonon frequency in the absence of any
ordering (but incorporating all irrelevant anharmonic in-
teractions), and �wk is the frequency modified (renormal-
ized) by coupling to the ordering. ak is a fourth-order an-
harmonic coupling coefficient. We define an average cou-
pling coefficient ~a :

~a� 1
3N

X
k

ak �26�

where N is the number of atoms in the crystal. Finally we
define an `average' frequency ~w :

~wÿ2 � 1
3N ~a

X
k

ak

w2
k

: �27�

We note that if the anharmonic coefficient ak is only
weakly correlated with the frequency wk, then we can re-
write Eq. 27 as:

Fig. 4 The average value of the function (J/J(k))�1 over the Brill-
ouin zone for various values of the dispersion measure d as outlined
by Eq. 23. The parameter ~J is obtained by multiplying this function
by J for the correct value of d
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~wÿ2 � 1
3N

X
k

wÿ2
k �28�

The transition temperature Tc is given by renormalised
phonon theory (Dove 1997a) as

Tc � 2k2 ~w2

3R ~a
�29�

where k2 is the coefficient in the expression for V(Q)
(Eq. 22), and R is the gas constant. Implicit in the deriva-
tion of Tc is the use of the classical limit (h�wk < kBT). The
same result can be obtained from more rigorous reasoning
within the mean-field approximation (e.g. Blinc and Zeks
1974).

We have performed a calculation of these quantities
using a large grid in reciprocal space (1000 points, giving
27000 contributions to the sums in the expression of ~a
and ~w2), and with two values of Q (0 and Q0/20). For each
mode ak was calculated by subtracting the values of w2

k
calculated for the two values of Q. We obtained the value
Tc=1700 K. We consider the agreement with experiment
to be satisfactory given the approximations inherent in
this calculation which we now comment on.

We should comment that the molecular dynamics sim-
ulations of quartz using the same potentials found Tc for
the a�b phase transition to be around the same as the ex-
perimental value (Tsuneyuki et al. 1990). Thus the dis-
crepancy between our calculations and the experimental
value for Tc is due to the approximations in our calcula-
tion. The first of these is that the values of k2 and k4
should be the same in our calculation for the low-temper-
ature phase as seen in the high-temperature phase. These
quantities can easily be renormalised by the anharmonic
interactions that are relevant in the high-temperature
phase, and will certainly be modified as a result of dy-
namic coupling to strain (a static coupling has been taken
into account in the calculation of V(Q) above). The sec-
ond approximation is that the values of ak and wk will also
be renormalised by anharmonic interactions neglected in
our calculation, although the effects on the averages
may not be as severe. All the other approximations are in-
herent to the renormalised phonon theory, which is out-
lined in the review by Dove (1997a). Taking account of
these approximations, we do not consider that the differ-
ences between our calculations and experiment are signif-
icant.

As we have noted above, our aim is not simply to
achieve agreement with experiment but to understand
why the transition temperature has the value it has, and
why the full phonon calculation gives a result close to that
of the one branch model. The question of the value of Tc
can now be rephrased. Given that the anharmonic cou-
pling coefficient is weakly correlated with the phonon fre-
quency, and that the average phonon frequency is directly
related to the interatomic potentials and well-understood,
the important question concerns why ~a has the appropri-
ate size. A larger value would give a significantly smaller
value of Tc, whereas a smaller value would increase Tc to
well-above the melting point.

We have constructed a map showing the distribution of
the values of ak that contribute to ~a, Fig. 5. There are two
features to note. The first is that the individual values of
ak are much larger in magnitude than the final average
~a: The second is that there is an almost equal distribution
of positive and negative values, which means that to a
first approximation ~a has a value close to zero. A zero
value will give rise to an infinite value for Tc: the system
will stay in the low-temperature phase for all values of
temperature. It might seem therefore that the existence
of the phase transition is sensitively dependent on summa-
tion of a large number of near-cancelling terms. We will
explain now why this is not so.

Why does the simple model work?

The relation of Eq. 20 to Eq. 29 can be seen, if k4 simply
replaces ~a=2; and ~J replaces ~w2: In this case k4 is the
fourth-order anharmonic coefficient, but in the Fourier
transform to reciprocal space k4 transforms as a constant
value independent of k, so that ak=k4 for all k. Since in
this model there is only one phonon branch, whereas in
the general case (Eq. 29) there are 3 n branches, where
n is the number of atoms in the unit cell, the question is
whether the remaining (3 n�1) branches are important ±
we will show that they are not.

The fact that the simple theory gives a result for Tc that
is close to the value obtained from the calculation in the
previous section, with all 27 branches but with a lot of
cancelling terms, suggests that the two models are closely
connected. The case of a general rigid unit structure has
already been shown to map onto the simple theory. We
will now show how this mapping provides an explanation
for the small but non-zero value of ~a that determines the
value of Tc in Eq. 29.

The simple theory expressed in reciprocal space
(Eq. 16) can be solved for non-zero temperatures using re-

Fig. 5 A shaded contour map showing the values of the frequency
shifts Dw2

k of the normal modes of 1000 k-points ie. 27000 modes.
The non linear scale highlights those regions of the plot which have
the greatest density of points. Note the approximately even distribu-
tion of positive and negative values. The average squared frequency
shift is 3.71´10�2(rad/s)2
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normalised phonon theory. The phonon frequencies using
the nomenclature of Eq. 16 are then given as

w2
k �

1
m

Jkÿk2� �ÿ 1
m2

3k4kBT� �
X

k0
wÿ2

k0 : �30�

The whole phonon branch changes uniformly in w2 as the
temperature changes, since the anharmonic coefficient k4
is independent of k, as discussed above. This point is cru-
cial to our discussion, since it now ensures that the cou-
pling coefficient averaged over all k does not vanish in
the same way that we found in the full phonon calcula-
tions for quartz.

Validity of Landau theory

In recent years Landau theory has been successfully used
to describe the phase transitions in a number of alumino-
silicates (Putnis 1992; Salje 1990, 1991; Salje et al. 1991)
particularly for the important but complicated feldspar se-
ries. We can now use the arguments we have developed to
firmly underpin the application of Landau theory to dis-
placive phase transitions in aluminosilicates.

In the displacive limit of the f4 model (s®0), the ap-
plication of mean field theory to the system becomes
more accurate (e.g. Bruce and Cowley 1981; Dove
1997a; Padlewski et al. 1992) and the evolution of the or-
der parameter over a wide range of temperature adheres
closely to the law

Q2�T� / �TcÿT�: �31�
Since the simplest form of Landau theory is a variant of
the mean field idea, which assumes the order parameter
is homogeneous over the system, it describes the dis-
placive case well. In this limit the entropy comes almost
entirely from the phonons. The absence of configurational
entropy comes from the fact that the large nearest-neigh-
bour coupling constant ensures that the motions of near-
est-neighbour atoms are highly correlated, and indeed
the correlation lengths due to the large force constant will
be quite large. Our deduction that the displacive phase
transitions in aluminosilicates fall into the displacive limit
as a consequence of the stiffness of the tetrahedra leads to
the conclusion that Landau theory is expected to be appli-
cable.

This is not however the complete general picture. In
many aluminosilicates the phonon branch that contains
the soft mode is not soft only at a single wave vector,
but may also be soft along certain directions in reciprocal
space, as in quartz, or in planes in reciprocal space, as in
cristobalite. We have carried out a theoretical study of
phase transitions in these situations and have found the
applicability of Landau theory also depends on the varia-
tion of the phonon frequency along the soft directions or
within the soft planes (Sollich et al. 1994). Away from the
transition temperature we found that the temperature de-
pendence of the order parameter Q followed the classical
prediction of Landau theory, namely that Q2 T 0cÿT

ÿ �
;

where T 0c is a temperature slightly above the actual transi-
tion temperature. However, at temperatures close to Tc the
effects of critical fluctuations may be important ± these
define the Ginzburg interval (Bruce and Cowley 1981).
Due to the lack of experimental data it was not possible
to pin down the size of the Ginzburg interval for silicates.
But for the feldspars this is not an issue. We know from
general considerations that the C 2=mÿC �1 phase transi-
tion in alkali feldspars is driven by a soft acoustic mode
which from theory quarantees that the Ginzburg interval
is absent in three dimensions. We also know that in the
I �1ÿP�1 phase transition in the plagioclase feldspars the
soft mode is restricted to a single point in reciprocal
space, validating our previous arguments.

Conclusions

The discussion of this paper has led us to understand the
origin of the transition temperatures associated with dis-
placive phase transitions in aluminosilicates. We have
shown that the transition temperature is primarily depen-
dent on two quantities, the maximum amount the structure
can distort owing to short-range steric repulsions, and the
stiffness of the tetrahedra. This result relied on the appli-
cation of the simple theory, and to validate it we showed
how the phase transition of any aluminosilicate can be
mapped onto this model, and why the complicated detail
ignored by this mapping is self-cancelling and therefore
irrelevant. From this discussion we have been able to
show why the simplest form of Landau theory, which as-
sumes long range interactions, is expected to work over a
wide range of temperatures.

Our application of these ideas is particularly well suit-
ed to systems such as the feldspars, as discussed above. In
the case of quartz it is not reasonable to push the quanti-
tative analysis too far as the transition is actually weakly-
first-order, and in the case of cristobalite it is strongly
first-order. For quartz the first-order discontinuity arises
owing to an incommensurate instability that occurs at a
temperature that is 1.5 K higher that the transition into
the a phase. Thus it is unlikely that the basic picture will
be significantly changed given the considerable uncertain-
ty on the parameter values used in the quantitative analy-
sis. On the other hand, the origin of the large first-order
discontinuity in cristobalite is not yet understood.

Appendix A

Definition of the order parameter

The order paramter for a phase transition in a material as
complex as quartz is not straightforward to define. In
principle it might be defined as the rotations of the SiO4
tetrahedra, but this may not capture the whole picture if
there are also significant translations of the tetrahedra.

The positions of the oxygen and silicon atoms as given
by the International tables for X-Ray Crystallography for
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P 6222 b quartz and P 3221 a+ and a� quartz (right hand-
ed) or P 6422 b and P 3121 a+ and a� quartz (left handed)
are given as fractional coordinates found by operating up-
on a general position (x, y, z) with the symmetry elements
of the group. By comparing the fractional coordinates of
equivalent atoms in the a and b phases it is possible to
find linear combinations of the x, y and z values, which
take a specific value for the a+ phase and the same, but
negative, value for the a� phase and monotonically de-
crease to zero as a continuous transformation from a to
b occurs. The order parameter we used depended upon
the oxygen position. It is found that in the b phase all ox-
ygens have fractional coordinates in the z direction which
are multiples of 1

6: The oxygens we were concerned with
moved away from this z fractional coordinate in propor-
tion to how far the simulation sample had changed from
the b to a phase. Hence, we assigned this change in the
z coordinate as our order parameter (Q).

Appendix B

Analysis of the energy scale of lattice vibrations in quartz

We are concerned here with three matters. Firstly, we
need to find an experimentally determined value for the
coefficient k2 of f2

i of Eq. 11. Secondly, following on nat-
urally from this, we calculate a value for the constant J of
Eq. 11 in order to estimate the displacive/order disorder
measure, s using Eq. 14. Thirdly, the dispersion measure
d (section on calculation of Tc for quartz) must be estimat-
ed.

The constant k2

In the review by Dove (1997a) the free energy contribu-
tion of a complete set of normal modes, each with fre-
quency renormalised by the soft mode and all other
modes, is added to the lattice energy as a function of
the order parameter to give a total free energy function:

F Q� � � F0 T� �� 1
2

3RT ~a
2 ~w2

ÿk2

� �
Q2�k4

4
Q4 �32�

where all symbols have the same meaning as in the main
text. Above the transition temperature, it can be seen that
the soft mode frequency squared is given by the coeffi-
cient of the Q2 term. This coefficient is linear in T and re-
duces simply to k2 at T=0. Therefore, by extrapolating a
soft mode frequency versus temperature plot to zero tem-
perature should yield an estimate for this constant (actual-
ly k2 divided by the inertia constant m mentioned in the
text). The extrapolated data of Dolino et al. (1992), which
plots the frequency squared against temperature, provides
a value for the soft mode frequency squared at T=0 of
�1.7 THz2.

This quantity may also be found from calculations us-
ing interatomic potentials. Employing the Tsuneyuki po-

tentials (Tsuneyuki et al. 1988) for this purpose yields a
soft mode frequency squared value of �4.5 THz2 in the
a phase at T=0. The constant k2 itself is equal to the ab-
solute values of these squared frequencies divided by the
mass m.

The displacive measure s

The quantities required for the calculation of the dis-
placive measure s defined in Eq. 14 are k2, which has
now been calculated, and J ± the coupling constant be-
tween sites in the f4 model. The constant J may be found
by considering the highest frequency of the phonon
branch containing the soft mode at the G-point. The value
of J is seen (from e.g. Sollich et al. 1994) to be equal to
half of the sum of this maximum frequency squared and
k2. Calculated frequencies in the soft mode phonon
branch were searched using a lattice dynamics program
and the maximum frequency squared found was
12 THz2. The constants necessary for the calculation of
s have thus been found and, with reference to Eq. 14 its
value is calculated as follows (Z, the number of nearest
neighbours is 4):

s� k2

2Z J
� 4:5

4� 12
� 0:09: �33�

The dispersion measure d

The dispersion measure is the quantity governing the
depth of the RUM valleys in the phonon dispersion sur-
face for quartz constructed in the section on calculation
of Tc for quartz. This measure lies between 0 and 1: when
d=0 the valley's frequencies are zero and when d=1 there
are no RUM valleys. In order to estimate d the data of
Dolino et al. (1992) are referred to again and it is ob-
served that dispersion surface plots of the b-phase at
1250 K resolve the soft mode frequency at 1 THz and
the maximum points of the dispersion curve lies at around
4 THz. The dispersion measure implied by these values is
1/42=0.06. In the main text, the calculations assume d=0.1
± estimating the non soft mode RUM points to be at
slightly greater frequencies than the soft mode point itself.
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