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This paper is concerned with the way in which the flexibility of zeolite frameworks can be calculated and
expressed in an exact and quantitative manner. It is found that zeolites modeled as frameworks of tetrahedra
are extremely flexible but only as a few very specific modes in specific places. These modes give specificity
in the action of a zeolite: in lining up of Brønstedt acid sites to fit reacting molecules, in adapting the shapes
of channel windows to the shapes of certain diffusing molecules, and in attaching catalytically active cations
to the framework. These floppy modes or “rigid-unit modes” (RUMs) can be very localized, and we show
how local RUMs may be calculated precisely as wave packets of standard RUM phonon modes for any given
zeolite. Applications to six zeolites are given. Local modes may be static deformations costing virtually no
energy as in holding cations, or fluctuating as in facilitating the diffusion of certain molecules, or quasi-static
as in catalyzing a reaction with acidic sites. In addition, it is possible to attempt to create local RUMs with
eigenvectors that have a desired form. This means that the presence of any kind of specific flexibility within
a zeolite can be tested for. Thus it becomes possible to determine the exact nature of the flexibility present
within any aluminosilicate zeolite. In particular, local RUMs enable one to determine which parts of a
framework are most flexible and hence more likely to be catalytically active.

Introduction. Flexibility and RUMs

The flexibility of zeolites is chemically important in three
respects. First, zeolite frameworks host many acidic defect sites
along channels and within cages, and these allow chemical
reactions to occur readily involving adsorbed molecular species.
However, the presence of the framework implies that the acidic
sites are more or less fixed in position, and so reactions are
determined by the possible interaction between the geometry
of molecular species and the geometry of the framework. If
these geometries are incompatible, then no possibility exists for
reactions to occur unless a molecular species happens to possess
the shape required to utilize the acidic sites. Therefore it is
vital to know whether the framework contains the specific
flexibility or not needed to match the positions and orientations
of the Brønstedt acid sites to the geometry of the molecule.
Second, holding a catalytically active cation such as Ni2+

requires a flexing of the framework to bring together a cluster
of oxygen atoms around the cation. Third, kinetic processes
such as molecular or ionic diffusion and the reorientation of
molecular species are also key to the operation of zeolites as
catalysts. Molecules and ions must be able to diffuse into
zeolites, move to reaction sites, change orientation so that energy
barriers to reaction are lowered, and finally react. The new
molecules must then be able to diffuse out of the zeolite so
that they can be collected and utilized. Again, a nonrigid
framework will greatly assist all of these processes and a specific
type of floppiness in a channel window will assist the diffusion
of a specifically shaped type of molecule.

It is therefore very important that the inherent flexibility of
a zeolite framework can be understood in a quantitative fashion.
Knowing in general terms that a zeolite has a certain amount
of flexibility does not provide much scientific understanding.
We need to know the specific ways in which a zeolite
framework can flex, and we need to be able to calculate these
in a simple and direct manner. For example, we may wish to
know whether it is possible for a cage within a particular zeolite
to contract along a particular crystal axis, or we may simply
wish to know all of the possible ways in which a zeolite structure
can deform. All the applications described above imply a local
flexibility, not just in a global manner as in a structural phase
transition, and we want to show that it costs negligible energy.
This paper outlines the ideas, methods, and concepts that we
have been using for some time to solve these precise
problemssideas that are collectively known as the rigid-unit
mode (RUM) theory. Some of the advantages of RUM theory
are that it is based on simple ideas, needs relatively little
computing power, but is able to yield quantitative answers to
questions such as “In what way are those channels able to
display flexibility in that particular zeolite?”.
Zeolites are by many standards very complicated materials

that have large units cells containing hundreds of atoms and
this complexity has resulted in a lot of our understanding of
them being qualitative or empirical in nature. In particular, the
computing revolution of the last 20 years has not previously
enabled a clear understanding of zeolite flexibility to be
achieved. Computer simulations using empirical potentials have
been performed, but results concerning the flexibility of
frameworks cannot be easily expressed or used in a precise
waysframework deformations that occur during molecular
dynamics runs can be observed by visualising the data, but the
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complete nature of the floppiness possessed by a zeolite
framework cannot be understood from such simulations. Elec-
tronic structure calculations on zeolites with large unit cells are
not yet routine, being possible only on the most powerful of
current supercomputers, and even then many zeolites remain
currently out of reach. In any case, these do not enable a clear
understanding of the flexibility of a structure to be readily
achieved although they have many other uses.
By contrast, the rigid-unit mode theory has proven itself to

be a very powerful tool for understanding the behavior of
aluminosilicates and other materials made up of XO4 tetrahedra
and XO6 octahedra that are linked into three-dimensional
frameworks. Using the RUM model it is possible to explain a
large range of phenomena including displacive phase transi-
tions,1 negative thermal expansion,2 cation-ordering schemes,
negative Poisson ratios, diffuse scattering from X-ray and
electron diffraction experiments,3 low material compressibilities
and amorphization.

The Basis of the Rigid-Unit Mode Model

X-ray structure analysis has shown that many silicates
including zeolites are what are termed “tetrahedral framework
structures”. In these the Si/Al ions are surrounded by four
oxygens in a tetrahedral arrangement with each of the oxygens
being shared between two Al/Si atoms. The bonding inside
the tetrahedra is very strong, and they remain intact under very
many displacive and atomic ordering phase transitions.4 On
the other hand, the bond angle at the oxygen atom joining two
tetrahedra is rather flexible. From the phonon spectra of several
silicates and electronic structure calculations,5 we can infer that
the linkages between tetrahedra are about 100 times more
flexible than the tetrahedra themselves. Therefore we say that
these materials possess a “floppy/stiff duality”sstiff tetrahedra
with floppy linkages between them.
However, that still leaves as an open question the degree and

type of flexibility of the structure as a whole, because the
framework contains three-dimensional cross-bracing. The crux
of the problem that the present work addresses is the type of
flexibility allowed by the geometry of the framework.
In view of the floppy/stiff duality at the tetrahedron level, it

is an excellent approximation to model a zeolite framework as
a set of very stiff tetrahedra that are completely flexible about
their oxygen hinges.6,7 The modes we are particularly interested
in are those that leave the stiff tetrahedra undistorted. They
have been termed rigid-unit modes (RUMs) because they remain
geometrically allowed motions even when the tetrahedra are
made infinitely rigid. The key point is that the motions of the
five atoms that make up a tetrahedron are correlated under these
phonon modes so that their relative positions remain constant.
They can be looked for computationally by the methods of
molecular lattice dynamics,8 because they have exactly zero
frequency if the force constant at the hinges (i.e., the T-O-T
angle force constant) between the tetrahedra is set equal to zero.
Thus RUMs in this approximation have zero restoring force
when considered as oscillations, and cost zero energy as static
displacements. In practice we shall use the term “floppy modes”
to include not only the RUMs but all vibrations up to 1 THz
(the range for which floppy modes are observed in silica glass9).
These vibrations with a small but nonzero frequency are referred
to as quasi-RUMs or QRUMs. They are also of interest since
they are modes that barely deform the tetrahedra as they
propagate and so also have a very low energy associated with
themsthey have a force constant in their potential energy term
less than 0.1% of that of an average lattice vibration in a

framework silicate. (The force constant varies as the square of
the frequency, and the lattice vibrations range up to about 20
THz excluding the optic modes of the Si/Al atoms inside their
tetrahedra).
Computer codes to study RUMs and floppy modes have been

written using the theory of molecular lattice dynamics. There
are several papers that discuss this.1,2,3,6-8,10,11 Molecular lattice
dynamics is an extension of atomic lattice dynamics and in
particular takes into account the rotational degrees of freedom
that molecules have. The calculations have been based on a
one-parameter model called the split-atom model in which the
stiffness of the tetrahedra is represented by one parameter
without distinguishing between the different inequivalent ways
of deforming a tetrahedron. The model is incorporated in the
CRUSH code,10,11which works as follows: first imagine some
silicate framework made up of SiO4 molecular units. Then at
every oxygen position there are going to be two oxygen atoms,
one belonging to each silicon. If one creates an arbitrary set of
displacements and rotations of these strictly rigid tetrahedra
starting from a perfect framework structure, then the corners of
the tetrahedra would in general have to move apart instead of
remaining joined. The distance that two corners would move
apart is a measure of the amount that the tetrahedra will have
to distort in reality for their corners to remain joined. Thus a
stiff spring is inserted at each corner with an ideal length of
zero and a force constant of about 245 N m-1. This gives a
moderately good representation of the whole phonon spectrum
as well as allowing us to identify all the floppy modes. A point
to note is that pure RUMs would continue to have a frequency
of zero even if an infinite stiffness is used, while the frequencies
of other floppy modes rise as the force constant rises.
Modelling a zeolite as a set of rigid tetrahedral SiO4 units

with springs connected between all oxygens that are superpo-
sitioned in space may seem to be a very simplistic way of doing
things. However the essential physics of the situation is
captured by such an approach, especially in the low-energy
regime. If a complex empirical potential were used, then the
same low-energy deformations will result since we know that
the tetrahedra retain their shape under all but the most extreme
conditions and would rotate in whatever way was required to
achieve this. So the Si-O-Si angle-bending potential is
effectively flat compared to all other terms in such a potential
model. Therefore our one-parameter model with no Si-O-Si
angle-bending term at all can be seen to be a good approximation
of reality, and the eigenvectors obtained from it will also be
trustworthy.
Our codes allow one to calculate the phonon eigenvectors

(i.e., associated displacement patterns), their symmetries, and
ways of combining them into local RUMs. More information
concerning the computer programs used for these calculations,
such as CRUSH, can be obtained from the web-site http://
www.esc.cam.ac.uk/mineral sciences/crush.
A plot of the density of phonon modes for a typical silicate

and a typical zeolite are shown in Figure 1. These were
calculated with the CRUSH code and hence omit the bands of
very high-frequency modes that result from the internal vibra-
tions of the Si/Al atoms inside the tetrahedron. The two plots
are similar except in the low-frequency region where zeolites
have a very large peak while other minerals do not. Many
nonzeolitic minerals are known to have lines and planes and
curved surfaces of RUMs and floppy modes ink-space.1,12These
may give rise to a small peak near zero frequency for many
minerals in a density-of-states plot, but zeolites are different
because they can support a certain number of RUMs and floppy
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modes at all possible values ofk in reciprocal space. Therefore
we say they have one or more complete bands of RUMs or
floppy modes ink-space.13 This means that a finite fraction of
all modes in a zeolite are RUMs or floppy and hence you get
the very large peak at zero frequency shown in Figure 1.
To exemplify the above ideas consider, Table 1. This shows

the number of RUMs observed at special symmetryk-points in
the Brillouin zone for some body-centered cubic zeolites. Note
that there are many RUMs along lines and within planes of
k-space. Also we can see that at any arbitraryk-point there
are still some RUMs observed for some of the structures and
these are the RUMs that form the bands discussed earlier. The
zeolite paulingite is particularly interesting because it has 13
RUMs at any generalk-point. The faujasite (face-centered
cubic) and zeolite LTA (simple cubic) structures both have four
RUMs at generalk-points, while the numbers at other symmetry
points have already been given in ref 13. The (R, â, γ) row of
Table 1 effectively shows the number of RUMs per unit cell
that a crystal has. To be totally floppy, all the normal-mode

motion of a crystal would have to be RUMs, but it is clear from
Table 1 that this is not the case for the zeolites shown; hence,
we say that zeolites are flexible in only a few specific ways.
For example theIm3hm phase of sodalite has one RUM per six
tetrahedra, so1/36 or 2.8% of all modes are RUMs. If a band
of floppy modes is included as well then the number of floppy
or RUM modes rises to 5.6%, a lot less than 100%. Sodalite
in the I4h3m structure does not have a complete band of RUMs
but does have a complete band of floppy modes in the more
general sense defined above. The same applies to theIa3dphase
of leucite. The possible deformations that a zeolite can undergo
are held within the RUM eigenvectors. These contain the
displacement patterns of oxygens and Al/Si atoms under mode
propagation, and so all the allowed flexibility of a zeolite is
described within them.

The Nature of Local RUMs

It is from bands of RUMs, and particularly the information
held within the eigenvectorsΦnk (wheren is the band number),
that the flexibility of a framework can be examined in great
detail. At any point ink-space there are 6NT lattice modes,
each with its own eigenvector, whereNT is the number of
tetrahedra in the primitive unit cell. The motions of atoms in
a crystal are equal to a superposition of all the eigenvectors of
all the allowed lattice vibrations. We can therefore consider
what would happen if the eigenvectors of just the RUMs and
other very low-frequency modes were to be superposed, without
mixing in the higher frequency modes. The answer is that the
bands of RUMs and floppy modes can combine to form what
we call “local RUMs” or “local floppy modes”. If the RUMs
combine with suitable phases and amplitudes, then the resulting
local RUM may have a large intensity over a very small region
of real space, often just a few tetrahedra, and negligible intensity
elsewhere. The frequency of such a local RUM is very low
since its constituent modes have very low frequency. Therefore
such a mode could “condense” out in the zeolite structure (to
use the language of soft-mode-phase transition theory) and give
rise to a local static deformation in the framework. The presence
of a single molecule within an empty zeolite crystal could cause
this to occur by pulling oxygens toward itself (or-OH groups
in the case of Brønstedt acid sites), and a significant change in
the local environment will result while the rest of the crystal
remains unaffected. With several molecules, each one could
change its local environment with the areas of crystal between
them again remaining unaffected. The important point is that
since only RUM modes are involved these distortions cost
negligible energy to createsa point shown in a previous paper.13

The precise nature of possible distortions is determined by
the nature of the eigenvectors of the RUMs. If many RUM
eigenvectors exist within a zeolite, then there is the possibility
of a large variety of deformations. However, the exact character
of the eigenvectors limits the possibilities. This gives rise to
the important point that zeolites have frameworks that are
flexible but only in certain specific ways; they are not flexible
in a completely general sense. Another important point is that
since the eigenvector of a local RUM can be explicitly
calculated, we know exactly what any local distortion will look
like. In addition one can attempt to a create a local RUM with
an eigenvector that has a specific wanted form. The degree to
which such an eigenvector can be formed will then tell you
whether that particular distortion is possible or not. Therefore
the existence of any form of flexibility within any zeolite
structure can be explicitly tested for.

Figure 1. Density of phonon modes calculated from the one-parameter
model. The dotted line represents a typical silicate such as a feldspar,
while the solid line is for faujasite, a typical zeolite. The important
difference between the two plots is the large peak at nearly zero
frequency for the zeolites, containing about 5% of all its phonon modes.
The quantityωmax is about 20 THz.

TABLE 1: Numbers of Pure, i.e., Exactly Zero Frequency,
RUMs Observed in Various Body-Centered Cubic Materialsa

k-point
Z-rho
Im3hm

Z-rho
I4h3m

Sod
Im3hm

Sod
I4h3m

Leu
Ia3d

Pau
Im3hm

Γ (0, 0, 0) 10 4 7 3 8 44
H (0, 0, 1) 10 4 3 3 0 44
N (1/2, 1/2, 0) 6 2 3 2 4 24
P (1/2, 1/2, 1/2) 4 4 3 3 0 24
∆ (R, 0, 0) 4 2 3 2 0 24
Λ (R,R,R) 2 2 1 1 0 14
Σ (R, R, 0) 5 2 3 1 4 24
D (1/2, 1/2, R) 4 2 2 2 0 14
F (R, 1- R, R) 2 2 1 1 0 14
G (R, 1- R, 0) 5 2 2 1 0 24
(R, R, â) 2 2 1 1 0 13
(R, â, 0) 4 1 2 0 0 24
(R, â, γ) 2 1 1 0 0 13

a The points, lines, and planes ink-space are labeled by their position
and denoted by Roman and Greek letters. In particular note that RUMS
can occur at general points (R, â, γ) in k-space for many of these
materials. sod is sodalite, Z-rho is zeolite-RHO, Leu is leucite, and
Pau is paulingite. AtΓ we have also included the three acoustic modes
among the RUMS. The total number of frequencies for the structures
in the table are 144, 144, 36, 36, 144, and 2016, respectively, excluding
internal motions of si and al atoms inside the tetrahedra. We generally
find that about 5% of all modes can be considered to be floppy in
many zeolites.
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The Calculation of Local RUMs

To form a local mode one must superpose phonons from the
whole of reciprocal space (k-space), and hence to form a local
RUM (or local floppy mode in the more general sense defined
above), we require one or more whole bands of RUMs or floppy
modes. To calculate local RUM eigenvectors, one therefore
first calculates all the RUM eigenvectors for a particular zeolite
structure over an entire grid ofNk points evenly spaced in
k-space using the CRUSH code. This can be viewed as a
discrete sampling for computational purposes of the continuous
k-space. Alternatively it is equivalent to a superlattice structure
with supercell dimensionNk

1/3 × Nk
1/3 × Nk

1/3, and any local
RUMs that are made are then defined in this supercell and so
are repeated periodically on the scale of the supercell. This
paper uses the supercell viewpoint of samplingk-space. Since
a RUM eigenvectorΦnk is just the complex conjugate of the
eigenvector at-k, we only need to consider half of all the
k-points across the Brillouin zone. Since RUM eigenvectors
all have zero frequency, they will generally mix up, and in some
cases one may want to separate them: a way must then be found
to break the degeneracy and so produce pure eigenvectors. For
example, some points in the Brillouin zone have extra RUMs
that are specific to that point as well as those that are part of
RUM bands. One way to separate the two is to usek-points
that are very slightly off position whenever this occurs. RUMs
that are not part of RUM bands will increase in frequency as
one moves away from a special point in a general direction,
and this will cause the eigenvectors to unmix. Other ways of
separating eigenvectors include the use of minor extensions to
the split-atom model such as an extra but very weak harmonic
potential that acts between the centers of tetrahedra. Once the
N bands of RUM eigenvectorsΦnk have been obtained then a
local RUM, L can be generated as below

whereΦnk is a RUM eigenvector describing the displacements
and rotations of all the tetrahedra within some central reference
cell within the supercell. This RUM eigenvector extends
throughout all space with Bloch phase factor exp(ik‚l) in a cell
l that has a position vectorl relative to the central reference
cell. It should be noted thatL is defined over the whole of a
supercell and is different in every cell of that supercell. Care
is needed here since the CRUSH code only gives the eigenvector
Φnk in one cell of the parent structure. The factors of exp-
(ik‚l) have to be factored in to get the values ofΦnk in different
cells, so thatL can be calculated over the whole of the
superlattice. Theγnk andAnk are arbitrary phase factors and
amplitudes, which we can vary in order to localizeL as much
as possible around the area of interest: these ensure constructive
interference for the motion of the tetrahedra in that area and
destructive interference further away. Of course an infinite
number of localized modes with eigenvectorsL can be formed
depending on the choice ofAnk andγnk, but as mentioned before
they cannot be arbitrary because their general character is
contained in the eigenvectorsΦnk, which are never varied.
Suitable values forγnk and Ank can be determined by a

maximization program where the objective is to vary theAnk
andγnk to produce a local RUM that has the maximum possible
intensity within a central reference cell. This then gives the
eigenvectorL of the most localized mode that is possible within
this zeolite. The intensity of a local RUM is defined as

where the sum is over all componentsi of motion for all the
tetrahedraj of interest. If the local RUM eigenvector has been
correctly normalized, then a sum over all components for all
tetrahedra over the whole of the supercell will equal unity.
Usually we consider the intensity over just the central unit cell
or even over a particular structural fragment within that cell.
More selective calculations require the concept of a “kernel”

eigenvectorK . This is an initial approximation of what we
may want a local RUM to look like within the central cell. The
eigenvector has six components for each tetrahedron in the
whole supercellsthree for translations in orthogonal directions
x, y, andzand three for rotations of the tetrahedron about these
directions. Often all components ofK outside the central cell
are set to zero, but this need not be so. OnceK has been set
up then initial values for the exp(iγnk) andAnk are determined
by projecting theΦnk onto the kernel vectorK giving

where the quantityX* ‚Y is the complex dot product between
vectorsX andY and all vectors have the length of six times
the number of tetrahedra in the supercell.
Starting with the initial values (3, 4), the exp(iγnk) andAnk

are refined to achieve the maximum possible value of some
quantity by an iterative procedure, for example the projection
of L ontoK so that the quantityL ‚K is maximized. This will
then give the most local RUM possible that resembles the form
required. If the resulting local RUM has rather small intensity
in the region of interest or the resultingL no longer resembles
K sufficiently, then one can be certain that the type of flexibility
being sought after is not possible in this particular zeolite.
The kernel can be chosen in many ways; for example, one

could select only certain tetrahedra or only certain components
of their motion, the other components being set to zero. As
with any maximization method, the starting point can influence
the final result so that several different kernels should be tried
for each calculation of a local RUM to make sure that a real
optimization has been achieved. A kernel composed of random
numbers inside the central cell and zero outside can be used
equally well, this implying that the computer should simply
search for high-intensity local RUMs of any form. One of the
examples below shows how a particularly interesting result was
obtained from a calculation that started with a random kernel.
Many refinements can be made to these calculations such as
having weighting functions dependent on the energy of particular
eigenvectors if one wants to include floppy modes that are not
strictly RUMs, etc., but the results of the calculations in this
paper have used eq 1 in a straightforward manner.

Determing the Localization of Local RUMs

Table 2 gives details concerning some local RUMs that were
produced in a number of zeolites.Nk is the number of points
used in thek-point grid, andNr andNf are the number of pure
RUM bands and floppy bands, respectively, used to make the
local modes. The “% cell 0” column is the percentage of local
RUM intensity that sits within the central unit cell, while “%
n.n.” denotes the average percentage of local RUM intensity
on each nearest-neighbor unit cell. On more distance unit cells
the intensity is very low. As can be seen from Table 2, modes
can be localized onto single unit cells quite effectively for

L )
1

NkN(∑k∑nA
2
nk)

1/2
∑
k

Nk

∑
n

N

Ank exp(iγnk) Φnk (1)

I ) ∑
ij

|Lij|2 (2)

Ank (initial) ) |Φ*nk‚K | (3)

exp (iγnk)(initial) ) (Φ*nk‚K )/Ank (4)
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zeolites. A nonlocal mode would have a “% cell 0” intensity
of 1/Nk, i.e., less than 1% and much less than the values shown.
The “flex” column of Table 2 shows the percentage of the

intensity within the central cell that sits on a particular fragment
of structure (so this value is a percentage of a percentage). If
this value is nearly 100%, then that fragment can flex in isolation
to all other parts of the framework within the same unit cell.
This is the case for the D4R units in zeolite LTA (see below).
A lower value indicates that other parts of the framework within
the central cell must flex to compensate for the motion of that
fragment. Thus one can gain a quantitative measure of how
independently flexible various structural units are. Hence one
can see whether the flexibility of the framework allows a
particular deformation to occur in isolation or not. If not, then
we know what doesn’t happen in that particular zeoliteswhich
is frequently as important as knowing what does happen. The
columns where the flex number is not present refer to calcula-
tions involving every component of every tetrahedron in the
unit cell so %flex would always be 100%.
Another way of quantifying the degree to which a local RUM

is localized is to calculate its participation coefficient. This gives
a measure of how many tetrahedra are involved in a local RUM
vibration. It is defined as

where i is the sum over the complex components of the
eigenvector that relate to tetrahedronj andNT is the number of
tetrahedra in the supercell. Each tetrahedron contributes six
complex componentsLij to the local RUM eigenvectorL , and
L should be normalized so that the sum of the squares of all
components is equal to unity. The value of the participation
coefficient as defined in (5) is then the number of tetrahedra
that effectively take part in the local RUM distortion and will
range between 1 andNT (again the total number of tetrahedra
in the supercell). IfL is evenly distributed over the supercell,
then all theLij will equal (6NT)-1/2. Feeding this into (5) gives
P) NT, so all the tetrahedra are participating in the local RUM.
If L is located on just one tetrahedron, then it has six
components (the squares of which will sum to 1) and all the
other components ofL will be zero, so from (5)P ) 1. For a

well-localized deformation,P is several tens or even a hundred
tetrahedra. This may seem a lot: the intensity of the local RUM
decays rapidly as you move away from the center of the
deformation, but the small contributions to other tetrahedra will
add up and contribute toP. A poorly localized deformation
will haveP equal to several hundred or even a thousand. Thus
it is easy to determine how localized a local RUM really is.
One advantage of using this as a measure of locality is that the
whole of the local RUM over the whole of the supercell being
used is considered, not just the effect on the central cell where
the deformation of interest usually lies.

Applications of Local RUM Calculations

We now apply the ideas discussed above to a variety of
zeolites and show how different aspects of the behavior of
zeolites can be affected by local RUMs.
(1) Example Calculation on Sodalite.Sodalite may not be

a particularly interesting zeolite, but the very high symmetry
Im3mstructure does have a single complete band of RUMs and
a cation can be adsorbed onto one of the hexagonal faces in an
interesting way, as shown in Figure 2. A kernelK for sodalite
was suggested to us by an optic RUM eigenvectorΦnk very
near k ) 0. This denoted alternating rotations of the six
tetrahedra in a hexagonal ring about〈100〉-type axes. These
rotations bring three oxygen atoms nearer to the center of the
ring and three further away, with some displacement above and
below the plane of the ring, respectively, as indicated in Figure
2. We therefore formed a localized eigenvectorL by varying
theγnk andAnk in order to maximize the total intensity ofL on
a central ring of six tetrahedra. The results in Table 2 (labeled
sodalite-R) show that this did not give a particularly localized
mode, when rotations only were included. If a more general
local mode consisting of all components of tetrahedral motion
is produced (by starting with a kernel that included translational
as well as rotational components), then a greater degree of
localization is achieved as shown by the sodalite-RT results in
Table 2. It is interesting to note that the resultant framework
distortions on the central cell are very similar if either of these
two local RUMs is condensed onto theIm3msodalite structure.
Therefore, as expected, it is not possible for the structure to
flex in an almost arbitrary fashion. The exact form of the
sodalite-RT local RUM deformation is shown in Figure 3, where
nine unit cells of the sodalite supercell are displayed and it is
clear that the central cell is much more deformed than those
around it.

TABLE 2: Local RUM Details for Several Materials a

description Nk Nr Nf % cell 0 % n.n. % flex

sodalite-R 343 1 0 16.9 6.5
sodalite-RT 343 1 0 28.1 5.1
sodalite 343 1 1 37.4 3.6

zeolite LTA 125 4 0 85.5 1.7
D4R unit only 125 4 0 80.5 1.6 99.9

UTD-1 125 0 4 38.1 3.3
more flexible part 125 0 4 35.1 2.6 95.1
less flexible part 125 0 4 32.4 3.5 62.6

chabazite 125 0 4 72.1 3.0

faujasite 125 4 0 73.4 1.4
faujasite SI 125 4 0 27.9 0.4 73.9
faujasite S′I 125 4 0 19.8 0.3 48.5
faujasite SII + S′II 125 4 0 19.0 0.3 42.9
faujasite SIII 125 4 0 28.7 0.5 73.6

ZSM-5 125 0 8 37.4 4.8

a The “sodalite-R” data refer to a local mode of sodalite in which
each tetrahedra was only allowed to rotate about one〈100〉 axis only.
All the other local RUMs involve all six components of tetrahedral
motion.

P) (∑
j)1

NT

(∑
i)1

6

|Lij2|)2)-1 (5)

Figure 2. Alternating translations and rotations of six tetrahedra in
sodalite bring three oxygen atoms (large solid circles) closer together,
while three others (large dashed circles) move further away. The three
close oxygens then sit in a ring a little above the plane of the hexagon
of Si/Al atoms, and this ring is then a strong binding site for a cation
such as Ni2+. The SII binding site in faujasite is also of this form. This
figure also emphasizes the point that the oxygens occupy a large
volume: structural diagrams composed entirely of lines or tetrahedra
can be misleading when thinking about adsorption sites.
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The local RUM deformation of sodalite now represents a
near-perfect adsorption site for an ion since three oxygens move
toward one another and lift up out of the plane of the hexagon
providing a very good binding site. It should be noted that since
the overall amplitude of a local RUM is almost arbitrary,
oxygens can move freely until they are at optimum bonding
distances from cations. Hence the best possible binding site is
produced, regardless of the size of the ion. This continuous
flexibility that local RUMs give to zeolite frameworks is one
of the prime reasons that they are able to manipulate molecules
in the precise way that they do. Optimal distances for all sorts
of contacts can be achieved for very little cost in energy. If in
addition to the band of RUMs the lowest frequency band of
floppy modes is also included for sodalite, then an even more
localized local RUM can be made as shown by the sodalite
entry in Table 2 withNf ) 1. With a greater number of bands,
the possibility of better localization usually increases. The
number of bandsNf cannot be increased without limit however
since their energy increases and then the deformations become
high-energy ones and cease to be of interest.
(2) Diffusion and Local RUMs. Localized distortions enable

molecules to diffuse through a framework more easily: if a
large molecule approaches a small aperture between two zeolite
cages, then diffusion will proceed more readily if a local
distortion centered on the aperture causes it to open up in a
temporary fashion. This can be seen quite well in Figure 4,
where the ring of six tetrahedra that comprise the SII site in
faujasite are shown opening and closing under the influence of
a local RUM. Note that in Figure 4B,C one can see the
tetrahedra that make up the D6R at the back of the sodalite
cage are still in the same position; the local deformation opens
only one aperture at a time. A 6-fold ring is not a particularly
large pore, but the effect on larger pores will be similar if
suitable local RUMs can be formed from the eigenvectors of
the relevant frameworks.
Molecules and molecular ions have shape, and in fact it may

be more important that the pores within a zeolite can change
shape rather than change their total area to allow molecules of
different form to diffuse. It should be remembered that diffusion
constants are proportional to the exponentials of jump activation
energies, and therefore even a small local RUM effect could
change diffusion coefficients considerably.

Diffusion can also have a more direct effect on catalysis. Ions
often have to move from one site to another to find molecular
fragments. This is known to be the case in faujasite where Ni2+

ions move from SI sites (see Figure 5), where they are tightly
bound by the framework, out into the supercages where they
can catalyze the cyclotrimerization of acetylene into benzene.14

This motion is assisted by interactions between the Ni2+ and
acetylene molecules. However, if the framework itself can flex
sufficiently to provide a low-energy diffusion pathway from the
SI sites into the supercages, then reactions will occur at a faster
rate. Figure 4 has already shown that the aperture into the

Figure 3. Configuration of the sodalite structure with a local RUM
deformation present. This was produced by projecting the local RUM
eigenvector corresponding to the sodalite-RT entry in Table 2 onto the
original Im3m structure. The central cell is quite deformed, while
neighboring rings are rather less distorted, showing the degree of
localization. The circle represents a possible binding site for a adsorbed
ion.

Figure 4. Opening and closing of a ring aperture due to local RUM
deformations. The aperture, shown by the dotted tetrahedra, connects
the supercage with the interior of a smaller sodalite cage in faujasite.
(A) The aperture in a more open position; (B) a more tightly closed
position; (C) the equilibrium structure observed via X-ray diffraction.
Note that the D6R aperture behind the one of interest remains in a
equilibrium position, so that we see that only one aperture is changing
at a time, not every aperture within the crystal.

Figure 5. Experimentally determined positions for adsorbed ions within
the faujasite framework. Note that the framework can be considered to
be made up solely of D6Rs (or hexagonal prisms). Alternatively the
D6Rs can be considered to connect sodalite cages together to give the
overall framework.
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faujasite supercage, through which the Ni2+ must pass, can
indeed flex in the continuous manner required.
A point to note concerning diffusion is the fact that the larger

the extent of a deformation to a ring, etc., the smaller is the
probability of large-amplitude fluctuations of that deformation.
Hence, only if very localized deformations can form are we
likely to see them contribute to the diffusion process. If a
deformation extended over a large volume of real space (many
hundreds of tetrahedra), then it is less likely that it would gain
sufficient amplitude to have any effect, even if it cost zero
energy, due to the large degree of cooperative motion required.
Another point concerns the fact that in some cases the amplitude
of a local RUM cannot be arbitrarily large. If a local RUM
gives rise to a deformation with amplitudeB, then although the
tetrahedra remain joined and undistorted to lowest order inB,
this may not be true to orderB2 or higher, in which case the
distortion ceases to be exactly a RUM at large amplitude and
starts to cost a significant amount of energy. Once this occurs,
the amplitude of the local RUM will no longer increase and no
increased effects concerning diffusion will occur.
(3) Calculations on Zeolite LTA. Zeolite LTA is interesting

since this example shows how local RUMs can be concentrated
onto particular structural fragments rather than sitting equally
over a whole unit cell of the parent zeolite. The structure is
composed of sodalite cages joined across their square faces in
a simple cubic fashion. These joins consist of eight tetrahedra
and form square prisms or double-four-rings (D4Rs) as in Figure
6. A local RUM can sit on one of these and deform it in almost
complete isolation to everything else, so the participation
coefficient has a very low value,P ) 11. Eight of these
tetrahedra make up the D4R, while the rest of the local RUM,
which is spread over 3000 tetrahedra, only amounts to the
equivalent of three tetrahedra participating. We have formed
many local RUMs on zeolite LTA, but it appears that the D4Rs
are the only parts of the framework that are individually flexible.
Therefore, to deform other structural fragments such as a large
eight-membered ring, one must form a local RUM that is
distributed across all the 32 tetrahedra in the four D4Rs that
border the eight-membered ring in question. Then the entire
ring can be deformed in shape. It is not possible to deform the
eight tetrahedra that the large ring is composed of in isolation.
The four D4Rs that border the ring mean that it can be
effectively thought of as a square, and this means that one can
work out all the possible deformations that can occur. We make

the point that the circular ring can become oval, one diameter
increasing, the other perpendicular diameter decreasing. This
would then enable flat molecules, like benzene and its deriva-
tives, to diffuse if they pass through the eight-ring parallel to
the long axis. Similarly, for a hexagonal ring in LTA; one can
have the same pattern as in Figures 2 and 3 but the local RUM
must be distributed across the three D4Rs that share tetrahedra
with it to achieve the same effect. We have therefore discovered
the nature of the geometric flexibility of the zeolite LTA
framework. From the point of view of flexibility, it is better to
think of the structure as being made up of D4Rs rather than
sodalite cages or eight-membered rings. Local RUMs will tend
to sit on the flexible parts of a framework and avoid the
nonflexible parts, making it very easy to differentiate between
them.
(4) Stiff and Flexible Structual Fragments in UTD-1.

Zeolite UTD-1 was the first alumino-silicate framework pro-
duced that has 14-membered rings.15 These are oval in shape
and will allow large molecules of a certain form to diffuse
through the structure. UTD-1 does not have complete bands
of pure RUMs but does have planes ink-space with four RUMs
apiece at everyk-point on them. Not suprisingly then the lowest
four bands are very floppy over the whole of the Brillouin zone
and were used to construct local RUMs. Interestingly, we find
that the framework can be considered as two separate parts.
There are stiffer sections composed of 16 tetrahedra, while the
other 16 tetrahedra in each unit cell are much more flexible
and can move independently of the rest of the structure, see
Figure 7 and the last column in Table 2 where the “% flex”
value is very high, 95.3%, for this section of the UTD-1
framework. If four RUM bands are used then a local RUM
with a participation coefficient ofP ) 122 can be created on
the flexible part, this being quite low and showing how localized
the mode is. On the nonflexible part a value ofP ) 221 is the
lowest yet calculated, almost double the previous value. Also
note that the percentage of intensity on the nearest-neighbor
cells (the % n.n. column in Table 2) is higher for the nonflexible
part, again showing that this local RUM is less localized. We
therefore conclude that this more flexible part is more likely to
be the center of any catalytic activity that may occur in this
zeolite. It should be noted that these results were found by

Figure 6. Framework structure of zeolite LTA. The shaded region is
a D4R unit, and these form the connections between the sodalite cages.
The heavily outlined tetrahedra form a single 8-fold ring (S8R). Note
that every tetrahedron is simultaneously part of a D4R and a S8R.

Figure 7. Framework structure of zeolite UTD-1. The shaded region
is the part of the framework that is predicted to be flexible on the basis
of the local RUMs that can be imposed upon it. The other, less flexible,
part is that enclosed within the dashed line. Each part composes 16
tetrahedra, there being a total of 32 in the primitive unit cell.
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starting off with a random kernelK inside the central cell and
then finding that the resulting local RUM was localized onto
only half of the tetrahedra within the central unit cell. Therefore
searching for flexibility in a general way while making no
previous assumptions can yield valuable results.
(5) Binding of Ions in Faujasite. Faujasite is composed of

sodalite cages joined in a diamond arrangement across their
hexagonal faces, as are zeolites X and Y. These hexagonal
prisms or double-six-rings (D6Rs) between sodalite cages are
particularly flexible parts of the framework. So again, as for
zeolite LTA, it seems that the joins between sodalite cages are
quite flexible whereas sodalite cages as a whole are not.
Experiments have shown that adsorbed ions sit at particular sites
within the framework,16,17as shown in Figure 5 where all except
site SIII lie near hexagonal rings in a manner similar to Figures
2 and 3. We find that local RUMs can be concentrated onto
the parts of the framework that correspond to these sites as
discussed below. With the extra flexibility that these fragments
of the framework possess, it is no surprise that adsorbed ions
are observed to sit where they do. Participation coefficients as
low asP ) 87 can be achieved for this zeolite. This is higher
than for zeolite LTA but is still quite a low value and represents
a well-localized distortion.
First consider the SI site within the hexagonal prism. Here

a local RUM can sit on the 12 tetrahedra that compose this,
deforming it so that six cation-oxygen distances are reduced,
increasing coordination stability. Table 2 shows that the D6R
unit can flex with little movement required from the rest of the
tetrahedra in the same unit cell, so this is an ideal site for ions
to be adsorbed. Figure 8 shows a D6R before and after a local
RUM has been imposed onto it. The local RUM changes the
position of the oxygen planes within the D6R as shown by the
vertical lines below the D6Rs in Figure 8. Since the local RUM
can be imposed with any amplitude, the shape of the cation
coordination cage within the D6R unit could change in a
continuously variable manner.
An ion at the S′I site sits inside a sodalite cage against one of

the hexagonal faces of a hexagonal prism. The part of the
framework that flexes is that hexagonal face and the three single
square rings that lead off the hexagonal face upon which the
ion sits. This enhances the flexibility of the face so that three
oxygens can move in a fashion similar to that shown in Figure
2. Most of the local RUM intensity is on the face where the
ion sits, as expected. This site has a lower independent
flexibility, only 48% since the far face of the hexagonal prism,

away from the ion, has to move somewhat when the near face
moves. The SII and S′II sites are based on hexagonal faces of
the sodalite cages that are not part of the hexagonal prisms.
Here a local RUM sits on the three four-membered square rings
about the hexagon in question. So again 12 tetrahedra are
involved. To favor an SII site (i.e. inside the supercage) as
opposed to an S′II site (inside a sodalite cage, not the super-
cage), the sign of the overall amplitude of the local RUM must
reverse. One amplitude will bring three oxygens closer together
inside the supercage (SII site), while changing the sign of the
amplitude will bring the other three oxygens closer together
inside the sodalite cage (S′II site).
For the SIII site, an ion sits on one of the six outer square

faces of a prism. The flexible part is the prism and the two
other tetrahedra of the square adjacent to that on which the ion
sits, a total of 14 tetrahedra. The deformation is therefore similar
to that for the SI site.
To summarize our calculations on faujasite, we have been

able to select whatever parts of the framework interest us, i.e.,
the cation sites, and have been able to calculate local RUMsL
and so determine the nature of the flexibility and whether this
can occur in isolation or not.
(6) Methanol Dissociation in Chabazite. The zeolite

chabazite has quite a small unit cell, only 12 tetrahedra, and
has been used to study the break up of methanol molecules
within its eight-membered rings. Various electronic structure
calculations have suggested several ways in which this process
may occur. In some a methanol molecule can attach itself to
an acidic site on one side of the eight-membered rings via two
hydrogen bonds and then go on to be chemisorbed to the
framework,18-20 and this is then thought to be a precusor to
dissociation. Other calculations indicate that the minimum-
energy configuration has the methanol physisorbed onto the
chabazite framework.21 Still other calculations indicate that the
framework acts more as a solvent rather than as a nucleo-
phile,22,23 so the nature of the methanol dissociation is still
somewhat unclear.
The important point from our point of view is that the

flexibility of the framework will play an important role
regardless of the exact mechanism involved. One question is
whether the ring can deform in reality via a local RUM so that
both sides of the ring can attach to the molecule simultaneously.
This is important since dissociation may then be helped if both
sides of the ring can grab hold of the two ends of the molecule,
helping it to dissociate by keeping hold of the two molecular
fragments that result. One will be a water molecule and the
other a CH3 unit. In particular, the CH3 unit will need to be
stabilized by hydrogen bonding on the other side of the ring
away from the water molecule.
Our calculations show that there are four bands of floppy

modes from which to make local RUMs. The local RUM we
seek is one in which the tetrahedra on opposite sides of the
ring move toward the ring’s center to reduce its diameter in
one direction. This is in fact possible, and the resulting
deformed ring is shown in Figure 9B, where it can be seen that
the distance X-X is reduced compared to the undistorted ring,
Figure 9A. In addition, that extra flexibility afforded by local
RUMs will improve the strength of the hydrogen bonds by
providing a more perfect fit for the methanol molecule and any
molecular fragments that may result after dissociation. We also
show the same ring with the amplitude of the local RUM
reversed, see Figure 9C. This causes the ring to increase in
size, and while this is may be of little value for helping reaction
processes it will greatly assist diffusion. The ring area is now

Figure 8. Effect of a local RUM on a D6R unit in faujasite whose
tetrahedra are marked by dots. (A) The original structure; (B) the
structure after the local RUM has been applied with a certain amplitude.
Note changes in the orientations of tetrahedra between the two figures
and the changes in the positions of the planes of oxygens atoms marked
by lines below the D6R unit.
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larger, and in particular the distance Y-Y has increased so any
molecule that orients parallel to Y-Y will be more likely to
diffuse through the eight-ring aperture.
It should be noted that local RUM influences cannot be

incorporated into standard electronic structure calculations
because many unit cells are required. Calculations on even a
single unit cell of chabazite require substantially more than a
single workstation sized computer if a reasonable study (a
number of calculations) is to be performed in a reasonable time.
Since around 100 unit cells (many thousands of atoms) are
required for the local RUM effect to become readily apparent,
then electronic structure calculations that implicitly incorporate
these effects are not going to be possible on any present
computers. However, it may be possible to combine the ideas
in this paper with empirical simulations of zeolites since large
simulations based on simple empirical potential models are easy
to perform. It may be thought that cluster calculations would
have an advantage over periodic calculations since these would
allow a great deal more flexibility and allow local distortions
to occur. However, the big problem with cluster calculations
for these purposes is that the flexibility of zeolites is very
specific and only by having periodic boundary conditions can
you be certain that you get the geometrically allowed flexibility
and no other. Low-energy deformations allowed in clusters may
be very high energy ones in a periodic system.
(7) Application to ZSM-5. The zeolite ZSM-5 is used

extensively in industry in the production of gasoline: hence it
is well-studied. The orthorombicPnmaphase of ZSM-524 has
no pure bands of RUMs ink-space, but there are planes that
contain eight pure RUMs so the lowest eight bands of modes
across the whole of the Brillouin zone were determined. From
these we have calculated the form of the most localized mode
that includes the whole of the central unit cell and find it has a
participation coefficient ofP) 377 tetrahedra out of the 12 000
contained within the 5× 5 × 5 supercell used for this
calculation. In fractional termsP is equal to 0.03 for this
deformation. This is low, so we know that local RUMs do have
a role to play in this larger zeolite. Any molecule at any possible
defect site will be able to utilize local RUMs to some degree in

order to lower energy barriers to reaction. Hence, any research
into the catalytic behavior of molecular fragments within this
zeolite should take the possibility of local RUMs into account.
Similar calculations could be applied to the rest of the ZSM
family as well as to the AlPO4 family of zeolites.

Summary

In summary, we have seen that the low-frequency floppy
modes that are so prevalent in zeolites can combine to give
superpositions of modes that we call local RUMs. Since the
frequencies of the floppy modes are so low, then the motions
associated with a local RUM will be very long-lived, even
stationary. The enhanced flexibility provided by local RUMs
will enable ions and molecules to change the environment of
their cages to give more favorable conditions for effective
catalysis to occur. For example, a flexing of a cage along some
particular axis may give rise to better hydrogen bonding between
molecules and framework oxygens. The important point is that
since local RUMs can be explicitly calculated from the original
RUM eigenvectors of a particular structure, it is possible to see
exactly what kind of flexibility a structure may possess.
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Figure 9. Unit cells of chabazite showing (A) an undistorted cell
containing a methanol molecule that is doubly hydrogen-bonded (dotted
lines) to the cage side; (B) a ring on which a local RUM distortion has
caused the distance X-X to contract, this possibly helping the process
of decomposing methanol molecules; (C) a ring on which a local RUM
distortion has increased the overall ring area, particularly the diameter
Y-Y, thus assisting the diffusion of a flat molecule oriented parallel
to Y-Y.
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