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Abstract. The negative thermal expansion recently observed over a wide range of temperatures
in ZrW2O8 may be attributed to the existence of low-frequency phonon modes which can
propagate with no distortions of the WO4 tetrahedra and ZrO6 octahedra, the so-called ‘rigid
unit modes’. Using methods developed for the study of similar modes in silicates we have located
the surfaces of these modes in wave-vector space. The rigid-unit mode interpretation accounts
for the weak effect of the 430 K structural phase transition on the negative thermal expansion,
provided that the disordered phase does not involve formation of W2O7 and W2O9 complexes.
On the other hand, the crystal structure of the related material ZrV2O7 is cross braced by pairs of
linked tetrahedra and is therefore significantly less flexible. In this case a qualitatively different
mechanism may be responsible for the negative thermal expansion observed in ZrV2O7.

1. Introduction

Recently the existence of negative thermal expansion in ZrW2O8 has been reported to exist
over the complete range of stability of this material, even though there is a structural phase
transition in the middle of this range [1]. Although there are a number of other materials
that have negative thermal expansion along one axis, including the silicates quartz [2] and
cordierite [3], and some zeolites [4], the fact that the crystal structure of ZrW2O8 is cubic in
both phases [1] means that the negative thermal expansion is isotropic. A similar negative
thermal expansion has also been found to exist at high temperatures in the related material
ZrV2O7 [5]. The ability to synthesize materials with isotropic negative thermal expansion
at all temperatures will facilitate the development of new high-performance composite
materials with tuneable thermal properties.

Mary et al [1] attributed the negative thermal expansion in ZrW2O8 to the existence
of low-energy Zr–O–W transverse vibrations. The existence of fairly stiff WO4 and ZrO6

polyhedra linked at corners (figure 1) implies that the transverse motion of an oxygen
along a Zr–O–W linkage will necessarily cause counter-rotations of the linked WO4 and
ZrO6 polyhedra. This sort of cooperative motion, where the polyhedra can rotate without
distortion, is called a ‘rigid unit mode’ (RUM) [6–9], and will clearly have a low energy or
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Figure 1. Crystal structures of ZrW2O8 and ZrV2O7 viewed down [100], showing the ZrO6
octahedra, and the WO4 and VO4 tetrahedra, as shaded polyhedra. Both are drawn to the same
scale.

Figure 2. An array of linked triangles as found in tridymite. Rotation of one triangle causes
the local environment to be pulled inwards.

frequency (these are called ‘floppy modes’ in the literature on the low-energy excitations in
glasses). The RUM model for negative thermal expansion [8, 9] is illustrated in figure 2,
which shows a two-dimensional network of linked triangles representing the arrangement
of planes of linked tetrahedra in the tridymite and cristobalite phases of silica. It is easy
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to see from this figure that the rotation of one of the triangles in the middle of this section
will drag along with it, and inwards, its neighbouring triangles. The net effect will be a
reduction in the total area (volume) that will be proportional toθ2. In a dynamic situation
the triangles will be continuously rotating backwards and forwards due to the propagating
RUM phonons, leading to an equilibrium value〈

θ2
〉 ∝ kBT /ω2

whereω is the frequency of the rotational phonon. This will be true for each triangle, not
just one isolated triangle. Thus there will be a net volume change

1V ∝ − 〈
θ2

〉 ∝ −kBT
∑

akω
−2
k

where we now sum over all rotational phonons with wave vectork and include a weighting
factor ak for each phonon that reflects the rotational component of each RUM. Thus the
existence of the RUMs automatically provides a geometrical mechanism for a negative
thermal expansion which is not restricted to any limited range of temperatures. Moreover,
since the frequenciesωk of the RUMs will be relatively low, the weighting of the RUM
contributions to the overall thermal expansion will be relatively high. In certain cases this
negative expansion may outweigh the positive thermal expansion of the chemical bonds
(Si–O, W–O or Zr–O) in the rigid units.

Although the model described above is usually interpreted in relationship to the possible
existence of zero-frequency RUMs, studies of complex silicates have highlighted the
importance of vibrational modes where there is a minimal but finite distortion of the
structural polyhedra. These are called quasi-RUMs (QRUMs), and there can be many more
QRUMs than actual RUMs in a structure [8]. The energy associated with the distortions of
the units may be substantially smaller than the energy associated with flexing of the bond
angles at the linkages between polyhedra, so from an energetic perspective the QRUMs can
play the same role as RUMs, which may be particularly important in the consideration of
thermal expansion.

2. The existence of RUMs in ZrW2O8

Our first objective is to deduce whether any RUMs are allowed in the ZrW2O8 structure.
The standard approach [6–9] is to count the number of degrees of freedom,F , and the
number of constraints,C. With no other considerations the number of RUMs will be equal
to F − C. In ZrW2O8 the two tetrahedra and one octahedron giveF = 18 per formula
unit. The constraints are counted by noting that there are three constraint equations per
linkage. Each octahedron has six linkages and each tetrahedron three (one of the W–O
bonds is non-bridging), so when we account for the sharing of the constraints associated
with a single linkage by two rigid units, we haveC = 18 per formula unit. ThusF −C = 0,
so there may not actually be any low-frequency phonon modes allowed by the topology
of the structure. However, a missing ingredient is the crystal symmetry, which generally
decreases the actual number ofindependentconstraints [6, 7, 9]. Indeed, any framework
silicate will also haveF − C = 0 by the standard counting scheme, but symmetry ensures
that most framework silicates have RUMs with wave vectors on lines or planes in reciprocal
space, and in some cases there can be one RUM or more for each wave vector [7, 8]. Other
examples have RUMs on exotic curved surfaces in wave-vector space [10].

We have used a dynamical matrix method [6, 9, 11] to calculate the number of RUMs
in the orderedP 213 structure of ZrW2O8 [1]. In this approach the polyhedra are treated as
rigid units, and the atoms that are shared between two polyhedra are split into two halves,
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one associated with each of the two linked polyhedra. The split atoms are hindered from
separating by a harmonic force that formally resembles the force required to distort the
polyhedral units [7]. In this model the RUMs are calculated to have zero frequency. The
calculations showed that, unlike many crystalline silicates [8], there are no RUMs for wave
vectors at any special points in the Brillouin zone or along special symmetry directions.
We therefore used a search method that can detect RUMs for any wave vectors in a two-
dimensional section or three-dimensional volume of reciprocal space. The results of this
search are shown in the [100] and [111] sections of reciprocal space in figure 3(a). The
curves on these sections represent the loci of wave vectors with a RUM. The complete
three-dimensional RUM surface we have calculated is shown in figure 3(b). It should be
noted that this is the first example of such a complex surface of RUMs we have found, and
it is the more striking for the fact that it does not contain any symmetry points. Analysis
of the eigenvectors of the RUMs shows that they are equivalent to the acoustic modes in
the limit of small wave vector. In the special case of ideal tetrahedra and octahedra all
the elastic constants were calculated to be zero, which indicates some intrinsic flexibility in
the crystal volume. The eigenvectors of the RUMs quickly change from the pure acoustic

(a)

Figure 3. (a) [100] and [111] sections of reciprocal space of ZrW2O8 showing loci of the wave
vectors where RUMs exist. (b) A three-dimensional surface of the RUM wave vectors in an
octant of the Brillouin zone of ZrW2O8. The origin of reciprocal space is to the fore.
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(b)

Figure 3. Continued.

(translational) form as the wave vector moves away fromk = 0, with a rapidly increasing
rotational contribution.

The same approach also gives the QRUMs as very low-frequency solutions of the same
dynamical matrix. Although the distinction between QRUMs and all other vibrations might
be arbitrary, in practice some level of distinction can usually be made. The calculations
showed the existence of four bands of QRUMs over the whole of reciprocal space, and
that the exotic surface of RUMs discussed above actually lies within one of the bands of
QRUMs.

3. Calculations with empirical model potentials

In order to validate our RUM interpretation of the negative thermal expansion in ZrW2O8

we have performed some model calculations using atomistic simulations based on the ionic
model [12], noting that free-energy minimization techniques have previously predicted the
negative thermal expansion of several zeolites ahead of experiment [13]. Our models have
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used simple short-range potential energy functions of the form

ϕ(r) = B exp(−r/ρ) − Cr−6.

We used formal ionic charges, and a shell model for the oxygen anion. In this representation
the charge on the anion was−2.848 19 electron units. The core and shell interacted through
a harmonic potential in the core–shell separationu:

ϕ(u) = 1
2ku2.

We used the valuek = 74.92 eV Å−2. The values for the shell model, and the parameters
for the short-range O. . .O potentials, were taken from a good empirical model for SiO2 [14]
and were not adjusted at all. We also included a bond-bending potential of the form

ϕ(u) = 1
2K (θ − θ0)

2 .

In one approach we used an existing potential for Zr. . .O taken from work on ZrO2 [15], and
found parameters for the W. . .O and O–W–O potentials which best reproduce the crystal
structure. With the lack of any other experimental data for ZrW2O8 (such as elastic and
dielectric constants, or phonon frequencies) it was not possible to define a unique set of
parameters, but one set we have worked with gives reasonable values for a range of physical
properties. In a second approach we first developed the W. . .O potential parameters by
fitting to the CaWO4 scheelite structure and vibrational frequencies [16]. We then fitted
the Zr. . .O potential by optimizing against the calculated crystal structure. The parameters
for the short-range potentials in this second approach are given in table 1. The values
for the parameterK in the bond-bending potential were 0.4 and 0.5 eV for the O–Zr–O
(equilibrium angle 90◦) and O–W–O (equilibrium angle 109.47◦) bonds respectively.

Table 1. Derived interatomic potentials for ZrW2O8. O–O interactions were taken from [14].

Ion pairs B (eV) ρ (Å) C (eV Å6)

W–O 1 305.22 0.375 0.0
Zr–O 9 000 000 0.140 0.0
O–O 22 764.0 0.149 27.879

The quality of the model potential can be assessed by comparing the calculated crystal
structure with the experimental data. In table 2 we compare the cell parameters and the
bond lengths. It can be seen that the maximum discrepancy is less than 2%. Although the
elastic constants have not been measured, we have calculated the valuesC11 = 2.37 GPa,
C12 = 1.38 GPa, andC44 = 0.22 GPa. These values fulfil the stability requirements of the
cubic structure given by the elastic constants.

Table 2. Comparison of calculated and experimental crystal structures of ZrW2O8.

Observed [1] Calculated

Cell parameter (̊A) 9.160 9.099
Zr–O (Å) 3 × 2.042, 3 × 2.109 3× 2.093, 3 × 2.118
W1–O (Å) 1.707, 3 × 1.798 1.741, 3 × 1.769
W2–O (Å) 1.733, 3 × 1.782 1.721, 3 × 1.748

The thermal expansion can be calculated within the quasiharmonic approximation by
relaxing the structure at constant pressure to minimize the total free energy (lattice potential
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energy+ phonon free energy). We performed calculations over the temperature range 5–
350 K (the reported stability range of the ordered structure of ZrW2O8), and obtained a
value for the thermal expansion coefficients of−9.4 × 10−6 K−1. This agrees remarkably
well with the value of−9.5 × 10−6 K−1 extracted from the data plotted in [1]. Whilst the
extremely close agreement may be fortuitous to some extent, rather than an exact reflection
of the quality of our potential model, we nevertheless believe that, if our RUM interpretation
of the negative thermal expansion is correct, it is likely that any reasonable potential model
will give a good calculation of the negative thermal expansion. Indeed, the first model
also gave reasonably good results. To obtain more information, we calculated the mode
Grüneisen parameters [12] for a number of wave vectors. Our results showed that the
QRUMs are contributing as effectively to the negative thermal expansion as the RUMs. In
both cases, the significant rotational components and the low frequencies operate together.

4. The rigidity of the WO 4 tetrahedra and ZrO 6 octahedra

The RUM model requires that we can actually think of the WO4 tetrahedra and ZrO6
octahedra as being rigid on the relative energy scale of all other deformations of the ZrW2O8

structure. The question of the actual rigidity of the WO4 tetrahedra and ZrO6 octahedra is
best tackled by considering the frequencies of vibrational modes that involve distortions of
these units. The important modes for this purpose are those that involve bending of the O–
W–O and O–Zr–O bond angles, rather than the higher-energy W–O and Zr–O stretch modes.
The internal vibrational modes of the WO4 tetrahedra have been measured for the mineral
scheelite, CaWO4. The frequencies of the bond-bending modes are 10–13 THz [16], which
should be compared with the values of 13–20 THz for the SiO4 tetrahedra in Mg2SiO4

[17]. To determine the stiffness of the ZrO6 octahedra we have considered the cubic
perovskite BaZrO3, in which they are corner linked. Thek = 0 transverse optic phonons
were calculated from first principles using density functional theory, with pseudopotentials,
in the local density approximation. The frequencies of the modes involving deformation
of the ZrO6 octahedra were calculated as 3.4, 5.5 and 18.0 THz (the other modes are
the transverse acoustic mode and the ferroelectric mode involving the displacement of the
Ba cation). The highest-frequency mode mostly involves Zr–O stretching motions. These
frequencies should be compared with the values of 5.2, 13.4 and 26.3 THz calculated for the
SiO6 modes in MgSiO3 perovskite [18]. These comparisons show that the WO4 tetrahedra
are probably about half as stiff as SiO4 tetrahedra, and the ZrO6 octahedra are rather less
stiff in comparison with the SiO6 octahedra, but nevertheless the forces for distorting these
units are high compared to the forces involved when neighbouring units rotate against each
other.

5. The phase transition at 430 K in ZrW2O8

We now consider the issue of the phase transition at 430 K in ZrW2O8. Perhaps surprisingly,
this does not have a large effect on the thermal expansion [1]. Maryet al [1] proposed
two possible interpretations of the disordered high-temperature phase. In the first there is
some orientational disorder of the WO4 tetrahedra. This is quite possible since one of the
W–O bonds is non-bridging, so a single tetrahedron can be reflected through the plane of the
three bridging oxygens. However, the neighbouring WO4 tetrahedra along [111] and related
directions will have to undergo correlated reorientations in order to avoid an unacceptably
close O. . .O distance.
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It is not possible to perform our RUM analysis on this disordered structure, but the
important thing is that the precise orientation of the WO4 tetrahedra will not affect the
topology of the structure. In particular the local structure with pairs of WO4 tetrahedra being
reflected together will hardly change at all. We therefore envisage that the RUM spectrum
will be only slightly affected, and the mechanism for the negative thermal expansion will
remain.

Figure 4. The vibrational density of states for ZrW2O8 and ZrV2O7 calculated using our split-
atom method [6, 9, 11], showing that there are many more low-frequency modes in ZrW2O8

than in ZrV2O7. It can be seen that the density of states in ZrV2O7 follows a normal Debye
parabolic form at low frequencies, whereas the density of states in ZrW2O8 has a continuum of
states over the same low-energy range, which arise from the RUMs and QRUMs present in this
structure.

The second possible structure of the high-temperature phase proposed by Maryet al
[1] involved the formation of W2O7 and W2O9 groups. These complexes will provide
some cross-bracing of the framework of linked rigid units, which will have a significant
effect on the existence of the RUMs. Whilst we cannot model this type of disorder, we
can instead consider the crystal structure of ZrV2O7 (figure 1), which is structurally similar
with the cross-bracing arising from the V2O7 linkages. Our RUM calculations for this
material show that there are no RUMs at all in this structure, and no elastic flexibility.
This point is highlighted in figure 4, which shows the vibrational density of states (plotted
on a relative scale) for both ZrW2O8 and ZrV2O7 calculated using the split-atom method
described above [6, 9, 11]. Whilst there are many similarities between the two materials in
the vibrational density of states over a wide energy range, it is clear that there are many more
low-energy modes in ZrW2O8 than in ZrV2O7, at least within the harmonic approximation,
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as seen in the increased level of the vibrational density of states at frequencies below
0.08 on the relative scale. The vibrational density of states of ZrV2O7 shows a normal
Debye dependence (g(ω) ∝ ω2) at low frequencies, whereas in ZrW2O8 there is almost a
continuum of low-frequency modes at low frequencies. These low-energy modes are the
RUMs and QRUMs we have considered above, which are clearly of much less significance
in the ZrV2O7 structure. This comparison suggests that the additional cross-bracing of the
structure adds a significant degree of rigidity to the structure, and if the high-temperature
phase of ZrW2O8 contains such cross-bracing it is quite likely that the thermal expansion
of the two phases will be rather different.

We should note, however, that the changes in structure that occur at the phase transition
are quite large compared to the changes that occur at many structural phase transitions. In
effect they involve rebuilding the WO4 tetrahedra, which will be a high-energy process.
This suggests that the actual reorientation rate will be very slow. At the temperature of the
phase transition it is not likely that the WO4 tetrahedra will lose their rigidity.

6. Negative thermal expansion in ZrV2O7

Korthuis et al [5] attributed the negative thermal expansion in ZrV2O7 to the behaviour
of the V–O–V bonds. The space-group symmetry gives an average structure that implies
an average bond angle of 180◦, but it is likely that this corresponds to a high-energy
configuration. Thus any two linked VO4 tetrahedra would actually like to rotate relative
to each other in order to reduce the V–O–V angle. This is very like the situation inβ-
cristobalite [7–9, 19–21], where the average crystal structure suggests linear Si–O–Si bonds,
but on a local scale the SiO4 tetrahedra can rotate to give Si–O–Si angles of around 145◦.
In this case there are many RUMs available to allow the tetrahedra to rotate away from
their ‘average’ orientations without having to distort. In ZrV2O7 there are no RUMs, so any
rotations of the VO4 tetrahedra will cause the ZrO6 octahedra to distort, giving a balance
between the stiffness of the octahedra and the energy gain in bending the V–O–V bonds.
The rotations of the VO4 tetrahedra will necessarily pull the rest of the structure in, giving
a volume reduction [5]. Since these rotations, and hence volume reduction, will be larger at
higher temperatures, there will be a negative thermal expansion. This effect will be smaller
if the tetrahedra are smaller, which accounts for the observation that the P-rich members of
the ZrP2O7–ZrV2O7 series have positive thermal expansion [5].

7. Conclusion

In conclusion, we propose that the existence of low-frequency RUMs with wave vectors
on complicated three-dimensional surfaces in reciprocal space may provide a mechanism
for the negative thermal expansion observed over a wide range of temperatures in ZrW2O8.
This explanation accounts naturally for the weak effect of the phase transition at 430 K
on the negative thermal expansion. We also propose that the mechanism for the negative
thermal expansion in ZrV2O7 is qualitatively different.

The important point is that, although both ZrW2O8 and ZrV2O7 have negative thermal
expansion, the fact that the suggested mechanism for the effect in ZrV2O7 is not relevant
for ZrW2O8 implies that the mechanism in ZrW2O8 is qualitatively different, although both
will involve the volume reduction induced by rotating polyhedra. In the case of ZrW2O8

it is much more likely that it is the greater flexibility of the structure, as evidenced by our
RUM calculations, that is the crucial factor.
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