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ABSTRACT

Total neutron scattering measurements, analysed using a modification of the reverse Monte Carlo
modelling method to account for long-range crystallographic order, have been used to describe the
temperature-dependent behaviour of the structure of quartz. Two key observations are reported. First,
the symmetry change associated with the displacive a b phase transition is observed in both the long-
range and short-range structural correlations. Secondly, some aspects of the structure, such as the Si O
bond length and the thermally-induced dynamic disorder, the latter of which sets in significantly below
the transition, are relatively insensitive to the phase transition. These results are used to show that the
a-domain model of the b-phase disorder is inappropriate and that the classical soft-mode picture of the
phase transition is too simplistic. Instead, it is argued that the structural behaviour is best described in
terms of its ability to respond to low-frequency, high-amplitude vibrational modes. This view is
supported by additional single-crystal diffuse neutron scattering measurements.

KEY WORDS: structural characterization, quartz, a b transition, total neutron scattering, reverse Monte Carlo
modelling.

Introduction

QUARTZ, SiO2 , is a much-studied material,
investigated by crystallographers, solid-state
physicists and mineral scientists over many
years. The crystal structures of the a (low) and
b (high) phases were � rst deduced in the 1920s by
Bragg and Gibbs (1925) and Gibbs (1925). Since
their pioneering work, many studies have been
carried out to re� ne the structural models further
using both neutron and X-ray single crystal
diffraction (e.g. Wright and Lehmann, 1981;
Kihara, 1990). Much of this work has been
reviewed in considerable detail by Heaney (1994).

Despite the wealth of documented research on
quartz, it is perhaps surprising that there is still no
clear, experimentally veri� ed, picture of what

actually happens to the quartz structure on heating
from a- to b-quartz through the displacive phase
transition at Tc = 846 K. This can begin to be
understood when it is considered that few
experimental probes are able to take a ‘holistic’
view of the structure. Most studies tend to focus
on either the long-range structural response to the
phase transition (e.g. Bragg diffraction measure-
ments), or the short-range (e.g. spectroscopic
measurements), rather than attempting to rationa-
lize both aspects of the structure simultaneously.
Interpretations have thus tended to follow two
extreme perspectives. First is the so-called
domain model for the b-phase. It is assumed
that the atoms hop between the positions
corresponding to different a-domains, so that
there is dynamic disorder in the high-symmetry
b-phase, and on cooling the atoms progressively
occupy the positions corresponding to one domain
in the low- symmetry a-phase. Secondly, there is
the classical soft-mode picture, in which the
atoms vibrate around mean positions which
change (through symmetry breaking) on cooling
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through Tc and the displacive mode acts as the
classical soft mode. We have shown in a previous
letter (Tucker et al., 2000a) that neither of these
two models provide a completely satisfactory
picture of the structure of quartz, and in fact there
is an additional, perhaps dominant, contribution to
the disorder in the b-phase from low-energy high-
amplitude vibrations that become excited as a
result of the phase transition.

This paper describes the new analysis methods
used to characterize the structure of quartz in
greater detail. These methods are based on reverse
Monte Carlo modelling (Dove et al., 2000b; Keen
and Dove, 2000) using neutron total scattering
data, the new feature being the use of extracted
Bragg intensities to re� ne structural models
(Tucker et al., 2001). This approach was used to
generate atomic models of the structure of quartz
over a wide range of temperatures, which were
interpreted to provide a complete description of
the structural changes in quartz as a function of
temperature. In addition, new single crystal
diffuse neutron scattering results are presented
which support the interpretations given here.

Experimental

Total neutron scattering
Total neutron scattering data were obtained from
quartz at a number of temperatures on the LAD
diffractometer (Howells and Hannon, 1999) at the
ISIS spallation neutron source. The sample was a
� nely-ground powder of natural quartz, contained
in a cylindrical thin-walled vanadium can of 8 mm
diameter. This was mounted onto the ‘cold � nger’
of a closed-cycle helium refrigerator (CCR) for
measurements at 20, 150 and 290 K, and inside a
standard vanadium-foil furnace for measurements
at and above room temperature (at 293, 473, 673,
793, 823, 833, 843, 857, 863, 973 and 1073 K).
Data were collected on three separate occasions,
counting for between 3 and 4 h per temperature.
Separate measurements of a similar empty can
within CCR and furnace, empty CCR and furnace,
standard vanadium rod, silicon sample and empty
instrument were also made for subsequent
instrument calibration and data correction.

The LAD instrument collected scattering data
in detector banks centred on seven different
scattering angles, 2y. Data from all the detector
banks were corrected and merged in a manner
routinely used for the treatment of scattering data
from liquid and amorphous samples (Howe et al.,
1989) to produce a normalized differential cross-

section, ds/dO, over the range 0.2 < Q < 40 AÊ 1

for each temperature. Data from the back-
scattering detector banks (2y & 1478), which
have the highest Q-space resolution, were also
corrected separately to produce powder patterns
for Rietveld re� nement.

The phase transition was carefully traversed in
small temperature steps to ensure that data were
taken as close to Tc as possible. Tc was actually
found to be close to the nominal temperature of
858 K (~10 K above the accepted value),
indicating that there was a progressive positive
offset between the measured temperature in the
furnace and the actual sample temperature. All
data in this paper will be plotted against measured
temperature, since it is unlikely that this
temperature difference is linear.

Single crystal diffuse neutron scattering

Diffuse neutron scattering data from a ~308
section of the hk0 reciprocal lattice plane of
quartz were collected at a number of temperatures
using the PRISMA spectrometer (Harris and Bull,
1998) at ISIS. A 30 mm long natural quartz
crystal with hexagonal cross-section and 11 mm
mean diameter was mounted, using tantalum wire,
with the rod axis vertical inside a standard
vanadium foil neutron furnace. This was aligned
on PRISMA with the c-axis vertical and data were
collected as a function of neutron time-of-� ight
using sixteen diffraction detectors in the equa-
torial plane centred on 2y = 908, with each
detector separated by 2y = 18 from its immediate
neighbour. Data were collected using � ve
different crystal settings per temperature and
measuring for around 30 min per setting. The
initial measurement was at room temperature,
followed by 1073, 973, 923, 873, 853, 833, 773,
673 and 573 K. Data were normalized to a
vanadium standard and rebinned onto the hk0
reciprocal lattice plane for quartz using standard
PRISMA routines (Harris and Bull, 1998).

Data analysis

Rietveld refinement
Time-of-� ight Rietveld re� nements of the back-
scattering diffraction data used the program
TF12LS (David et al., 1992) which is based on
the Cambridge crystallographic subroutine library
(Brown and Matthewman, 1992). The quality of
the � t to the experimental diffraction data was
assessed using the normal w2 statistic de� ned as
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w2 = Rw p
2 /Rex p

2 , where the weighted pro� le
R-factor, Rwp, is given by
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Nd
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2 1

The summations are over the Nd data points used
in the � t. The expected R-factor is then given by

R2
exp Nd Np

Nd

Iobs
2

sIobs
2 2

where Np is the number of � tted parameters. Iobs

and Ic a lc are the observed and calculated
intensities respectively and sIoba is the estimated
standard deviation on Iobs derived from the
counting statistics. In addition, Bragg intensities
were extracted using the Pawley method (Pawley,
1981) within the same routines (David et al.,
1992). These were used in the reverse Monte
Carlo modelling described below.

Total scattering correlation functions
The total scattering structure factor, F(Q), may be
determined from the differential cross-section
(Keen, 2001)

1
N

ds
dO

F Q
n

i 1

cib2
i 3

where 4p n
i 1 cib2

i is the total scattering cross-
section of the material and the summation is over
the n atom types. There are N atoms in the
material and ci is the proportion of atom type i.
F(Q) is related to the total radial distribution
function, G(r), by the Fourier transform

G r
1

2p 3r0
0

4pQ2F Q
sin Qr

Qr
dQ 4

with average atom number density r0 = N/V (in
atoms/AÊ 3).
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FIG. 1. Neutron total scattering structure factors of quartz over a wide range of temperatures. Each sucessive structure
factor has been offset vertically by +0.125 for clarity.

QUARTZ a b PHASE TRANSITION

491



G(r) may also be de� ned in terms of the partial
radial distribution functions gij(r),

G r
n

i j 1

cicjbibj gij r 1 5

where

gij r
nij r

4pr2rjdr
6

nij(r) are the number of particles of type j between
distances r and r + dr from a particle of type i and
rj = cjr0. Two other commonly used correlation
functions, D(r), the differential correlation func-
tion and T(r), the total correlation function are
then de� ned as

D(r) = 4prr0G(r) (7)

and

T r 4prr0 G r
n

i 1

cibi

2

8

The normalized total scattering structure
factors, F(Q), are shown in Fig. 1. The signi� cant
structure in F(Q) at Qm ax & 40 AÊ 1 will lead to
problems of truncation within the Fourier trans-
form in equation 4 at Qmax. In order to circumvent
this, the inverse method MCGR (Pusztai and
McGreevy, 1997) was used to determine G(r).
Here a model total radial distribution function,
Gm odel(r), is constructed between 0 and rm ax.
Gm od e l(r) is iteratively varied and Fourier
transformed to Fm ode l(Q) using the inverse
relation

F Q r0

0

4pr2G r
sin Qr

Qr
dr 9
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FIG. 2. Neutron weighted total pair correlation functions D(r) over a wide range of temperatures. Each successive
function has been offset vertically by +4.0 for clarity. The two vertical dashed lines at low-r indicate the positions of
the Si O and O O distances whereas the full line at r & 17 AÊ re� ects the macroscopic expansion of quartz (see text

for details).
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for comparison with the with experimental
Fexpt(Q). The difference between Fm odel(Q) and
Fexpt(Q) is used to determine which iterations are
accepted. When this difference is within a
prede� ned limit, Gm odel(r) is a good representa-
tion of Gexp(r) for 0 < r < rm ax. The process can
then be repeated any number of times until the
desired statistical accuracy is obtained for the
average Gm odel(r). This method bypasses the
truncation errors inherent in the Fourier transform
F(Q) ? G(r) and, provided that rm ax > 2p/DQ
(where DQ is the width of the narrowest Bragg
peak), does not introduce different truncation
errors on the inverse Fourier transform. The D(r)
produced using MCGR are shown in Fig. 2. The
pair correlation functions are then � tted in the
reverse Monte Carlo modelling described below.

Finally, if G(r) is calculated from a con� gura-

tion of atoms of � nite size, using equations 5 and
6, then the F(Q) from this G(r) (via equation 9)
will contain truncation errors. Hence, in order to
make a valid comparison between the Fcalc(Q)
from, for example, an RMC con� guration,
Fe xpt(Q) must � rst be convoluted with the
Fourier transform of a box function of size L/2,
where L is the shortest side of the (orthorhombic)
con� guration box.

F box
expt Q

1
p

Q
sin L 2 Q Q

Q Q
dQ 10

where Fexpt
? (Q) is approximated by an Fexpt(Q)

with suitably sharp Q-space resolution. Fexpt
? (Q)

has lower and broader Bragg peaks and represents
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FIG. 3. Least squares re� nement of neutron diffraction data from a-quartz at 20 K (lower plot) and from b-quartz at
1073 K (upper plot). The dots are the experimenta l data from the back-scattering detector banks on the LAD
diffractomete r and the full lines are the pro� les calculated using the re� ned structura l models described in the text.
The tick marks at the top of both main panels show the calculated positions of the Bragg peaks and the smaller
panels show the difference s (measured-calculated ) divided by the estimated standard deviation of the data points.
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a � nite range in real space. This function was also
� tted in the reverse Monte Carlo modelling.

Reverse Monte Carlo modelling

The reverse Monte Carlo modelling method has
been described in detail elsewhere (McGreevy and
Pusztai, 1988; McGreevy, 1995). In essence,
scattering functions are calculated from a three-
dimensional arrangement of atoms each time an
atom is moved and compared with the equivalent
experimentally determined functions. Atoms are
selected at random and moved a random amount
up to a pre-de� ned limit. Atom moves are accepted
on the basis of wRMC

2 de� ned as (for example),

w2
RMC

K

k 1 i

Fcalc Qi k Fexp Qi k
2

sk Qi
2

L

l 1 i

Gcalc ri l Gexp ri l
2 sl ri

2

J

j 1

f req
j f RMC

j

2
s2

j 11

to include comparison with K structure factors, L
radial distribution functions and J constraints.
sk(Qi) and sl(ri) are related to the experimental
error but are usually (for neutron diffraction)
treated as independent of Qi and ri respectively. If
wRM C

2 is reduced as a result of the atom move,
then the move is accepted and if wRMC

2 increases it
is accepted with a probability exp( DwRM C

2 ,
where DwRM C

2 = wnew
2 wold

2 . Atoms are moved
until there is little further reduction in wRMC

2 and
convergence is achieved.

The third term in equation 11 is included when
constraints are used to limit possible atom moves.
fj

req and fj
RM C are the required value of constraint,

j, and the value calculated from the RMC
generated con� guration, respectively. sj can be
used as a weighting term to in� uence the strength
of any particular constraint. These constraints are
extremely important for network systems, where
topology must be retained. Here, the constraints
have the form (Keen, 1997, 1998)

Si O
bonds

rSi O RSi O
2 s2

Si O

O Si O
angles

yO Si O YO Si O
2 s2

O Si O 12

where RSi O is the position of the lowest-r peak in
T(r) and YO Si O is the ideal tetrahedral angle.
The � rst summation constrains Si O bonds such
that the position and width of the lowest-r peak in
T(r) is reproduced, and the second maintains
regular SiO4 tetrahedra. The combined effect of
both of these two constraints is to force the model
to retain a continuous network of corner-sharing
SiO4 tetrahedra.

Finally, the Bragg intensities are calculated
from the model, using the following equation

I
1

2prN j

bj exp i j

2

13

evaluated at reciprocal lattice vectors, Q = H.
Here the summation is over the N atoms in the
model and rj is the vector joining atom j to an
arbitrary origin (it is assumed that the model is a
supercell of the unit cell). These are compared to
the experimental data extracted using the Pawley
method (Pawley, 1981) and used as an additional
constraint to the model

sIexp Icalc
2 s2 14

where s is a scale factor and I(H) is the intensity
of the hk1 Bragg re� ection. This constraint
introduces an element of Q-dependence into the
model, reduces the disorder in the � nal model and
improves the consistency between the average
structure and the averages obtained from the
RMC con� gurations (Tucker et al., 2001).

Hence, for each temperature, an RMC model of
quartz was re� ned by � tting to one total structure
factor, one total radial distribution function, a set
of extracted Bragg intensities whilst constrained
by an Si O bond length and O Si O tetrahedral
angle. The starting models consisted of a
10610610 supercell of an orthorhombic unit
cell of quartz (containing 18 atoms) using the
average atom positions determined from Rietveld
re� nement of the diffraction data at each
temperature. Typical minimizations took 80 h
using a Silicon Graphics R5000 processor.

Results

In general, the average structures of the two phases
of quartz are complicated by twinning and the
sense of the SiO4 tetrahedral network topology.
The high-temperature hexagonal b-phase structure
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consists of either right-handed (space group
P6222) or left-handed (space group P6422)
helices parallel to the c-axis (Heaney, 1994). On
cooling into the a-phase, the average positions of
the SiO4 tetrahedra are seen to rotate about 100
directions by an amount d to give rise to a trigonal
structure in space groups P3221 and P3121 for
right- and left-handed quartz respectively. The
handedness is preserved through Tc and the two
enantiomorphs are known as the Brazil twins of
quartz. In addition, the rotation, d, may occur in
either a positive or negative sense within either
left- or right-handed quartz to produce Daupiné
twins. A further complication concerns the
appearance of an incommensurate phase over a
very small (~1 K) temperature range between the
a and b phases (reviewed by Heaney and Veblen,
1991). This phase is very dif� cult to stabilize
effectively, and our measurements, even those
close to Tc, do not see the incommensurate phase.

Rietveld re� nements were performed in space
group P3121 and P6422 for a- and b-quartz
respectively. The standard settings of the
International Tables for Crystallography (Hahn,
1996) were used throughout , namely Si was

located at 3a (x,0,1/3) and O at 6c (x,y,z) for
a-quartz, whereas for b-quartz, Si was placed at 3c
(1/2,0,0) and O on 6j (x,2x,1/2) in their respective
space groups. The two structures may be
compared by noting that the b-phase, with a +c/3
change in origin places Si atoms at (1/2,0,1/3) and
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FIG. 4. RMC re� nement of neutron diffraction data from a-quartz at 20 K (lower plot) and from b-quartz at 1073 K
(upper plot). The dots are the experimenta l D(r) data obtained using MCGR on F(Q) and the full lines are D(r)
calculated from the re� ned RMC structura l models described in the text. The lower trace in each plot shows the

difference (measured-calculated) , offset vertically by 1 (1073 K) and 2 (20 K).
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FIG. 5. Comparison of the temperature dependence of the
unit-cell volume of the average structure of quartz
(squares ) with the cube of the position of a peak in D(r)

at high-r (circles), scaled to coincide at 20 K.
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O atoms at (2x,x,1/6). The data quality, both in
terms of statistical accuracy and short d-spacing
re� ections made re� nements of fully anisotropic
atomic displacement parameters possible for all
temperatures. Figure 3 shows � ts to the neutron
powder patterns from quartz at the lowest and
highest temperatures measured; Table 1
summarizes the results from these temperatures,
showing that good � ts were obtained and yielding
precise structural parameters.

The � ts to D(r) from RMC re� nements of
quartz at 20 and 1073 K are shown in Fig. 4.
Good agreement was obtained at all temperatures
to D(r), F(Q) and the I(H) simultaneously and
whilst maintaining the tetrahedral constraints and
network topology. The two main discrepancies in
Fig. 4 occur in the widths of the � rst two low-r
peaks, suggesting that the constraints produced
distributions of Si O and O O nearest-neigh-
bour distances that were slightly too sharp, and at
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FIG. 6. Temperature dependenc e of anisotropic atomic displacement parameters in quartz.
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large-r, where again the RMC model produced
sharper peaks than observed in the data. This
latter effect is due to the � nite Q-space resolution
in F(Q), which causes the peaks in D(r) to
broaden, with an additional contribution to the
peak width which is proportional to r2 (Toby and
Egami, 1992).

A cursory inspection of Figs 1 and 2 suggests
that the onset of disorder within quartz is gradual
and without a clearly de� ned phase transition. In
addition, the disorder sets in at temperatures
signi� cantly below Tc. The Bragg peaks reduce in
intensity steadily with increased temperature over
the whole temperature range as the peaks in D(r)
become broader. There is little difference in F(Q)
or D(r) data just above and below Tc (compare
plots at 857 and 863 K). However, the phase

transition can be seen in the details of the data.
Figure 5 compares the volume expansion of
quartz, determined from Rietveld re� nement
with the position of the peak in D(r) at ~17 AÊ
shown as a full line in Fig. 2. The unit-cell
volume shows the same behaviour around the
phase transition as seen by other workers
(Carpenter et al., 1998) and this is mimicked,
albeit less precisely due to peak broadening with
increased temperature, by the position of a high-r
peak in D(r).

The anisotropic atomic displacement para-
meters also show this combination of large
thermal disorder, beginning at relatively low
temperatures and changes at the phase transition
(see Fig. 6). The oxygen atomic displacement
parameters show large anisotropy at all tempera-

TABLE 1. Summary of results from Rietveld re� nements of neutron diffraction data from
quartz at 20 and 107 K. V/Z is the unit-cell volume per SiO2 formula unit and (F) denotes a
parameter which is � xed by symmetry.

a-quartz b-quartz

T (K) 20 1073
Space group P3121 P6422
Lattice parameters a(AÊ ) 4.9019(1) 4.9965(1)

c(AÊ ) 5.3988(1) 5.4543(1)
V/Z (AÊ 3) 37.45 39.31

Atom positions Si (x) 0.4673(2) 1/2 (F)
(y) 0 (F) 0 (F)
(z) 1/3 (F) 0 (F)

O (x) 0.4130(1) 0.4169(4)
(y) 0.2711(1) x/2
(z) 0.21720(8) 5/6 (F)

Thermal Parameters Si B11 (AÊ 2) 0.32(2) 1.75(8)
B22 (AÊ 2) 0.27(2) 0.83(9)
B33 (AÊ 2) 0.25(2) 1.51(11)
B12 (AÊ 2) B22/2 B22/2
B13 (AÊ 2) B23/3 0 (F)
B23 (AÊ 2) 0.04(2) 0 (F)

O B11 (AÊ 2) 0.57(2) 4.01(10)
B22 (AÊ 2) 0.38(1) 3.70(7)
B33 (AÊ 2) 0.43(1) 5.21(10)
B12 (AÊ 2) 0.29(1) B11/2
B13 (AÊ 2) 0.05(1) 0 (F)
B23 (AÊ 2) 0.139(9) 3.54(6)

Goodness-of- � t w2 10.73 9.58
Weighted R-factor Rw 3.46 2.99
Expected R-factor Rexp 1.06 0.97
Number of data points Nd 2946 2947
Number of Bragg peaks NB 3658 1926
Number of � tted parameters Np 31 24
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tures, becoming more pronounced as temperature
increases whereas the silicon distribution implied
by the atomic displacement parameters is more
symmetric. This is indicative of librational motion
of ‘rigid’ SiO4 tetrahedral units. At Tc, the
symmetry change introduces changes to the
atomic displacement parameters, with some
becoming zero, but the magnitude of the overall
disorder does not change signi� cantly.

Figure 7 shows the development with tempera-
ture of the silica and oxygen atom coordinates,
showing both the Rietveld re� ned values and
those obtained from the RMC re� ned con� gura-
tions. The latter were obtained by superposing all
the atoms within the con� guration onto one unit
cell and determining a mean position from the
resulting atom density distribution. These para-
meters, together with the unit-cell parameters,
may be used to calculate d, the tetrahedral tilt
angle which has been taken as the order parameter
of the a b phase transition (Grimm and Dorner,
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1975). This is shown in Fig. 8, together with
previous X-ray diffraction results (Young, 1962;
Jay, 1933) and a � t to the X-ray data using the
following equation (Grimm and Dorner, 1975):

d
2
3

d2
0 1 1

3
4

T T0

Tc T0
15

where d0 is the jump in tilt angle at Tc (7.38), and
T0 is the temperature at which the phase transition
would occur if it were second order. (T0 = Tc

10 K).
The average structure of quartz is shown for

three temperatures in Fig. 9. The development of
structural disorder as temperature is raised while
still in the a-phase is seen in the sizes of the
thermal ellipses; the change in symmetry on
passing through Tc is evident when the central
channel in this projection becomes a regular
hexagon in the b-phase. Figure 10 shows a (100)
layer of a RMC con� guration, together with the
average structure produced from the con� gura-
tion, at three similar temperatures to those in the
structure plots in Fig. 9. Whereas the 20 K
con� guration shows a well-ordered structure,
both high temperature con� gurations are highly
disordered. The disorder appears random in so far
as there are no clear domains within the
con� gurations, although the underlying trigonal
or hexagonal symmetry is preserved, as seen in
the average structures obtained from the
con� gurations.

So far we have demonstrated remarkable
consistency in the average structures obtained
via Rietveld re� nement of the Bragg peaks in the
powder patterns and the average structural
parameters obtained from the RMC re� nements.
In addition however, the RMC models (as shown
in Fig. 10) may also be used to determine other
instantaneous correlations such as local bond
lengths and angles. Figure 11 shows that the
Rietveld re� ned model accommodates the
increasing disorder in the structure by reducing
the size of the SiO4 tetrahedra. This is unlikely to
be physical (Liebau, 1985). In contrast, the
instantaneous correlation functions obtained
from the RMC models show increasing Si O
(and O O) nearest-neighbour interatomic
distances with increasing temperature and are in
line with what might be expected (Tucker et al.,
2000b). We also note that the ‘unphysical’
behaviour may also be recovered from the
average structural parameters obtained from the
RMC con� gurations. The disparity between

instantaneous and average structural parameters
is clearly seen in the temperature dependence of
the Si O or O O distances (Fig. 11). Here the
instantaneous bond length (whether from the
experimental or RMC derived T(r)) increases
linearly with increasing temperature and is

T=1073 K

b

T=20 K
a

T=843 K
a

FIG. 9. The average structure of quartz obtained from
least squares re� nement of neutron diffraction data from
a-quartz at 20 and 843 K and from b-quartz at 1073 K.
The structures are plotted looking down the c-axis and
show the SiO4 tetrahedra and the anisotropic atomic

displacemen t parameters of the Si and O atoms.
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BA

20 K, a

793 K, a

1073 K, b

b*

c*

FIG. 10. (100) layers of instantaneous RMC atomic con� gurations of quartz represented by SiO4 tetrahedra for one
temperature above Tc and two below. The insets show the average structures obtained from the same con� gurations.
In this projection the small parallelopipe d spaces between tetrahedra become orthogona l in the b-phase, giving a

clear representatio n of the symmetry change at Tc.
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independent of Tc, whereas the average bond
length decreases with increasing temperature and
shows a discontinuity at Tc. In Fig. 11 the Si O
instantaneous bond length has been further
separated into those in the directions which are

expected to show a short and long bond. This has
been achieved by taking the average of the actual
bond lengths directly from the RMC con� gura-
tions and not via T(r). This clearly shows that the
RMC con� gurations do indeed give new impor-
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FIG. 11. Temperature dependenc e of the (a) Si O, (b) O O and (c) Si Si nearest-neighbou r distances in quartz.
Here the � lled squares and circles represent the distance between average atom positions , e.g. Si O , given by
Rietveld and RMC re� nement respectivel y and the open circles represent the average values of the instantaneou s
distance, e.g. Si O , from the RMC models. Note that plot (a) shows Si O bond lengths correspondin g to those
which lie approximately along the directions correspondin g to the short and long bonds seen in the average structure.
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tant insight into the structural behaviour around
Tc.

Taking this characterization further, Fig. 12
shows the distribution of O Si O, Si O Si and
Si Si Si nearest neighbour angles within the

RMC con� gurations at a number of different
temperatures. In particular, the Si Si Si angle
distribution is seen to go from four distinct peaks
within the a-phase to three in the b-phase. This is
also clearly seen in Fig. 13 which plots the
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FIG. 12. The nearest neighbour atom–atom–atom angle distribution s in quartz at a number of different temperatures.
(a) O Si O, (b) Si O Si and (c) Si Si Si. The broader, lower peaks correspond to data at higher temperatures.
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temperature dependence of the positions and
widths of the peaks in the Si Si Si angle
distribution which coalesce in the b-phase.
Whereas the positions change discontinuously at
Tc, the widths increase smoothly with increasing
temperature and independently of Tc. The former
shows that the symmetry change at Tc is even
observed in short-range correlations (the Si Si
distance is ~3 AÊ ) and the latter indicates that the
thermal disorder develops monotonically with
increasing temperature and does not appear to
‘notice’ Tc.

Discussion

One of the key issues to understand is the inter-
relationship between the phase transition and the
structural disorder. As we stated previously
(Tucker et al., 2000a), there is clearly more
thermally induced dynamic disorder than in either
the classical soft-mode or domain models of the
phase transition in quartz, and the disorder sets in
at temperatures signi� cantly below Tc. Instead of
using these models, we may consider how the
structure will respond to the Rigid Unit Modes
(RUMs) present in quartz (Bethke et al., 1987;
Hammonds et al., 1996). These are phonon modes
that propagate without signi� cantly distorting the
SiO4 tetrahedra – the tetrahedra move as rigid
bodies via rotations of the Si O Si linkages.
Since this requires signi� cantly less energy than
distorting the SiO4 units, RUMs are vibrations

with the lowest frequencies and largest ampli-
tudes (Dove et al., 2000a; Harris et al., 2000).
Hence the large-amplitude rotations and transla-
tions seen in the RMC con� gurations (Fig. 10) at
higher temperatures are primarily due to the
excitation of RUMs in quartz.

Detailed calculations of the RUMs in quartz
(Bethke et al., 1987; Hammonds et al., 1996)
show that although there are RUMs in both the a
and b-phases, there are more RUMs in the
b-phase. The frequency of these additional
b-phase RUMs will increase rapidly on cooling
below Tc; the soft-mode for the displacive phase
transition is a RUM in the b-phase. Hence the
increasing disorder in the a-phase on heating is
due to the increasing amplitude (decreasing
frequency) of phonon modes which become
RUMs in the b-phase and the extensive disorder
in the b-phase is due to the excitation of the soft
mode and all the other RUMs.

In order to corroborate this description of the
high-temperature behaviour of quartz, we
compare the diffuse scattering in the (hk0)
reciprocal lattice plane calculated from the RMC
con� gurations (using equation 13 at reciprocal
lattice vectors of the con� guration supercell) with
that measured experimentally (Fig. 14). The
single crystal data at 1073 K show two strong
diffuse features. The � rst forms a hexagon of
scattering with apices at 400, 040, etc. and the
second would form another complete hexagon
through 800, 080, etc. except that it diverts
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FIG. 13. The temperature dependence of (a) the positions and (b) the widths of the two peaks in the nearest neighbour
Si Si Si angle distribution in a-quartz which form into a single peak in b-quartz (see Fig. 12).
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towards 600, 060, etc. at the corners. The
strongest 400 hexagon of diffuse scattering is
consistent with much earlier X-ray photographs
from quartz (Arnold, 1965). All the strong diffuse
streaks are in (z00) directions and pass through
Bragg peaks. Calculations predict the existence of
three lines of RUMs in this plane (Hammonds et
al., 1996) and of these, the S (z 00) mode is the
only one which only exists as a RUM in the
b-phase. This explains why this diffuse scattering

is not observed in the room temperature single
crystal data (Fig. 14). The other lines of RUMs
which should be present in both phases (i.e. the l
(zz0) and T (1/2 z,2z,0) modes) are not observed
at any temperature. This suggests that, of these
three modes, the S (z00) mode has the strongest
neutron or X-ray weighted structure factor in
b-quartz.

The diffuse scattering calculated from the RMC
models show the same features as the single

300 K RMC300 K experiment

1073 K RMC1073 K experiment

FIG. 14. The (hk0) reciprocal lattice of quartz at room temperature (upper panels) and at 1073 K (lower panels). The
left-hand panels show experimenta l data collected from a single crystal of quartz measured on the PRISMA
spectrometer at ISIS and the right-hand panels show the diffuse scattering calculated from the RMC con� gurations
described in the text. The left-hand panels have been plotted using the same scale, as have the two right-hand panels.
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crystal diffraction data, albeit with less precision.
This conclusively demonstrates that the RMC
models do indeed represent a true picture of the
structural disorder in quartz. In addition, if we
compare the temperature dependence of the
intensity of these diffuse features we observe a
gradual increase in intensity on heating up to Tc

followed by a slight drop above Tc in both the
single crystal data and calculated diffuse scat-
tering patterns from the RMC models (see
Fig. 15). Within the a-phase the RMC calculated
values agree well with the measured (z00) branch
at higher-Q (black squares in Fig. 15), but less
well with the measured (z00) branch at lower-Q
(grey squares in Fig. 15). This is not necessarily
unexpected since different neutron energies (and
hence different energy resolutions) are used to
measure different portions of the scattering
pattern. The higher the neutron energy (which in
this case corresponds to higher-Q scattering), the
more likely it is to cut higher-energy phonon

branches and hence pick out the diffuse scattering
at lower temperatures.

Conclusions

This paper shows that the � ne details of the
response of the quartz structure to heating through
the displacive phase transition can be obtained by
utilizing experimental diffraction data and
computer modelling. Information on the average
structure, the local structure and the dynamic
behaviour via the RUM model have all been used
to show that, although the symmetry change at the
phase transition permeates both the average and
the local structural arrangements, it is the increase
in thermally-induced structural disorder which
dominates the high temperature behaviour in
quartz. Various local structural features of this
disorder are relatively insensitive to the phase
transition although it is argued that overall the
disorder in the b-phase is greater than in the a-
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FIG. 15. Temperature dependenc e of the diffuse intensity in (z00) directions. The circles correspond to values from
the diffuse scattering obtained from RMC con� gurations around (4.5,3.5,0), whereas the other data points
correspond to the experimental diffuse intensity centred mid-way between (220) and (310) and mid-way between
(440) and (530) (grey and black squares, respectively ). The line is a guide to the eye through the circles and black

squares. All plots have been scaled to give a maximum of 10 at Tc.
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phase because this structure allows an increased
number of RUMs.

It is particularly encouraging that we have been
able to obtain consistency between the results
obtained from the various analysis methods. This
gives us some con� dence to extend this work to
investigate in more detail how the RMC models
may be used to extract the dynamical processes in
quartz more explicitly. This work, which is
essentially experiment based, may then be
related to molecular dynamics simulations of
quartz which are based on established potential
functions.
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