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The contributions to the excess free energies of the orientational order- 
disorder phase transitions from the associated lattice distortions (spontaneous 
strains) in SF 6 and calcite have been calculated. These contributions are about 
one-third of the total excess free energies in both cases. 

1. Introduction 

Although the properties of orientationally disordered (OD) phases have been 
studied in considerable detail, comparatively little attention has been paid to the 
corresponding order-disorder phase transitions. This may be due in part to the fact 
that most transitions are strongly first-order and therefore appear to be of little 
interest for the study of phase-transition phenomena [1]. However, it is nevertheless 
important to understand the phase transition behaviour in these systems. This paper 
poses a simple question: how important energetically are the lattice distortions, or 
spontaneous strains, that invariably accompany such transitions? The bilinear 
coupling between strain and orientational order has been studied in the case of the 
alkali cyanides r2], but in this paper we shall tackle some of the more general 
aspects of this question from a detailed consideration of the orientational order- 
disorder phase transitions in SF 6 and the calcite form of CaCO3. 

To lowest order, the strain e enters the ordinary excess free energy via a coupling 
to the orientational order parameter Q and the normal harmonic elastic energy: 

Fst,,i, = r/tQ" + �89 2, (1) 

where r/is the coupling constant, C is the elastic constant and n = 1 or 2, depending 
on the symmetry of the phase transition. The equilibrium condition 

r = r/Q" + Ce = 0 (2) 
& 

gives the equilibrium relation between e and Q. Substitution of (2) into (1) gives the 
equilibrium value of the strain free energy: 

F,t,ain(equilibrium ) = - �89 e. (3) 

In both SF 6 and CaCO3 we know the temperature dependences of the spontaneous 
strains e and approximate values for the elastic constants C. 

2. The phase transition in SF6 
SF 6 undergoes an orientational order-disorder phase transition at 96 K [3--5]. 

The low and high temperature structures are C-centred monoclinic and body- 
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centred cubic respectively (space groups C2/m, Z = 6, and Im3m, Z = 2). The tran- 
sition has been discussed in some detail elsewhere [5]. Although there is only the 
one transition, there are very good reasons for believing that the transition mecha- 
nism involves an intermediate trigonal structure (space group P3ml,  Z = 3) [6, 7]. 

The monoclinic unit cell vectors a, b and �9 are simply related to the basis 
vectors of the cubic phase by 

a = a o [ 1 , 2 , 1 " ] ,  } 

b = a~[]', O, 1], (4) 

c = �89 1, 1], 

where a c is the cubic unit-cell parameter. Figure 1 (a) shows the temperature depen- 
dences of a/6 ~/2, b/2 ~/2, 2c/31/2 and ac, and highlights the lattice distortions associ- 
ated with the transition. Another lattice distortion can be described by the 
monoclinic fl angle, and this is shown as a function of temperature in figure 1 (b). 

These lattice distortions can be formally described in terms of the strain tensor 
defined with axis 1 along a, axis 2 along b and axis 3 along c*, following Schlenker 
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Figure 1. (a) Temperature dependence of the unit-cell lengths of SF 6 above and below the 
monoclinic-cubic transition temperature 96 K. The parameters have been scaled for 
easy comparison: O, a/61/2; O,  b/21/2; i ,  2c/31/2; V, a c. The curves are given as 
guides to the eye. Data are from [3-5, 8]. (b) Temperature dependence of the mono- 
clinic cell angle fl of SF 6 . Data are from [4, 5]. The curve is given as a guide to the 
eye. 
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Figure 2. 
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The spontaneous strains in the monoclinic phase of SF6 as functions of tem- 
perature: �9 el; @, e3; I7, %. The curves are given as guides to the eye. 

et al. [9] and Redfern and Salje [10] : 

a - ao  b - bo c sin #* - Co 
e l  - -  - - ,  ~2 - - - - ,  ~3 - -  

ao b0 Co (5) 

C COS ~* 
~ 4 = 0 ,  ~5-- - - ,  ~6 = 0 ,  

Co 

where the subscript 0 implies the value in the absence of the phase transition, as 
obtained from the extrapolations of ac below 96 K in figure 1 (a). The splitting of a 
and b below 96 K indicates that the extrapolation of ac can be approximated reason- 
ably well by 

ac(T < 96 K) = �89 + 31/2b)/C/z. (6) 

The quantities ao, bo and Co can be taken as 6~/2ac, 2~/2a~ and 3~/Za~/2 respectively. 
The strain components (5) are shown in figure 2. 

The only strain component that would be non-zero in the intermediate trigonal 
phase would be e3--in principle el and ~2 could also be non-zero and equal in the 
trigonal phase, but figure 1 shows that et = - c z  at all temperatures in the mono- 
clinic phase, implying that these strains are mostly associated with the monoclinic 
deformation. The monoclinic distortion primarily involves the shear strain es. The 
secondary strain e ~ -  e2 defines an orthorhombic shear strain. We have shown 
elsewhere [5] that ~ - ~2 is proportional to e~. ~3 is not simply related to either 
el - e2 or es, which is consistent with the identification of e3 with the cubic-trigonal 
transition and e5 and e~ - e2 with the subsequent trigonal-monoclinic transition. 

3.  S t r a i n  e n e r g y  o f  S F ~  

The axes transformation (4) can also be applied to the elastic-constant tensor, 
giving new components ~0 from the normal cubic elastic constants C11, C12 and 
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C,,,, [11] : 

C l l  = C22 = � 8 9  -.I- C12 -.{- 2C4,) ,  C33 = "}3(CH + 2C12 + 4C,,,,), 

C,,,t = Css = �89 -- C12 + C,,,,), C66 = 61(Cl1 - Ct2 + 4C,,,,), (7) 

C12 = 6~(c,, + 5 c , 2  - 2c,,,,), C ,3  = C23 = 3~(c1~ + 2 c , 2  - 2c, , , , ) ,  

ClS = -- C25 = -- C,t6 = 13(Cl I -- C12 - -  2C,t,t)/21/2, 
and the remaining components  are zero. The elastic constants  have been measured 
at high temperatures l12], and values have been calculated across the whole tem- 
perature range of  the disordered phase [13]. Figure 3 shows the experimental and 
calculated elastic constants  defined by (7), and the calculated values have been used 
to extrapolate the experimental da ta  to 96K.  The best estimates for the elastic 
constant  at  96 K are then 

~11 = ~22  ~ ~33  '~ 6"5 X 1 0 9 N m  -2, 

~12  - -  ~23  ~'~ ~13  ~ '  3"25 X 109Nm -2, 

(~44. ~--- (~55 ~'~ (~66 ~ 1"75 X 1 0 9 N m  -2, 

C15 = -C2s  = - C , 6  ~ O. 

The spontaneous  strains at 96 K taken from figure 2 are 

et = - ~ 2  = 0-007, 
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Figure 3. The elastic constants of SF 6 for T > 96 K in the pseudo-orthorhombic coordinate 
setting of the monoclinic phase: (a) ~11 (0 ,  O) and ~33 ( i ,  I-l); (b) ~tz (0 ,  O) and 
~13 (1 ,  [7); (c) ~44 (0 ,  �9 and r ( i ,  17); (d) ~46 (0 ,  O). The filled symbols are 
the experimental data [121 and the open symbols are simulation calculations [13]. 
The broken lines indicate the trend shown by the simulations, and the continuous lines 
give the extrapolations of the experimental data obtained by comparison with the 
simulation results. 
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Figure 4. The excess free energy associated with the orientational order-disorder phase 
transition in calcite. The continuous curve is the total excess free energy given by the 
Landau expansion (9), while the broken curve is the harmonic strain energy (3). 

83 = 0.036, e s = 0-040. 

e I - t 2 is almost an order of  magnitude smaller than t 3 or 55 because it arises from 
a higher-order coupling in the free energy than 83 and 8s; recall that 81 - 82 oc 8~. 
Therefore the largest components  of the strain energy are - �89 832 and -2C55  82. 
(Note that the extra factor of four in the latter case arises because 85 denotes two 
equivalent strains, e13 and e31, which can be combined in four ways in the strain 
energy.) These two quantities are approximately 0.23 and 0-31 kJmo1-1  respec- 
tively. These values should be compared with the measured value of the latent heat 
of the transition of 1.6 k J m o l - 1  [14]. The relative contributions of the strain ener- 
gies for 83 and 85 are approximately 14% and 19%; about  33% of the latent heat is 
strain energy. This is a significant contribution, and shows that the spontaneous 
strains are important  for the thermodynamics of the orientational order-disorder  
phase transition in SF 6 . 

4. The phase transition and strain energy in calcite 

Calcite has an orientational order-disorder  phase transition at 1260K. The 
space groups below and above the transition are R3c (Z = 2) and R3m (Z --- 1). The 
transition is continuous, with the order parameter  Q having the temperature depen- 
dence [15] 

Q = ( 1 -  ry" . (s) 

In the orientationally disordered phase the CO 3 molecular ions are disordered by 
rotations about  the molecular threefold axis (which is parallel to the crystal three- 
fold axis in both phases). The transition is accompanied by a large negative strain 
83, involving contraction along the direction of the threefold axis, on cooling. It  is 
found experimentally that e 3 oc Q2 [15]. 

The transition behaviour is accurately described by a Landau free-energy func- 
tion of the form 

F = �89 - T~)Q 2 + ~cQ 6, (9) 

where a = 24(_+3)Jmol - t  K -1 and c = 30(_+3)kJmo1-1 [15, 16]. Thus at T = 0, 
where by definition Q = 1, the excess free energy is 10 kJ m o l -  1. This value may be a 
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slight overestimate because of the neglect of saturation effects in (9), but, since we 
know that Q = 0-93 at T = 300 K, these effects will be relatively small. 

The elastic constant C33 has been measured at 300K, with a value of 
8.4 x 101~ -2 [17]. The Landau free energy (9) is shown as a function of tem- 
perature in figure 4. The neglect of saturation effects leads to a non-zero value for 
the entropy at T = 0. The strain energy calculated from (3) using the experimental 
data for ~3 [15] is also shown in figure 4. Any temperature dependence of C33 has 
been neglected, but, since the coupling of the strain to the order parameter Q is not 
bilinear, it is not expected that there will be a significant renormalization of C33. It 
can be seen from figure 4 that the strain energy is a significant fraction of the total 
excess free energy of the transition, and is approximately 30% at low temperatures. 

5. Conclusions 

Although the calculations presented in this paper are rather rough, we can still 
draw the conclusion that the energies associated with the spontaneous strains at 
orientational order-disorder transitions make substantial contributions to the total 
excess free energies associated with at least some of these transitions. This conclu- 
sion transcends the details of the rough calculations given in this paper. 

There are few reported measurements of the temperature dependence of lattice 
parameters of orientationally disordered crystals in the literature. It is hoped that 
one result of this paper will be to encourage such measurements. Consider again the 
case of SF 6 . Although the transition is strongly first-order, the temperature depen- 
dences of the cell parameters below 96 K primarily reflect the temperature depen- 
dence of residual disorder. The cell parameters therefore contain important 
information concerning the phase transition. Ideally, therefore, the cell parameters 
should be measured as functions of temperature for all systems of interest (e.g. N2, 
CBr4, KCN, adamantane). So too should the elastic constants. For it is probable 
that, despite their first-order character, many orientational order-disorder phase 
transitions can be described by a Landau-like free-energy function, and the contri- 
bution of the strain energy will be an integral part of such a description. 

Some of the experimental results discussed in this paper were obtained from 
collaborative work with Dr Brian PoweU (Chalk River) and Professor Stuart 
Pawley (Edinburgh). I am grateful to Dr Ekhard Salje (Cambridge) for encouraging 
this work through a speaking invitation. 
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