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Abstract. The temperature dependence of the critical scattering aboveTc and the order
parameter belowTc have been measured for sodium nitrate(NaNO3) using time-of flight neutron
diffraction. Sodium nitrate undergoes a structural phase transition from a low-temperature
rhombohedralR3̄c structure to a high-temperatureR3̄m structure which is characterized by
the disappearance of superlattice reflections at positions corresponding to the Z point of the
high-temperature Brillouin zone. In the critical region belowTc = 548.74± 0.47 K the order
parameter displays a crossover behaviour. For temperaturesT < TL ≈ 543 K the temperature
dependence of the order parameter can be described by a power law in the effective reduced
temperaturet∗ = |T ∗c − T |/T ∗c with β = 0.22± 0.02 and an effective critical temperature
T ∗c = 551.02± 0.54 K. However, for temperaturesTL < T < Tc the temperature dependence
of the order parameter follows a power law in the reduced temperaturet = |Tc − T |/Tc with
β = 0.41± 0.02. At temperaturesT > Tc the critical scattering takes the usual form of a
Lorentzian lineshape, and the correlation length and susceptibility can be described by power-
law equations in the reduced temperature with the exponentsν = 0.65±0.05 andγ = 1.27±0.04
respectively. There is a second Lorentzian lineshape in the diffraction pattern aboveTc which is
much wider than the Lorentzian describing the critical scattering and is essentially independent
of temperature.

1. Introduction

In this paper we report the results of a neutron diffraction study of the order–disorder
structural phase transition in sodium nitrate (NaNO3). This transition occurs at a temperature
of ∼549 K and is from a low-temperatureR3̄c crystal structure to a high-temperatureR3̄m
structure [1]. There has been a lot of the interest in this phase transition because of its
similarity to the high-temperature transition in calcite (CaCO3) [2] which is of considerable
geological importance. TheR3̄c → R3̄m symmetry change is marked in a diffraction
experiment by the disappearance of superlattice reflections at wavevectors corresponding to
the Z points of the high-temperature Brillouin zone. In a hexagonal-unit-cell description
these are(h, k, l) reflections for whichl is odd [1]. The change in symmetry is due to a
rotational disordering of the molecular nitrate groups by 60◦ flips about the trigonalc-axis.

An x-ray study of the temperature dependence of the(1̄, 2, 3) Bragg peak in sodium
nitrate by Schmahl and Salje [3] suggested that the underlying character of this phase
transition was tri-critical. A tri-critical transition is one which is on the borderline between
discontinuous (first-order) and continuous (second-order) behaviour [4]. For temperatures
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in the range 280 K to 460 K, Schmahl and Salje found that the order parameter derived from
this Bragg peak was governed by a critical exponentβ = 0.25 [3], which is the standard
tri-critical value [4]. A similar order parameter exponent was found for calcite by Dove
and Powell [2] in a neutron powder diffraction experiment. However, in the temperature
range 460 K< T < Tc (=552.4 K), Schmahl and Salje found that theβ-exponent in
sodium nitrate was reduced from the value of 0.25 toβ = 0.22± 0.01. It was speculated
[3, 5] that this change in theβ-value was associated with excitations into an incipient phase
which had a monoclinic structure. There was some theoretical support for this speculation
from computer simulation work [6] which suggested that diffuse scattering, which had been
observed in x-ray diffraction experiments [7] at wavevectors corresponding to the F points of
the high-temperature Brillouin zone, was due to these excitations. A detailed measurement
[8] of the temperature dependence of this x-ray diffuse scattering, however, showed that it
could be explained by the temperature dependence of the transverse acoustic phonons (as
measured by inelastic neutron scattering [9]) at this position. There is, however, evidence
from an inelastic neutron scattering study of calcite for the existence of these excitations
into another structure at these F-point positions in calcite [10, 11].

The initial aim of the experiments reported here was to examine the critical scattering
associated with the Z-point structural phase transition in sodium nitrate and to determine
the critical exponentsν andγ for comparison with theβ-exponent of Schmahl and Salje.
In doing this we have also measured the temperature dependence of the order parameter
close toTc.

2. Experimental details

The neutron diffraction measurements were carried out on a single crystal of sodium
nitrate using the PRISMA spectrometer at the ISIS Spallation Neutron Source, Rutherford
Appleton Laboratory, UK. In the work reported in this paper, PRISMA was operated as
a multi-detector single-crystal diffractometer with Soller collimation in front of each of
the detectors in the detector bank. This was achieved by removing the analyser crystals
from four detectors and allowing these detectors to each view the sample directly through
their individual collimators. The crystal had a volume of 1 cm3 and was oriented so that
the (H,H,0) and (0, 0, L) reciprocal-lattice vectors were in the scattering plane. It was
secured to the end of a stainless steel peg using a thin aluminium strap, and the peg was
then attached to the centre stick of a vacuum furnace. The peg and end of the centre stick
were shielded from the neutron beam using gadolinium foil. The temperature of the sample
was measured using a K-type thermocouple placed near to the sample and recorded every
30 seconds by the spectrometer control computer. The temperature stability for the duration
of each run (up to 100 minutes) was better than±0.3 K. All of the temperature changes
were performed in small steps with the furnace controls set to ensure a gentle heating of the
crystal. This was necessary because the melting point of the crystal is only∼20 K above
the transition temperature [8], so any large temperature overshoot from the furnace could
melt or at least cause irreversible damage to the crystal.

3. Experimental results

The results of our measurements on NaNO3 are given in the following two subsections.
Subsection 3.1 describes the measurements of the (1, 1, 3) superlattice reflection belowTc

and subsection 3.2 describes how the critical scattering data were collected and analysed.
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3.1. Bragg peak data (T < Tc)

Measurements were made of the temperature dependence of the (1, 1, 3) superlattice
reflection using a single detector set to a scattering angle of−60◦ with respect to the
incident neutron beam. The integrated intensity at the Bragg peak position was recorded at
a total of 27 temperatures in the range from 525.90 K to 549.14 K. At each temperature
scans were performed by rocking the crystal through a rotation angle of±1◦ about the angle
which corresponded to the (1, 1, 3) Bragg peak in 21 steps of 0.1◦. The integrated intensity
of the Bragg peak was then found by integrating the spectra over both the time of flight of
the neutrons from 5500µs to 6500µs, and the crystal rotation angle. We note that at a
scattering angle ofφ = −60◦, the (1, 1, 3) Bragg peak occurred at a flight time of 5791µs.

Figure 1. The integrated intensity of the (1, 1, 3) superlattice peak in the range 525.90 K to
549.14 K. The vertical dashed line shows the approximate position of the crossover temperature
TL described in the text. The solid line is the result of the power-law fit of the data at temperatures
T > TL to equation (5) and the short-dashed line is the result of the power-law fit of the data
at temperaturesT < TL to equation (5). See the text.

Figure 1 shows the results for the integrated intensity as a function of temperature.
It can be seen that there is distinctly different behaviour either side of a temperature
TL ∼ 543 K. Although primary extinction must always be a concern when measuring
the β-exponent from a Bragg peak intensity [12, 13], our measurements were performed
at reduced temperatures very close toTc where the Bragg peak intensity is weak, and it
is therefore unlikely that extinction could cause this change in behaviour. Another effect
which can distort a measurement of the Bragg intensity is detector saturation [13] and so
we were careful to ensure that this did not occur during these measurements. This change
in behaviour atTL is significant since, as will be discussed in sections 4.1 and 4.2, it means
that the Bragg peak intensity could not be described by a singleβ-exponent over the whole
of the temperature range shown in figure 1.
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3.2. Critical scattering data (T > Tc)

The critical scattering data were collected using four of the sixteen detectors on the PRISMA
spectrometer, set up in diffraction mode [13]. This arrangement allows four radial scans
to be made through reciprocal space for any angular setting of the crystal. If the crystal is
then rotated in small increments these groups of four radial scans can be merged together to
cover any feature as required. This technique is described more fully in references [13] and
[14]. For each temperature, a total of 15 angular settings of the crystal were used, giving
a total of 60 radial time-of-flight scans covering the region around the (1, 1, 3) position in
reciprocal space where the critical scattering occurs.

The raw time-of-flight scans were transformed using the program VCRS [15] such that
each radial scan represented a path in the wavevector transferQ covering the range from
Q = 2.2 to 3.2Å−1 in 0.01 Å−1 steps, a total of 100 divisions. This gave an overall grid
of 6000 data points covering the critical scattering. The VCRS program carries out the
relevant normalization procedures for the data [13, 15], accounting for the variation of the
incident neutron flux with energy and correcting for the different efficiencies of the four
detectors using a calibration spectrum taken from a standard vanadium incoherent scatterer.

Each of the 6000 data points in the grid is the result of a convolution of the structure
factor for the critical scattering which was centred at the (1, 1, 3) position, and the resolution
function of the PRISMA spectrometer, centred at that particular data point. The structure
factor for the critical scatteringS(Q) used in the data analysis was modelled by a Lorentzian
function [12, 17] given by

S(Q) = χ0

1+ ((QL −Q0
L)/κc)

2+ [((QH −Q0
H )

2+Q2
V )/κ

2
ab

] (1)

where QL, QH and QV respectively represent the wavevector components along the
(0, 0, L) and (H,H,0) directions in the scattering plane, and the (H̄ , H , 0) direction
vertically out of the scattering plane. This function is centred on the positionQ0

L = 3 and
Q0
H = 1, its heightχ0 is equal to the susceptibility, and there are two inverse correlation

lengthsκc and κab to allow for the possibility of different (anisotropic) behaviours along
the c∗-axis and in thea∗–b∗ plane. The convolution of this structure factor with the
resolution function and the non-linear least-squares fitting to the data were carried out
using the CRTFIT program [13]. The resolution function formalism which is used in this
program has been described in references [13], [14] and [16] and the fitting procedure in
references [13] and [14]. The collimation and neutron pulse lineshape parameters used in
calculating the values of the resolution function were the same as those given in table (A.1)
of reference [14] except for the sample mosaic spread parameter which was given by a
valuefsh = fsv = 0.18◦. It should be noted that these parameters accurately predicted the
measured widths of the (1, 1, 3) Bragg peak belowTc.

Table 1. The parameters describing the wide temperature-independent Lorentzian used in the
fitting process as described in the text.

χ0 κab κc

0.012± 0.002 0.052± 0.004 0.602± 0.050

Above Tc the critical scattering was measured at nine temperatures from 551.14 K to
558.22 K. In order to obtain satisfactory fits to the measured scattering over the whole
temperature range it was necessary to use two Lorentzian lineshapes (both of them of the
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Figure 2. Cuts through the critical scattering data along the(1, 1, L) direction at temperatures
of (a) 557.09 K and (b) 552.65 K are shown. The solid lines are the best fits to the two
Lorentzian lineshapes as described in the text. The short-dashed line is the background level
and the long-dashed line is the wide Lorentzian lineshape described in the text.

Table 2. The values for the critical exponentβ and transition temperature describing the
behaviour of the order parameter in the two temperature ranges belowTc.

Temperature Exponent Amplitude Tc (K)
range β I0

T < TL 0.22± 0.02 74.3± 0.5 551.02± 0.54
TL < T < Tc 0.41± 0.02 469± 38 548.74± 0.47

form described by equation (1)). Although both Lorentzians and the background level
were initially allowed to vary in the fitting procedure, the values returned for one of the
Lorentzians and the background level were effectively independent of temperature. This
‘temperature-independent’ Lorentzian was much wider and of lower height than the other
Lorentzian whose width and height varied significantly with temperature. We therefore
assumed that the scattering represented by the wide (temperature-independent) Lorentzian
results from non-critical fluctuations, while the scattering represented by the narrower
(temperature-dependent) Lorentzian results from the true critical scattering. Consequently
the data were fitted again with the wide Lorentzian, and background levels held fixed at
their average values from the free fits. These average values describing the wide Lorentzian
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Figure 3. Cuts through the critical scattering data along the(H,H,3) direction at temperatures
of (a) 557.09 K and (b) 552.65 K are shown. The solid lines are the best fits to the two
Lorentzian lineshapes as described in the text. The short-dashed line is the background level
and the long-dashed line is the wide Lorentzian lineshape described in the text.

are given in table 1. The resulting fits to the measured scattering had agreement factors
[14] in the range 1.07 to 1.15. In figures 2(a) and 2(b) we show cuts through the grids of
experimental data and best-fit calculated values (solid lines) along the(1, 1, L) direction at
temperatures of (a) 557.09 K and (b) 552.65 K. Figures 3(a) and 3(b) are the equivalent
cuts along the(H,H,3) direction. In these figures the background level is shown by
a short-dashed line, and the wide (temperature-independent) Lorentzian by a long-dashed
line.

4. Discussion

The conventional picture of a continuous phase transition is one in which the order parameter
(M), inverse correlation length (κ) and susceptibility (χ ) all obey power-law equations of
the form (see, for example, references [17, 18])

M = M0t
β (2)

κ = κ0t
ν (3)

χ = χ0t
−γ (4)
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wheret = |T − Tc| /Tc is the reduced temperature. On approachingTc from below the order
parameter falls smoothly to zero with a single critical exponentβ. In a neutron diffraction
experiment the Bragg peak intensity is proportional to the square of the order parameter
and so should obey the power law given by [12, 17]

I ∝ M2⇒ I = I0t
2β. (5)

On approachingTc from above, the inverse correlation length, which is the half-width of
the structure factor for the critical scattering (cf. equation (1)), should fall smoothly to zero
while the susceptibility should smoothly diverge. This should all occur with a value ofTc

which is common toI , κ andχ . The results that we have obtained from sodium nitrate,
however, do not conform precisely with this conventional picture.

We will discuss our results in terms of three temperature regions (1)T < TL, (2)
TL < T < Tc and (3)T > Tc, where the temperatureTL ≈ 543 K is indicated in figure 1
by the vertical dashed line.

4.1. TemperaturesT < TL

In this temperature range the Bragg peak intensity data were fitted to the power law given
in equation (5) with bothβ andTc as variables. The best-fit result wasβ = 0.22± 0.02
with an effective transition temperature ofT ∗c = 551.02±0.54 K which is shown in figure 1
by the dashed line. This result forβ is in good agreement with the result of Schmahl and
Salje [3] who, as noted earlier, found from an x-ray diffraction study of the temperature
dependence of the (1̄, 2, 3) Bragg peak that in the temperature range 460 K toTc = 552.4 K
the value ofβ was 0.22± 0.01.

4.2. TemperaturesTL < T < Tc

The data for the integrated intensity at the (1, 1, 3) Bragg peak position in this temperature
range were again fitted to the power law given by equation (5) withβ andTc variable. In
doing such a fit of the integrated intensity close toTc one must be careful not to include
the effect of critical scattering [12, 13]. An estimate of the contribution of the critical
scattering to the integrated intensity could be made because some of the critical scattering
style measurements (cf. section 3.2) were made at temperatures close to but belowTc. These
runs were analysed in the same way as those forT > Tc except that a resolution-limited
Gaussian peak was also added to represent the Bragg peak. From these fit results for the two
Lorentzians and the Bragg peak we could then calculate the relative contributions of Bragg
peak and critical scattering in the integrated intensity scans through the Bragg peak position.
Consequently we excluded data points above 548.20 K where the critical scattering made a
significant contribution to the integrated intensity. The best fit was given by aβ-exponent
of 0.41± 0.02 and a transition temperature ofTc = 548.74± 0.47 K. The result of this fit
is shown by the solid line in figure 1 and summarized in table 2 along with the fit results
described in section 4.1. We note that in the x-ray experiment carried out by Schmahl
and Salje [3] there were only three data points at temperatures in the rangeTL < T < Tc

(cf. figure 7 of reference [3]). There is therefore no discrepancy between our result for this
temperature range and their result; it is simply that our result corresponds to a smaller range
of reduced temperature.

The change in behaviour atTL ≈ 543 K is quite dramatic, and although it may
be obvious from the data shown in figure 1 it is worth noting that we were unable to
satisfactorily fit the data over the whole range from 525.90 K to 548.20 K with the power
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Figure 4. A log–log plot of the temperature dependence of (a)κc, (b) κab, (c) the susceptibility
χ0 and (d) the Bragg peak intensityI as a function of the reduced temperature is shown. The
solid lines are the best-fit results for fits to the power-law equations (3), (4) and (5) as described
in the text.

law given in equation (5) using single values for theβ-exponent andTc. While theβ-value
in the rangeT < TL is close to the tri-critical value, theβ-value in the rangeTL < T < Tc

differs from all of the well knownd = 3 model values, mean field (β = 0.5), Ising
(β = 0.33), XY (β = 0.35) and Heisenberg (β = 0.37) [17]. Whether our experimental
result for β is the true value in the asymptotic limit on approachingTc is, as always in
an experiment, open to question. In figure 4 we show the integrated intensity in the range
TL < T < Tc on a log–log plot against reduced temperature, indicating the range of reduced
temperatures over which we have measured. From the practical perspective, even if the
critical region belowTc is very small in NaNO3 and our results were not in the asymptotic
limit, they still provide a good empirical representation of the behaviour of NaNO3 in this
temperature range.

4.3. TemperaturesT > Tc

In this temperature range we have fitted the values for the inverse correlation lengthsκc
andκab to the power law given in equation (3) and the values for susceptibilityχ0 to that
given in equation (4). In these fits we keptTc fixed at the value of 548.74 K obtained from
the order parameter fits for consistency. The best-fit results are given in table 3 and are
shown on the log–log plot of figure 4. The values for the exponentν deduced fromκc and
κab are similar and can be averaged to give an overall value ofν = 0.65± 0.05. When
compared with the values for the various well knownd = 3 model systems, mean field
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(ν = 0.5, γ = 1.0), Ising (ν = 0.63, γ = 1.24),XY (ν = 0.67, γ = 1.32) and Heisenberg
(ν = 0.71, γ = 1.39) [17], the experimental values ofν = 0.65±0.05 andγ = 1.27±0.04
are very similar to those of the Ising model. However, we note that whileν and γ obey
within error the scaling relationγ = (2− η)ν with η small (i.e.η ∼ 0) [12, 17], the scaling
relation 2β = dν−γ which links them with theβ-value is only just satisfied within the limit
of the error bars. In order to put this in context, it is worth remembering that ford = 3
this scaling relation would not be obeyed by the critical exponents for either mean-field
or tri-critical behaviour. Hence if the value ofβ derived from the order parameter below
Tc represents some form of crossover behaviour, then it may not bea priori true that this
scaling relation should be satisfied anyway.

Apart from the exponent values, we can also compare the value for the ratio of the critical
amplitudesκ+c /κ

+
ab = 8.52± 2.29 (cf. table 3) to the ratio of the inverse correlation lengths

for the wide (temperature-independent) Lorentzianκc/κab = 11.58±1.31 (cf. table 1). These
are similar values, indicating that the two Lorentzians are subject to the same underlying
asymmetry of the interatomic potential.

Table 3. The results for the critical exponentsνc, νab andγ obtained from fitting the values for
κc, κab andχ0 at temperaturesT > Tc.

Exponent Amplitude

χ0 γ = 1.27± 0.04 0.003± 0.001
κab νab = 0.67± 0.04 0.48± 0.09
κc νc = 0.63± 0.04 4.09± 0.79

5. Summary

The aim of the work presented in this paper was to examine the nature of the phase
transition that occurs in sodium nitrate through the determination of the critical exponents
ν, γ and β. Previous work by Schmahl and Salje [3] had shown that at a temperature
T ∼ 460 K (reduced temperaturet ∼ 0.17) theβ-exponent describing the order parameter
crossed over from a tri-critical value ofβ = 0.25 to a value ofβ = 0.22± 0.01. We
have examined the behaviour of the order parameter over a temperature range from 520 K
up to Tc = 548.75± 0.47 K and obtained values for theβ-exponent in this range. Away
from the transition, for temperaturesT < TL our value ofβ = 0.22± 0.02 with an
effective transition temperatureT ∗c = 551± 0.54 K agrees well with the value of Schmahl
and Salje [3]. However, for temperaturesTL < T < Tc there is a distinct change in
behaviour with a crossover to an exponent ofβ = 0.41±0.02 with a transition temperature
Tc = 548.75± 0.47 K.

At temperatures aboveTc the scattering lineshape consists of two Lorentzian
components, one of which is an effectively temperature-independent one. The other,
temperature-dependent, component has been interpreted as being the critical scattering,
and the temperature-independent component as being due to non-critical fluctuations. The
critical scattering component has been analysed to yield values for the inverse correlation
length and susceptibility, which in turn have been analysed to obtain the critical exponents
ν = 0.65± 0.05 andγ = 1.27± 0.04 respectively.
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