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Abstract. We present the results of a computational study of the low-energy dynamics of silica
glass. Molecular dynamics simulation results show that parts of the glass structure can undergo
large cooperative reorientations of SiO4 tetrahedra. These motions involve reorientations of about
30 tetrahedra with an energy barrier of about 0.06 eV. We relate these motions to the presence of
double-well potentials which give rise to two-level tunnelling states in the model, thereby providing
the mechanism for the anomalous low-temperature thermal properties of glasses. Simulation of
larger structures of silica glass shows that jump events become more frequent and uncorrelated with
each other. In addition to studying the flexibility of silica glass in terms of the large tetrahedral
rearrangements, we also address the flexibility of silica glass in terms of its ability to sustain low-ω
floppy modes. The latter part of the study is supported by inelastic neutron scattering data, and we
compare experimental and calculated dynamic structure factors in the energy range 0–10 meV and
scattering vector range 0–8 Å−1. By applying the analysis of the rigid-unit-mode model as initially
developed for crystalline silicates to structures of silica glass we find that silica glass is surprisingly
similar to its corresponding crystalline phases in its ability to support low-ω floppy modes. The
same conclusion follows from the comparison of calculated vibrational densities of states of silica
glass and its crystalline phases, and is borne out in the inelastic neutron scattering data.

1. Introduction

The low-energy vibrational dynamics of glasses has been the subject of intensive studies in
recent years. The presence of excess, as compared to crystalline phases, low-energy vibrational
states can explain anomalous low-temperature thermal properties of glasses [1]. This is done in
the phenomenological model introduced by Anderson, Halperin, and Varma [2] and Phillips [3],
which postulates the existence of localized low-energy excitations in glasses. For a given
temperature, the participating atoms are those for which the value of the energy barrier is
comparable with kBT . The tunnelling between minima of double-well potentials with such
energy barriers is then introduced which is the major point of the model, thus giving rise to
two-level tunnelling states.

However, it has been difficult to pinpoint the existence of double-well potentials in
glasses clearly, which has contributed to the growth of the literature doubting their existence
and developing alternative models [4–6]. In our previous paper [7], using molecular
dynamics simulation we found that parts of our silica glass model undergo large tetrahedral
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rearrangements with little energy cost. We identified those rearrangements as motion in double-
well potentials responsible for the two-level tunnelling states of [2,3]. We observed up to two
jumps between the potential minima during the observation period, typically around 30 ps, and
found that on average about 30 tetrahedra are involved in each jump event. The model of silica
glass that was used was relatively small and contained 216 SiO4 units. In this paper we simulate
larger structures with different topologies and containing 512 or 4096 SiO4 tetrahedra. We find
that the larger structures become increasingly floppy in terms of being able to sustain large-
amplitude tetrahedral rearrangements. In larger structures, jump events involve groups of atoms
in various parts of the structure and which, unlike in smaller structures considered previously
in [7], participate in jump events independently of each other. The jump events become more
frequent and involve in total more participating atoms. Tetrahedral rearrangements, thus being
well represented, may prove to be important in the overall low-energy dynamics of silica glass.
This can make it possible to estimate the effect of the presence of two-level tunnelling states on
the system’s anomalous thermal properties [1] using a technique which incorporates quantum
effects of tunnelling.

In addition to addressing the issue of the presence of double-well potentials and two-
level tunnelling states in silica glass, we also study the ability of silica glass to support low-ω
‘floppy modes’ [8,9] and the similarity of silica glass and β-cristobalite in terms of being able
to support those modes. We have recently shown by means of inelastic neutron scattering that
the vibrational density of states of silica glass is remarkably similar to that of α-cristobalite,
particularly in relation to the so-called ‘boson’ peak at around 5 meV [10]. This suggests that
the atomic motions associated with the boson peak are similar in the two cases; we showed
for α-cristobalite that they are related to the acoustic modes with wave vectors approaching
the Brillouin zone boundary, where ∂ω/∂k ∼ 0. This picture is consistent with that deduced
from other inelastic neutron scattering measurements [11], and recent simulation work [12].

In our previous paper [7] we studied floppy modes in silica glass by applying our
‘rigid-unit-mode’ model [13, 14]. This model was developed earlier to study floppy modes
in crystalline networks of corner-linked polyhedra such as SiO4 tetrahedra, including the
crystalline phases of silica [13, 15–17]. The rigid unit modes (RUMs) are normal-mode
vibrations that can propagate without the polyhedra distorting, and are the modes of lowest
energy. Formally these are equivalent to the floppy modes discussed for other network glasses.
We found that silica glass and β-cristobalite are strikingly similar in their ability to support
RUMs. The model of silica glass used in [7] to find and analyse the RUMs contained 216
SiO4 tetrahedra. In this paper we develop this earlier study using structures with different
topologies, each containing larger numbers of atoms. We find here that larger structures of
silica glass still show the same degree of RUM flexibility as β-cristobalite. The similarity
in the way that silica glass and β-cristobalite are able to support RUMs/floppy modes also
follows from the comparison of the low-ω ranges of calculated vibrational densities of states
for those structures. We relate this similarity to the structural similarity between silica glass
and the corresponding high-temperature crystalline phases which had been previously pointed
out in [18–20]. We have argued elsewhere that this structural similarity can be understood
from the fact that silica glass is able to use the same RUM flexibility of its crystalline phases
in order to allow for random connectivity within the constraints imposed by the formation of
an infinite network [14, 19, 20].

2. Generation of silica glass configurations

Silica glass, one of the principal network glass-forming systems, is well described as the
continuous random network of vertex-connected SiO4 tetrahedra. Justification for this comes
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from diffraction studies [21], reverse Monte Carlo [22] and molecular dynamics simulations
[23], and model building [24, 25]. For simulation work it is necessary to have samples that
reflect the random network, but with periodic boundaries to avoid problems associated with
surfaces. The use of periodic boundary conditions imposes tight constraints on the formation
of the network, and many algorithms suffer from difficulties in producing models that are
completely free of defects.

Our approach to generating models of silica glass for this work is to start with defect-free
models of amorphous silicon which have periodic boundary conditions. These structures were
generated by randomizing the ideal diamond structure and further relaxing it to the lowest
metastable state to get the configuration whose correlation functions fit the experimental data.
The details of this method are described in [26,27], and the configurations were kindly provided
by Professor M Thorpe. Some of the configurations contained four-membered rings of atoms,
and others were free of these rings. To convert these configurations to silica we inserted oxygen
atoms in the middle of each pair of silicon atoms, to create a network of vertex-connected SiO4

tetrahedra.
Our prototype silica glass structures were then relaxed using the molecular dynamics

simulation method, in particular to allow the linear Si–O–Si bonds to relax to the usual bent

Figure 1. The atomic structure of one of the silica glass configurations used in this study, obtained
from an initial configuration of silicon by placing an oxygen atom between each pair of neighbouring
silicon atoms, and then relaxing the structure by molecular dynamics simulation.

(This figure is in colour only in the electronic version, see www.iop.org)
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state. From diffraction measurements on amorphous and crystalline silicates it is known that the
mean value of the Si–O–Si bond angle is close to 145◦. In the molecular dynamics simulations,
both to relax the structure and then to perform subsequent analysis calculations, we used the
Tsuneyuki interatomic potential [28] derived from ab initio Hartree–Fock self-consistent-field
calculations for small clusters of silica. The simulations were performed using the DLPOLY
molecular dynamics code [29], and for the basic relaxation of the structure the simulations were
performed using a constant-temperature algorithm with the temperature set at 50 K. Using this
procedure, we derived a number of silica glass structures with different topologies, with and
without four-membered rings of tetrahedra, and containing 216, 512, and 4096 SiO4 tetrahedra
each. An example of one of the relaxed glass configurations is shown in figure 1.

In order to validate the structures that we have produced, we calculated the partial radial
distribution functions t (r) = 4πrg(r) = n(r)/r for each of our configurations, and compared
them with experimental partial functions obtained by reverse Monte Carlo modelling of silica
glass [22]. One comparison is given in figure 2, and the comparisons for different configurations
look similar. The Si–O and O–O peaks are sharper in the simulation because of the temperature
being lower (50 K) than in the experiment (300 K). The Si–O peak in the simulation is also at a
slightly larger distance than in the experiment, which is a feature of the interatomic potential.
The Fourier transform of the radial distribution function results in the structure factor function
Qi(Q) [21]. This is compared with experimental results [21] in figure 3. The comparison
shows the very good quality of the derived structures. The main differences between the
experimental data and simulation results reflect the differences seen in the t (r) functions: the
cooler temperature resulting in sharper t (r) peaks is reflected in the greater amplitude of the
oscillations in Qi(Q) at higher values of Q. The slightly larger Si–O distance in the simulation
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Figure 2. Partial radial distribution functions t (r) of the generated structure of silica glass (lower
plots) and experimental data [22] (upper plots) for Si–Si (a), Si–O (b), and O–O (c).
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Figure 3. The structure factor Qi(Q) calculated from one of our configurations of silica glass
(upper plot) compared with experimental data [21] (lower plot).

leads to the oscillations in Qi(Q) at higher values of Q having a slightly lower period in Q.
These discrepancies aside, the agreement between the simulation and experimental t (r) and
Qi(q) functions is very good.

3. Two-level tunnelling states in silica glass

3.1. Tetrahedral rearrangements

We start by demonstrating that our silica glass structures contain regions which experience the
effect of the presence of double-well potentials. In order to observe a characteristic motion in
the double-well potentials it is first necessary to identify those atoms which may participate
in such a motion. It was proposed in [2, 3] that atomic motions in double-well potentials in
silica glass involve rigid rotations or displacements of SiO4 tetrahedra. We naturally assumed
that the corresponding displacements of atoms in these types of motion significantly exceed
those caused by the thermal vibrations around equilibrium positions at low temperature. To
select those atoms which may participate in motion in double-well potentials, we constructed
the distribution of average square displacements of all atoms. Using the data from molecular
dynamics simulation production runs at low temperature, we calculated σ = 〈|r|2〉−|〈r〉|2 for
each atom, where r is the position of the atom within the sample, and formed the probability
distribution function P(σ). An example of P(σ) is shown in figure 4. By noting the larger
values of σ it is possible to identify the atoms that could possibly participate in large jumps
between two minima of double-well potentials. The larger values of σ in figure 4 (values up
to 0.2 Å2) were analysed in terms of which atoms were involved, and it was found that around
2/3 were oxygen atoms. This is consistent with the involvement of whole-tetrahedral motions,
and is consistent with the data derived in [30]. Note that in constructing P(σ) we used the
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Figure 4. The distribution of atomic average square displacements P(σ).

set of σ -values calculated for equal time periods before and after the jump, so P(σ) reaches
maximum values and is made as sensitive as possible to small jumps.

For the atoms with the largest values of σ from two different simulations we show the
time dependence of their coordinates x, y, z in figure 5. The event seen in figure 5(a) involves
the atom jumping between from one metastable position to another, and then subsequently
jumping back to the original position. Similar changes in coordinates are found for other
atoms involved in this event with large values of σ . On the other hand, the event shown in
figure 5(b) from a different simulation run has the atom jumping from one position to another
but without the atom subsequently returning to its original position. The largest value of
the atomic displacements in the observed events is typically around 0.8 Å, which is slightly
larger than that found in [30]. Events which involve more frequent jumps between equilibrium
positions can be observed in the simulation runs for the structures of larger size, a point to
which we return later.

From our analysis of the structure before and after the jump we conclude that this jump
results in rotations and displacements of connected tetrahedra, with a few atoms having large
displacements in the centre of the cluster of atoms that move, and with the displacements
becoming smaller for atoms further away from this centre. Fragments of the structure which
experienced the tetrahedral rearrangements associated with the events of figure 5(a) and
figure 5(b) are shown in figure 6(a) and figure 6(b), where the initial configuration and the
configuration after the jump are superimposed in order to highlight the scale of the jump
motions. For jump motions we have calculated the participation ratio, defined as

Pjump =
(∑

|ujump|2
)2/(

N
∑

|ujump|4
)

(1)

where ujump = rafter − rbefore is the difference between the coordinates after and before the
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Figure 5. Time dependences of the atomic coordinates x, y, z (in orthogonal Å units) showing an
atom undergoing a large jump involving a movement of about 0.8 Å and subsequent jump back (a)
and an atom in a different simulation run which oscillates around the new equilibrium after the
jump (b).

jump. For a collective motion in which all atoms participate equally, Pjump ∼ 1, whereas for
a motion involving a single atom, Pjump ∼ 1/N . The value of Pjump for the event shown in
figure 5(b) gives the number of tetrahedra participating in this event, equal to a value of NPjump

of around 30. This is consistent with the number deduced from P(σ) by counting the number
of σ -values greater than a lower threshold, which was set as the upper edge of the large peak
in P(σ) in figure 4: this lower threshold is assumed to set the upper limit given by simple
thermal vibrational motion without jumps. We have found similar participation numbers for
other jump events that we have analysed.

Animations of the jump events, showing whole-tetrahedra reorientations, were made from
the molecular dynamics simulations and are available in the electronic version of the journal.
They can also be viewed from http://www.esc.cam.ac.uk/movies.

There is an alternative way to explore the ability of our structure to undergo large-amplitude
reorientational motions. The structures used for production runs in the molecular dynamics
simulation were generated from the initial configurations by relaxing the initial configurations,
which by design had linear Si–O–Si bonds. In all cases the final configurations had Si–O–Si
bond angles distributed around 145◦. We produced different initial relaxed configurations by
using different sets of initial atomic velocities in the molecular dynamics simulations. If there
is large-amplitude flexibility in the structure, this should enable different relaxations to produce
configurations that correspond to different minima of the free energy that are related to the
configurations produced by the large-scale jump motions that we have just been discussing.

We have compared different resulting structures by taking the differences between the
coordinates of the same atoms in different relaxations, u1,2 = r1 − r2, and using these to
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(a)

(b)

Figure 6. Snapshot images of the tetrahedra participating in the jump events indicated in figure 5.
The figure shows superimposed snapshots of the local configuration captured before and after the
jump event in order to highlight the large-amplitude reorientational motions. Animations of the
jump events, showing whole-tetrahedra reorientations, are available in the electronic version of
the journal (animations are in mpeg format and are of 2.2 and 2.9 Mbyte size). They can also be
viewed from http://www.esc.cam.ac.uk/movies.

(This figure is in colour only in the electronic version, see www.iop.org)
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calculate the corresponding participation ratio:

P1,2 =
(∑

|u1,2|2
)2/(

N
∑

|u1,2|4
)
. (2)

The value of P1,2 for the differences between two relaxed configurations shows that the changes
involve around 100 tetrahedra. Analysis of the atoms involved shows that in each case it is a
subset of this group of tetrahedra that is involved in the large-amplitude jump displacements
described above. This clearly suggests that our network contains regions that are floppy in
terms of their ability to support large-amplitude reorientational motions within a more rigid
framework.

3.2. The potential energy barrier

We suggest that the motions of the type that we observe in figure 5 and figure 6 occur in the
double-well potentials that give rise to two-level tunnelling states [2, 3]. It is interesting to
determine the values of the energy barrier separating two potential minima and the energy
difference between minima. We plot in figure 7 the potential energy of the whole system in
the constant-total-energy simulation. During this time period part of the structure undergoes a
jump from one equilibrium position to another. No change in energy can be seen at the moment
of the jump, according to figure 7. Any possible change is clearly substantially lower than the
thermal fluctuations. In order to determine values of the energy barrier and difference between
minima, we have relaxed the structures either side of the jump event and half-way through
the jump event (i.e. the transition state) using the molecular dynamics code at 0 K. For the
configuration in the transition state we pinned the position of the atom that moves the most in
order to prevent the state from relaxing to either of the states either side of the transition state.
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Figure 7. The time dependence of the potential energy of the simulation sample (with its average
value subtracted) through the jump event shown in figure 5(b) and figure 6.
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This procedure gave an energy barrier of 0.06 ± 0.02 eV (for about 30 tetrahedra; see above),
and the energy difference between the potential minima is less than 0.01 eV. The uncertainties
arise from numerical errors in the simulations that are hard to control to greater precision
because of their small size relative to the total system energy. Our estimates of the size of the
energy barrier and the energy difference are within the ranges proposed by [2, 3].

Having estimated the parameters of the double-well potentials, we address an interesting
point about the dynamics of motion of our structure in the double-well potential. It is evident
that the system can remain in one potential minimum for times corresponding to many periods
of oscillation of SiO4 tetrahedra before jumping to another state (figure 5), which implies that
the energy barrier separating two minima is much larger than the thermal energy fluctuations.
However, we do not see any change in potential energy through the jump in figure 7. As
the system evolves through the cooperative small-amplitude oscillations of the tetrahedra, it
finds the path in the phase space with the energy barrier small enough (around 0.06 eV in our
measurement) to allow it to jump into another potential minimum with little energy cost and
thus to avoid crossing a barrier separating equilibrium states which would be inaccessibly high
otherwise. Of course, for quantum tunnelling it will be possible for jump events to sample
more of the energy barriers than the one determined by this path in phase space.

3.3. Simulating larger structures

We note that in smaller structures with 216 SiO4 tetrahedra we generally observe two spatially
distinct regions in the structure where groups of tetrahedra experience simultaneous large-
amplitude reorientations, or two ‘active’ regions. In order to preserve the connectivity of
the structure, the surrounding of the region which experiences large tetrahedral reorientation
distorts as well, with deviations diminishing with the distance from that region. Since the
distance between two ‘active’ regions is only several tetrahedra, any large reorientation of
tetrahedra in one ‘active’ region depends on the reorientation in another. To illustrate the
interaction between ‘active’ regions, let P1 be the point in the phase space defined by the
coordinates and velocities of the tetrahedra in the first ‘active’ region, t1 is the moment of time
when P1 favours the jump across the potential energy barrier in that region, and P2, t2 are the
corresponding phase-space point and time for the tetrahedra in the second ‘active’ region. If
at t1 atoms in the first region approach P1 and atoms in the second region are not far from
P2, then a jump of atoms in the first region may trigger a jump of atoms in the second, and
vice versa. However, if at t1 the atoms in the second region are far away from P2, the jump
in the first region will not happen because the connectivity of the network precludes large-
amplitude rotating of one group of tetrahedra without distorting the tetrahedra in the adjacent
region. In this picture, tetrahedral rearrangements happen simultaneously and only at times
when atoms in the first and second ‘active’ regions reach P1 and P2, correspondingly. In fact,
to make the jump possible in two regions simultaneously, both P1 and P2 should favour the
jump over the largest of two barriers in each region. In this picture, ‘correlated’ jump events
may be observable much less often than if the interaction between ‘active’ regions is reduced
or absent. In the structure with 216 SiO4 tetrahedra we observed only up to two jump events
during an observation period of 30 ps.

The picture becomes different when we simulate larger structures containing 512 and
4096 tetrahedra. Together with an increased number of atoms participating in large jumps, we
observe that the frequency of large jumps increases considerably—we see up to ten jump events
in the simulation runs of the structure with 512 tetrahedra during the same simulation period and
even more for larger structures. In larger structures, tetrahedral rearrangements which happen
in different ‘active’ regions are much less correlated with each other than they are in smaller



Dynamics of silica glass 8051

structures, and occur much more frequently. This means that silica glass structures, if selected
to be large enough, are considerably floppy in terms of being able to support large-amplitude
tetrahedral rearrangements. In other words, if the structure is chosen to be large enough, the
potential barrier which needs to be overcome by a group of tetrahedra is effectively reduced.
If quantum effects are incorporated into simulation, the reduced potential energy barrier can
enable tunnelling between minima to occur more often.

The increased possibility for tunnelling due to the effective reduction of the potential
energy barrier and the total increase of the number of atoms participating in jump events in
larger structures mean that this type of motion can make a significant contribution to the low-
energy dynamics of the system. It therefore may be possible to estimate the effects of the
presence of two-level tunnelling states on the thermal properties of the system, if quantum
effects are incorporated into the simulation. This can be done in the path integral molecular
dynamics simulation technique. The development of this technique for the application to
systems like silica glass is currently being carried out.

It should be noted that attempts to find double-well potentials were made previously for
metallic and other glasses. Earlier attempts were based on the assumption that it is the single
atom that moves in the double-well potential [31, 32]. Later works [33, 34] assumed that
the objects moving in double-well potentials are groups of atoms. The common approach to
finding and studying double-well potentials in glasses involves making assumptions regarding
the size of objects moving in the double-well potential (being either individual atoms or groups
of atoms of a certain size) and then searching for the alternative potential energy minimum
by spatial rearrangement of those objects. Using a similar approach, a search for double-well
potentials in silica glass in particular was carried out in [30]. In more recent papers [35, 36]
the metallic glass was investigated by means of a molecular dynamics simulation run with a
certain low-temperature localized vibrational mode assumed to describe atomic motions in a
double-well potential, forcibly launched at the start of simulation. In our method of finding
and studying double-well potentials in silica glass, we do not make any initial assumptions
regarding their nature, including the location, size, dynamics, and other spatial or dynamical
features; neither do we initially stimulate the system. We have used a simpler and in a way
more natural approach, letting our glass system freely evolve in the molecular dynamics run
and explore its trajectories in the phase space.

4. Floppy modes in silica glass

4.1. Floppiness of the amorphous silica structure: Maxwell counting

In studying the low-energy vibrational modes of silica glass, it is assumed that any low-
energy distortion of a silicate structure will have a minimal deformation of the constituent
SiO4 tetrahedra [37, 38], since these units are fairly stiff and any significant deformation will
be accompanied by high-frequency modes. Whether an infinite framework of corner-linked
SiO4 tetrahedra can vibrate without the tetrahedra distorting is actually a very subtle issue. As
noted above, the vibrational modes that do not involve distortions of the interatomic bonds
are usually referred as ‘floppy modes’ in the context of network glasses [8, 9] or rigid unit
modes in the context of crystalline framework structures [13, 15–17]. In a model in which
the only forces are those associated with stretching of bonds or distortions of polyhedra, the
RUMs/floppy modes will have identically zero frequency [15].

The usual approach to analysing the flexibility of a structure is to use the procedure of
‘Maxwell counting’ [39]. In an atomic system, such as the chalcogenide glasses, it is taken
that each atom has three degrees of freedom, and each bond gives one constraint to the system.
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The number of RUMs/floppy modes is equal to the difference between the number of degrees
of freedom and the number of constraints [8,9]. In a system such as silica, where there are rigid
SiO4 tetrahedra and separate Si–O and O–O bonds, this procedure will lead to an overcounting
of the number of constraints, since the rigidity of a SiO4 tetrahedron is ensured by only nine
of the ten bonds. We tend to prefer an alternative way of counting degrees of freedom, which
is to associate six degrees of freedom with the rigid-body motions of a tetrahedron, and to
associate three constraints with every bridging oxygen (that is, every oxygen that is part of
two tetrahedra) [15, 17]. The two methods of applying the Maxwell counting procedure give
identical results. The Maxwell counting procedure gives an interesting result when applied to
silica. For a network of vertex-connected tetrahedra, the total number of degrees of freedom
equals the total number of constraints, so the structure of silica, either amorphous or crystalline,
is neither floppy nor overconstrained, but balanced between the two extremes. Thus one cannot
easily predict whether the floppy modes envisaged in [37, 38] can exist in silica glass.

We have recently developed this approach in detailed application of the RUM model to
framework crystalline structures of silicates, originally in an attempt to determine the ways in
which the crystal structure of a framework silicate can distort in order to allow a displacive
phase transition to occur [13,15–17]. The RUM approach has turned out to be of more general
use than the initial search for mechanisms of displacive phase transitions, and has encompassed
phenomena such as negative thermal expansion [40–42] and zeolite activity [43, 44], as well
as providing more detailed quantitative insights into the thermodynamic properties of phase
transitions [45].

A major component of our RUM model has been the development of an effective tool
to facilitate the identification of RUMs/floppy modes in framework silicates. Noting that a
RUM is a phonon normal mode that can propagate without requiring the distortions of the SiO4

tetrahedra, the task is to set up the dynamical matrix in such a way that RUMs are obtained
as zero-frequency solutions. Our approach is to treat the SiO4 tetrahedra as rigid units within
the framework of molecular lattice dynamics, and to replace all the bridging oxygens by pairs
of atoms that are associated with one tetrahedron or the other. The pairs of split atoms are
held together by harmonic spring forces of zero equilibrium length, which act to resist any
motion that moves them apart. This is illustrated in figure 8. The ‘split-atom’ method [15,17]
has been implemented within the formalism of harmonic molecular lattice dynamics, using a
program called CRUSH [46].

Figure 8. Representation of the split-atom method [15]. The spring has an equilibrium length of
zero, and a force constant set to a value that best mimics the stiffness of the SiO4 tetrahedra as
judged from measurements of phonon frequencies.

In the application of the RUM split-atom model to various crystalline forms of silica it
was found that symmetry can cause some of the constraints to be degenerate, resulting in a
non-zero number of zero-frequency RUMs. The number of RUMs, as well as the values of the
wave vectors k at which these RUMS exist, were found to be different for crystalline forms of
different symmetries [13,16,17]. This is the breaking of the strict Maxwell criterion discussed
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above. The question that we now address is that of whether there are RUMs in silica glass,
noting in advance the caveat that there is no symmetry corresponding to that found in the
crystalline phases.

4.2. Rigid unit modes in silica glass

In crystalline silicates, it was often found that the RUMs lie on special planes of wave vectors,
determined by the symmetry [13, 17]. There are no corresponding sheets of wave vectors in
silica glass, so the same type of search method will not be appropriate. Instead we use a density-
of-states search method for the determination of the RUM flexibility of silica glass [17,47]. In
essence, we solve the dynamical matrix within the CRUSH split-atom method for a random set
of wave vectors and form the density of states g(ω). Random wave vectors are used because a
grid imposed on a symmetric structure was found to produce periodic structure in the resultant
density of states. The CRUSH density-of-states search method gives the usual Debye result,
g(ω) ∝ ω2 as ω → 0, when there are no RUMs, and g(ω) ∼ constant as ω → 0 when there are
RUMs [47]. It should be noted that the g(ω) produced this way is not to be confused with the
g(ω) of a real material, because in a real material the full set of force constants would give non-
zero values of the RUM frequencies and so we would not get g(ω → 0) ∼ constant. Instead,
the CRUSH g(ω) should be seen as a particular diagnostic tool with the purpose of giving a
unique quantitative assessment of the RUM flexibility of a framework structure, and to make
this distinction clear we will use the special designation of gC(ω) for the RUM/CRUSH g(ω).

We have calculated gC(ω) for our silica glass configurations, and the results are given
in figure 9. There the gC(ω) for silica glass is compared with gC(ω) of β-cristobalite. The
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Figure 9. The density of states, gC(ω), calculated using our split-atom method, for β-cristobalite
and silica glass. The values of the frequencies are determined by the spring force constant in the
split-atom method, and have been scaled against the maximum frequency in this figure.
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similarity of the gC(ω) for the two systems for ω → 0 is striking—in fact, one can view
the overall form of gC(ω) of silica glass simply as a lower-resolution version of gC(ω) of
β-cristobalite. This comparison implies that silica glass has the same RUM flexibility as
β-cristobalite, which is actually an astonishing result given that the RUM flexibility of β-
cristobalite had previously been interpreted as being due to the effects of the high symmetry
of its crystal structure [13, 15, 48].

In order to establish the spatial extent of the RUMs in silica glass, we have calculated
the participation ratio PC using the CRUSH eigenvectors instead of the differences in atomic
coordinates as before:

PC =
(∑

|uC|2
)2/(

N
∑

|uC|4
)

(3)

where the uC are the atomic displacements associated with the CRUSH eigenvectors. If the
value of PC is close to ∼1 for a particular vibration, all atoms participate equally in that
vibration. The participation ratio corresponding to the gC(ω) of figure 9, bottom panel, is
shown in figure 10. As can be seen from figure 10, PC ∼ 0.8 for all ω, including the low-ω
modes. This means that the low-ω RUM-like vibrations involve all tetrahedra in the glass, and
are not localized to particularly flexible segments of the glass structure.
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Figure 10. The participation ratio, PC, calculated using our split-atom method, for all CRUSH
eigenmodes from silica glass. The values of the frequencies are determined by the spring force
constant in the split-atom method, and have been scaled against the maximum frequency in this
figure.

The same RUM flexibility of silica glass and β-cristobalite can give an insight into
their structural similarities. As was shown in [18–20], over short length scales there are
strong similarities between the structures of amorphous silica and the crystalline tridimite and
cristobalite phases of silica. Using reverse Monte Carlo modelling, these similarities were
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found to extend over the length scale 0–10 Å [19]. Common RUM flexibility, which includes
the flexibility of the rings of connected SiO4 tetrahedra, gives rise to the possibility for the glass
structure to employ structural elements of its high-temperature crystalline phase in producing
a disordered yet fully linked network. Thus the structural similarities between the silica glass
and its high-temperature crystalline phase may be explained by the inherent RUM flexibility
of these structures. This point has been discussed in detail by Keen and Dove [19, 20].

4.3. Inclusion of a Si–Si interaction

We have investigated the effect of introducing an interaction between the nearest-neighbour
Si atoms on the low-ω gC(ω). This takes the form of a harmonic spring force for each pair of
Si atoms defined to have an equilibrium length equal to the actual interatomic distance. This
force has the general effect of separating the frequencies of torsional RUM motions, which
preserve the size of the Si–O–Si angle, from those of the RUM motions that cause a flexing of
the Si–O–Si angle. In some crystalline silicates, this can explain why some RUMs give rise
to displacive phase transitions by acting as the classical soft mode, whereas others do not.

The main effect on gC(ω) of increasing the size of the Si–Si interaction is shown in
figure 11. It can be seen to lead to a reduction and subsequent disappearance of the near-zero-
frequency component of gC(ω), with a build up of a peak in gC(ω) at a slightly higher value
of ω. The presence of the Si–Si interaction clearly results in a diminished RUM flexibility of
the glass structure.
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Figure 11. The density of states, gC(ω), calculated using our split-atom method, for silica glass
with the inclusion of a Si–Si interaction. The different plots show the effect of varying the size of
the Si–Si force constant, KSi−Si, expressed as a fraction of the O–O force constant, KO−O. The
values of the frequencies are determined by the spring force constant in the split-atom method, and
have been scaled against the maximum frequency in this figure.
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It should be noted that a comparison of this point with the case for β-cristobalite is not
possible since the ideal crystal structure has linear Si–O–Si bonds, and therefore the Si–Si
interaction has no effect.

4.4. Inclusion of defects in the silica glass structure

The presence of impurities in silica glass results in the formation of non-bridging Si–O bonds.
It is appealing to study what effect this may have on the RUM density of states in our model. We
removed some of the SiO4 tetrahedra, thus creating non-bridging Si–O bonds, and calculated
the gC(ω) of such a structure, shown in figure 12. The interesting feature is the formation
of a peak in gC(ω) at ω ∼ 0. We note from figure 12 that the new zero-frequency modes
come from the low-frequency part of the density of states, which therefore becomes depleted
as the number of ω ∼ 0 modes increases. This is opposite to the effect of including a Si–Si
interaction, but is actually not at all surprising since the incorporation of non-bridging Si–O
bonds will lead to a reduction in the number of Maxwell constraints compared to the number
of degrees of freedom. The increase in the number of RUMs caused by the incorporation of
the non-bridging bonds is consistent with the observation of the increased inelastic neutron
scattering intensity found in alkali disilicate glasses over silica glass [10].
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Figure 12. The density of states, gC(ω), calculated using our split-atom method, for configurations
of silica glass with missing SiO4 tetrahedra and hence containing non-bridging Si–O bonds. The
different plots show the effect of increasing the number of non-bridging bonds as the fraction of
missing tetrahedra, F , increases. The values of the frequencies are determined by the spring force
constant in the split-atom method, and have been scaled against the maximum frequency in this
figure.

The calculated participation ratio of the CRUSH eigenmodes, PC, for the structure with
a fraction of tetrahedra removed is shown in figure 13. The values of PC for the new ω ∼ 0
modes vary uniformly from 0 to 0.8, showing that some highly localized ω ∼ 0 vibrations have
appeared, but that the motions of other ω ∼ 0 vibrations still involve almost the whole sample.
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Figure 13. The participation ratio, PC, calculated using our split-atom method, for all CRUSH
eigenmodes from the silica glass configuration with 9.2% of missing SiO4 tetrahedra. The values
of the frequencies are determined by the spring force constant in the split-atom method, and have
been scaled against the maximum frequency in this figure.

The spread of values of PC for the ω ∼ 0 modes is shown as an inset in figure 13. We suggest
that this is a pointer to possible behaviour in amorphous silicates that contain non-bridging
Si–O bonds, such as K2SiO5 [10, 49], and this is being explored in ongoing calculations.

4.5. Size effects

We conclude our discussion of the RUMs in silica glass by noting that in [7] we used only
the configuration containing 216 SiO4 tetrahedra for performing the RUM analysis. We have
extended the analysis to larger samples, with up to 4096 tetrahedra, and with or without four-
membered rings of tetrahedra. We have found that the same results are valid in all cases,
including the conclusions related to the RUM density of states, the spatial extents of RUMs,
and other aspects of RUM dynamics.

5. Collective dynamics, and comparison with experimental data

5.1. The vibrational density of states

To further explore the ability of silica glass to support low-frequency floppy modes, we have
calculated the vibrational density of states from the molecular dynamics simulations. The
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vibrational density of states can be obtained from the single-particle velocity self-correlation
function, C(t) [50]:

C(t) = 〈v(0) · v(t)〉
〈v(0) · v(0)〉 (4)

where the brackets 〈· · ·〉 denote an average over time. The one-phonon density of states is the
weighted Fourier transform of this correlation function [50].

The velocity correlation function was calculated from the simulations of the sample of
silica glass that contained 4096 SiO4 tetrahedra at different temperatures. The correlation
functions were produced over a time range of 6 ps. The calculated Fourier transforms of
correlation functions for Si and O atoms were weighted with respective scattering lengths, to
arrive at the total vibrational density of states.

We plot the vibrational densities of states of silica glass calculated at two temperatures,
10 K and 300 K, over the frequency range 0–8 THz in figure 14. We note that the behaviour
of the density of states in this range does not change significantly as the temperature varies,
and calculations for heating up to 1000 K also show little variation in the form of the density
of states. In figure 14 we also plot the vibrational densities of states of α- and β-cristobalite
obtained from the earlier molecular dynamics simulations of Swainson and Dove [51]. The
excess of low-frequency floppy modes inβ-cristobalite as compared toα-cristobalite was noted
and discussed in [48, 51]. It was shown in [13, 48, 51] that β-cristobalite is able to support
more RUMs/floppy modes than α-cristobalite. What can be seen from figure 14 is that in
the low-frequency range up to 1.5 THz the density of states of silica glass is closer to that of
β-cristobalite than to that of α-cristobalite. This suggests that silica glass is at least as floppy as
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Figure 14. The vibrational density of states, g(ω), calculated from the molecular dynamics simul-
ation, for silica glass at 10 K (solid line), silica glass at 300 K (dotted line), β-cristobalite (dashed
line), and α-cristobalite (dot–dashed line). The cristobalite data are taken from [51].
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β-cristobalite as regards being able to support low-frequency floppy modes. This conclusion
is consistent with the results of our RUM analysis presented in the previous section.

5.2. Experimental measurement of the dynamic structure factor, S(Q, E)

Previously we have published measurements of the neutron scattering function S(E) =∫
S(Q,E) dE for silica glass, polycrystalline α-cristobalite, and amorphous potassium

disilicate [49], where Q is the modulus of the scattering vector Q and E is the energy transfer
due to absorption or creation of an excitation of energy h̄ω. The results from this earlier work
showed that there are similarities between the inelastic spectra for silica glass andα-cristobalite,
but there are indications from the data of an excess density of states at low energy/frequency.

We now report new measurements of the full dynamic structure factor, S(Q,E), of silica
glass and α-cristobalite at ambient temperature by means of inelastic neutron scattering. The
experiments were performed on the MARI spectrometer at the ISIS pulsed neutron facility.
The results of the experiments are maps of S(Q,E) across a range of values of Q between 0
and 8 Å−1 and energy transfers E from −10 to 30 meV. The maps are shown in figure 15.
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Figure 15. Intensity maps of the inelastic neutron scattering function S(Q,E) for silica glass
(right) and polycrystalline α-cristobalite (left), obtained on the MARI spectrometer at ISIS. The
larger values of S(Q,E) are indicated by lighter shades of grey in the maps.

The most prominent feature in both maps is the band of inelastic scattering around 5 meV
that extends across most of the range of Q. This is the inelastic scattering that is associated
with the so-called boson peak, which is seen as the peak at 5 meV in the S(E) data published
previously [49]. That the same feature is seen for both polycrystalline and glass phases shows
that it is not a particular feature of the glass state—this is a point that will be discussed in
more detail elsewhere [52]. The striking similarities between the maps for the two phases are
reinforced by noting that the inelastic scattering at 5 meV is enhanced in two regions of Q,
between 2.5 and 3 Å−1, and between 5 and 5.5 Å−1.

The main difference between the two maps is that the band of inelastic scattering at 5 meV
is more spread out in energy in the glass data, and in particular rather more of the inelastic
scattering spreads to lower energy. By comparison of these results with the density-of-states
data from the molecular dynamics simulations above, we can identify this spread of inelastic
scattering to lower energies as being related to the low-energy excitations studied earlier in
this paper, namely the RUMs/floppy modes.
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In the following calculations we will aim to interpret the S(Q,E) map for silica glass in
terms of some of the insights from the calculations in the previous sections of this paper.

5.3. The dynamic structure factor S(Q, E) from molecular dynamics simulation

We have calculated the dynamic structure factor for silica glass from our molecular dynamics
simulations. The main difference between calculations for a crystal and for an isotropic material
(such as a non-crystalline material or a polycrystalline material) is that in the latter case the
scattering function S(Q, ω) has to be averaged over all orientations of the scattering vector
Q. In our formalism we build this orientational average in from the start. The intermediate-
scattering function, F(Q, t), is defined as [50]

F(Q, t) =
∑
ij

bibj

〈
exp(iQ · (ri (t) − rj (0))

〉
(5)

where bi is the scattering length of atom i, and ri is the instantaneous position of atom i. By
performing the standard orientational averaging over all directions of Q, we obtain

F(Q, t) =
∑
ij

bibj

〈
sin(Q"rij (t))

Q"rij (t)

〉
(6)

where

"rij (t) = |ri (t) − rj (0)|. (7)

We calculated F(Q, t) for a range of Q, 0–7 Å−1, and for the range of times 0–20 ps. The
dynamic structure factor S(Q,E) is the time Fourier transform of F(Q, t) [50]. Because of
statistical noise it was necessary to use a Gaussian filter to smooth the data in order to highlight
the important overall features. In order to distinguish the molecular dynamics calculation of
S(Q,E) we denote it as SMDS(Q,E)

The map of the calculation of SMDS(Q,E) is shown in figure 16, together with a three-
dimensional plot. The map, which is the representation that can most easily be compared with
the experimental data of figure 15, shows a broad band of inelastic scattering at just below
4 meV, spread across the range of values of Q, which corresponds to the band of inelastic
scattering at 5 meV in the experimental data. This has the same peak, at a value of Q of
around 4.5–5 Å−1, as is seen in the experimental data. There is also a peak in the band in
SMDS(Q,E) at a value of Q of around 7 Å−1, which can also be seen on the energy-loss side
of the experimental S(Q,E) map. These peaks are highlighted in the three-dimensional plot
in figure 16. The band of scattering in SMDS(Q,E) extends to lower and higher energies, as in
the experimental data for silica glass. The map of SMDS(Q,E) does not highlight the range of
values particularly well, and the spread of values of E is better seen in the three-dimensional
plot of SMDS(Q,E) in figure 16.

The calculations of SMDS(Q,E) show that the simulation sample reproduces the Q–E
form of the inelastic scattering reasonably well. It is clear, therefore, that the density-of-states
calculations given above (figure 14) do properly represent the behaviour of real materials, and
provide confidence in our conclusion that silica glass has a greater degree of flexibility than
the crystalline α-cristobalite form of silica. In order to develop the insights further, we now
turn to calculations of S(Q,E) for silica glass using the simple split-atom model.

5.4. The dynamic structure factor S(Q, E) from the RUM and CRUSH models

The CRUSH calculations with the split-atom model give both the eigenvalues and eigen-
vectors of the dynamical matrix, from which the one-phonon inelastic scattering function can
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Figure 16. The dynamic structure factor of silica glass, obtained from our molecular dynamics
simulation (left, SMDS(Q)) and our split-atom model (right, SC(Q)), shown as intensity maps for
comparison with figure 15, and as three-dimensional plots in order to highlight some of the dynamic
range of the data.

be calculated. From a classical perspective, the one-phonon scattering function from a mode
of wave vector k and label ν at scattering vector Q is given as

Sν(Q, E) ∝ kBT

ω2
ν

∣∣∣∣∣
∑
j

e(j,k, ν) exp(iQ · Rj )

∣∣∣∣∣
2

δ(E ± h̄ω) (8)

where e(j,k, ν) is the polarization vector (mode eigenvector). The overall function S(Q, E)

is obtained by summing over all modes for a given value of Q:

S(Q, E) =
∑
ν

Sν(Q, E). (9)

In the formalism of the split-atom method, if the sample contains N SiO4 tetrahedra, there are
6N modes for any value of Q. We have performed calculations of S(Q, E) for many values
of Q, and obtained the orientational average S(Q,E) by appropriate binning over ranges of
values of Q. We denote the scattering function obtained by this procedure from the split-atom
calculations with CRUSH as SC(Q,E). The map of SC(Q,E) is shown in figure 16, together
with a three-dimensional plot.
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The first point to note about the SC(Q,E) map of figure 16 is that there is more similarity
to the experimental and molecular dynamics maps of S(Q,E) and SMDS(Q,E) respectively
than is apparent from a quick inspection. There is a band of scattering across the range of
values of Q, beginning at around 3 Å−1: this band is highlighted in the three-dimensional plot.
The CRUSH calculations are tuned (by tuning the force constant of the split-atom spring) so
that the maximum energy corresponds to the maximum range of values of energy in quartz
below the modes that purely involve Si–O stretching motions. This means that the energy
scale on the map has been calibrated against appropriate experimental values and can therefore
be compared directly with the experimental and molecular dynamics simulation results. The
band of inelastic scattering is centred on 5 meV, similarly to the experimental data, but unlike
the case for the experimental data this scattering is very spread out in energy. We also note that
there is a peak in SC(Q,E) at a value of Q of around 5–5.5 Å−1, which is highlighted in the
three-dimensional plot of figure 16. This reproduces the feature seen in both the experimental
S(Q,E) and molecular dynamics SMDS(Q,E) results.

The important point about the CRUSH SC(Q,E) map of figure 16 is indeed the wide
spread of energies. This follows from the same effects as are seen in the CRUSH density-
of-states plots, gC(ω), where we saw that the existence of the RUMs/floppy modes gave a
non-zero value of gC(ω) as ω → 0, but we noted that if more forces were added to the model,
then there is a tightening up of the density of states around a non-zero value of ω, but that there
remains an excess of low-frequency modes above the normal Debye ω2-form of g(ω). The
broad band of scattering at 5 meV is not directly associated with RUMs/floppy modes, since
these are more properly the modes in the limit ω → 0. Often the boson peak is associated
with floppy modes, but this result clearly indicates that the floppy modes are likely to be found
at lower energies. In fact, taking all the results of this paper together indicates that the floppy
modes will occur over the range of energies between zero and that of the boson peak, appearing
as a low-energy tail to the boson peak, exactly as seen in the experimental data and results
from the molecular dynamics simulations given in this paper.

6. Summary

Our study of silica glass has addressed several aspects of its low-energy dynamics, namely
the dynamics of large-amplitude tetrahedral reorientations and the dynamics of floppy modes.
We found that the structure of silica glass can naturally support large-amplitude cooperative
reorientations of SiO4 tetrahedra and identified those motions as responsible for giving rise to
two-level tunnelling states in glasses. We have demonstrated by simulating the larger structures
of silica glass that it can sustain unexpectedly frequent jump events involving groups of SiO4

tetrahedra, and, unlike in the small structure simulated previously, jump events happen that
are uncorrelated with each other in various parts of the structure. This type of motion, being
well represented statistically, can make a considerable contribution to the system’s low-energy
dynamics and thermal properties.

Comparison of experimental and calculated dynamic structure factors indicates that silica
glass is able to support low-ω modes, or rigid unit modes. We have applied the RUM model
to larger structures and calculated the vibrational densities of states of silica glass at different
temperatures. The RUM analysis, like the analysis of the low-ω spectrum of the vibrational
density of states, indicates that silica glass has the same ability to support rigid unit modes as β-
cristobalite. The possibility for the glass structure to employ elements of its high-temperature
crystalline phase can be explained by these structures having the same RUM flexibility.
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