
J. Phys.: Condens. Matter8 (1996) 7073–7084. Printed in the UK

A single-crystal neutron scattering study of lattice melting
in ferroelastic Na2CO3

M J Harris†, M T Dove‡ and K W Godfrey§
† ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX, UK
‡ Mineral Physics Group, Department of Earth Sciences, University of Cambridge, Downing
Street, Cambridge CB2 3EQ, UK
§ Oxford Physics, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, UK

Received 1 June 1996

Abstract. We present the results of an extensive single-crystal neutron scattering study of
the ferroelastic phase transition in Na2CO3. This material has previously been demonstrated
to undergo a continuous loss of long-range order at its ferroelastic transition, which is the
phenomenon known as lattice melting. We show that our data are consistent with a special
form of lattice melting where the long-range order appears to be destroyed in a two-dimensional
sense, but is preserved in the third dimension.

1. Introduction

Lattice melting is an unusual effect that occurs at continuous ferroelastic phase transitions
where the elastic instability is two-dimensional. In most ferroelastic transitions, the
instability is one dimensional, so that atTc, the speed of sound vanishes for propagation
along a certain crystallographic direction. The order-parameter dimensionality,m, for
these transitions is then equal to 1. In the two-dimensional case (m = 2), the speed of
sound vanishes for propagation in sets of crystallographicplanes. Hence, these sorts of
ferroelastic phase transitions are driven by transverse acoustic phonons that soften over
planes of wavevectors. Renormalization-group theoretical studies [1, 2] indicate that the
mean-squared atomic displacements are expected to diverge at such a transition, much as
they do in a conventional liquid–solid transition. However, unlike the liquid–solid transition,
in the m = 2 transition they diverge continuously, and only along one crystallographic
direction, which is the direction of the soft phonon eigenvectors. The end result is still that
the crystalline long-range order is destroyed completely atTc, but unlike a conventional
melting transition it recovers after the transition is passed. This is the process known as
lattice melting [3].

Mayer and Cowley [4] calculated the scattering cross section at them = 2 transition,
and showed that the loss of long-range order atTc destroys the usual delta-function Bragg
scattering and replaces it with diffuse scattering centred on the Bragg positions. This
scattering has a finite intrinsic width and is described by a power-law singularity similar in
form to that seen in two-dimensional systems such as smectic liquid crystals [5], where the
long-range order is also suppressed completely by acoustic-mode fluctuations.

Despite a great deal of effort, until very recently this phenomenon had never been
observed unambiguously, since there appeared to be no material that has a continuous
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m = 2 phase transition. However, recent neutron powder diffraction work has shown that
the ferroelastic transition at∼ 760 K in Na2CO3 has the correct credentials and the dramatic
effect of ideal lattice melting was observed for the first time [6]. The symmetry change at
this phase transition isP 63/mmc − C2/m, and the order parameter is theε5 shear strain.
Detailed structure refinements [7] show that the order parameter goes to zero smoothly at
Tc. This is consistent with the transition being second order, and therefore continuous.

The crystal structure of the hexagonal phase of Na2CO3 contains one-dimensional chains
of NaO6 face-sharing octahedra lying parallel to thec-axis. These chains are linked to each
other laterally by carbonate groups that lie parallel to the (0 0 1) planes [3, 7]. One can
imagine that the restoring force for shear motions of the chains against each other (with
the carbonate groups acting as ‘hinges’) is relatively small, and indeed, this is how the
ferroelastic transition is accomplished: as the crystal is cooled towardsTc the restoring
force becomes smaller and smaller, and the shear fluctuations larger in amplitude, until
eventually the critical point is reached. Below this temperature, the shear fluctuations
freeze in, to produce the static monoclinic strain. These shear fluctuations are the critical
acoustic modes, which are transverse acoustic modes with wavevectors in thea∗–b∗ plane,
and with eigenvectors parallel to thec-axis. Hence, the process of lattice melting is largely
a divergence of the mean-squared atomic displacements along thec-axis.

A preliminary single-crystal neutron diffraction study of the ferroelastic phase transition
has been published recently, providing further confirmation of this unusual effect [8]. In this
paper, we provide a detailed analysis and discussion of the single-crystal neutron scattering
data and show that they are fully consistent with the theoretical predictions.

2. Experimental details

The crystals for this work were grown by the Czochralski technique. This took place inside
a stainless steel chamber filled with nitrogen gas to a pressure of 1.1 bar, using a 6 kW
radio frequency generator induction heater. A 50 cc platinum crucible was charged with
approximately 55 g of sodium carbonate powder (Johnson Matthey ‘ultrapure’) over a period
of four pre-meltings in the Czochralski chamber, out-gassing each time to 7× 10−7 torr.
The material was melted (where the melting point is at 1124 K) at approximately 30% of
the generator’s full power.

With small adjustments in the generator power, initial nucleation was obtained on a
cooled platinum wire dipped into the melt. With the power being constantly monitored and
adjusted to maintain a good boule shape, a transparent and colourless crystal approximately
20 mm in length and about 15 mm diameter was pulled at 20 mm h−1, while being rotated
at 60 rpm. When the required size of boule was obtained it was removed from the surface of
the melt and the crucible was then cooled to room temperature at approximately 100 K h−1.
On cooling through the ferroelastic and incommensurate phase transitions [9], the crystal
became opaque and milky in appearance. A typical crystal has a mass of approximately
6 g.

Neutron scattering experiments were performed using the PRISMA time-of-flight
spectrometer at the ISIS neutron facility (Rutherford Appleton Laboratory). Temperature
control was provided by a water-cooled furnace with vanadium windows. The crystal was
held in place inside the furnace by a tantalum strap attached to the furnace centre-stick. As
much of the strap and centre-stick as possible was shielded from the neutron beam with
gadolinium foil. Rocking curves were performed at room temperature to check the crystal
quality, and the mosaic spread of the crystal was found to be about 0.4◦.

In its diffraction mode, PRISMA allows for a number of simultaneous radial scans in
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reciprocal space to be performed with just a single setting of the crystal and instrument.
By measuring several crystal settings in turn, one may build up rapidly a data set which
consists of a two-dimensional mesh of points. Each radial scan in a setting includes an
integration over all inelastic processes up to a certain energy, which is a function of the
particular wavevector-transfer along each scan. The crystal of Na2CO3 was oriented so
that the scattering plane was thea∗–c∗ plane, and radial scans were performed over the
(0 0 2), (0 0 4), (0 0 6) and (0 0 8) reflections. The energy integration at these positions is
performed over a range of about 2.5, 10, 22 and 41 THz, respectively. This is more than
adequate to integrate over all of the critical acoustic modes close toTc, and so we are
confident that the line profiles of each peak contain all of the scattering from the critical
modes.

We have also performed a preliminary study of the temperature dependence of the
transverse and longitudinal acoustic phonon branches around the (0 0 2) peak, using
PRISMA operating in its inelastic mode. Twelve detector–analyser arms were used,
each with an analysing energy of 4.35 THz, which resulted in a resolution width of
about 0.24 THz (FWHM) at zero energy transfer. Since PRISMA uses the time-of-
flight principle, each detector–analyser arm measures an oblique trajectory through (Q,
E)-space. We were interested in obtaining the dispersions of the transverse acoustic
mode in thea∗–b∗ plane and the longitudinal acoustic mode in thec∗ direction as a
function of temperature. Rather than performing a series of constant-Q scans along
the symmetry directions, we configured the spectrometer so that we could make use of
all 12 inelastic detectors simultaneously, by performing scans that intersected with the
acoustic dispersion surface at a series of arbitrary points around the (0 0 2) position. The
observed phonon peaks then gave us a set of (Q, E) points which we fitted with a
simple harmonic model for the whole dispersion surface. This enabled us to determine
the temperature dependences of theC33 and C44 elastic constants, which are presented in
section 4.

In this experiment, we found thatTc was at a measured sample temperature of 760.6 K,
rather than 755 K, as in the powder experiment. This is due to the fact that it is rather
difficult to measure the temperature accurately in a neutron scattering experiment, because
of the relative size of the sample and the necessity to keep the thermocouple as far out of
the neutron beam as is practical. Hence, while measurements of the relative temperature in
a particular experiment are generally reliable, discrepancies often arise when comparisons
of the results from two different experiments are made.

3. Neutron diffraction results

The effect of lattice melting in Na2CO3 is to replace the sharp Bragg peaks by
broad scattering profiles with a cusp-shaped distribution (a power-law singularity in the
wavevector, to be precise) perpendicular to thec∗ direction, as we discuss in section 3.1.

In figure 1, we show the scattering at the (0 0 4) position as contour plots for three
different sample temperatures. The profile of the scattering measured at temperatures far
from the transition temperature is dominated by the experimental resolution function. This
is illustrated in the first plot, for a sample temperature of 893 K. Note that the tail extending
to lower wavevectors along [0 0̀] is due to the asymmetric distribution of neutron energies
in the incident neutron pulse, and so is contained in the experimental resolution function. As
the sample is cooled towardsTc, strong diffuse scattering appears extending outwards from
the main diffraction peak in thea∗–b∗ plane of wavevectors (i.e. for [h 0 4] wavevectors
in the plot). This is due to the softening transverse acoustic mode and at the transition
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Figure 1. Contour plots of the neutron scattering from Na2CO3 around the (0 0 4) position at (a)
temperatures well above (893 K), (b) just above (761 K) and (c) below (756 K) the ferroelastic
transition. The lattice melting is evident as significant diffuse scattering perpendicular to the
c∗-axis.

temperature the scattering takes on a cusp-shaped distribution. This is apparent from the
data taken at a sample temperature of 761 K, which is 0.4 K aboveTc. In the third plot in
figure 1, we show the scattering observed at 4.6 K below the transition temperature. This is
now in the monoclinic phase, and the (0 0 4) peak has split due to ferroelastic twinning of the
crystal. There is still significant diffuse scattering in thea∗–b∗ plane, but the cusp-shaped
profiles of the diffraction peaks have disappeared, and the scattering is again dominated by
sharp, resolution-limited Bragg scattering. Note that no diffuse scattering is observed to
appear along the [0 0̀] direction at any temperature.

3.1. The scattering cross section

The scattering cross section for a crystal at the critical temperature of anm = 2 ferroelastic
transition was investigated by Mayer and Cowley [4] and obtained analytically. The starting
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point is the energy-integrated scattering function for a crystal with atomsi, j :

S(Q) =
∑
i,j

bibj exp(iQ · [ri − rj ]) exp(−F) (1)

with

F = 1
2

〈
(Q · [ui − uj ])2

〉
(2)

wherebi is the form factor for atomi, ri gives its equilibrium position,ui is the displacement
due to the phonon modes,Q is the wavevector transfer and the brackets〈· · ·〉 indicate the
thermal average. The usual procedure for calculating the scattering cross section is to expand
the exponent,F , for the second exponential as a power series in the small displacementsui .
However, for the continuousm = 2 transition this approach fails because the displacements
corresponding to the soft modes diverge in amplitude atTc. These soft modes are transverse
acoustic modes that have eigenvectors parallel to the [0 0 1] direction and wavevectors in the
a∗–b∗ plane (which hereafter we shall refer to as the ‘critical plane’). Mayer and Cowley
[4] overcame the problem of how to calculate the scattering law when some displacements
are divergent by separatingF into a critical and a non-critical part. The non-critical part
may be obtained with the usual expansion, but the critical part requires an integration over
the critical acoustic modes with propagation directions in and close to the critical plane, up
to a cut-off wavevector,3. The phonon frequency,ω, of the critical branch may be written
within mean-field theory as

ω2 = q2
⊥

(
v2 + λq2

⊥
) + wq2

‖ (3)

whereq‖ andq⊥ are the wavevectors parallel and perpendicular to thec∗ axis,v is the soft
velocity of sound, andλ andw are related to the non-soft elastic constants. Note that we
defineq‖ andq⊥ in the opposite sense from Mayer and Cowley. At the critical temperature,
it is possible to obtain an analytical solution for the scattering law, and close to a reciprocal
lattice vectorG, this is

S(G + q⊥) ∼ q−2α
⊥ (4)

and

S(G + q‖) ∼ q−α
‖ . (5)

The exponentα is given as

α = 2 − a(G) (6)

where

a(G) = kBT G2
‖

4πρ (wλ)1/2 . (7)

kB is Boltzmann’s constant,T is the temperature,G‖ is the component of the wavevector
transfer alongc∗ andρ is the density.

Dove et al [10] have performed lattice dynamics calculations to investigate whether
the driving force behind the ferroelastic transition in Na2CO3 is an optic or an acoustic
mode instability. In the case of an optic mode instability, the transverse acoustic mode is
coupled to a softening optic mode which drives the transition. In the acoustic mode case,
the transverse acoustic mode is soft of its own accord. Doveet al [10] showed that in
the case of Na2CO3, a straightforward acoustic instability occurs, but over a plane so that
the C44 elastic constant softens to zero overall wavevectors in thea∗–b∗ plane. The end
result is that the dispersion parameterλ is very close to zero. In the following discussion,
we assume thatλ is indeed zero for Na2CO3 and we have analysed our diffraction data
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accordingly. We present further justification for this approach later. In the instance that
λ ∼ 0, Mayer and Cowley show that the scattering function is modified to

S(G + q) ∼ δ(q‖)q−α
⊥ (8)

where theδ
(
q‖

)
is the Dirac delta function in the non-critical wavevectorq‖. Hence, the

scattering is sharp perpendicular to the plane of soft wavevectors, but has the power-law
form within it, as we have observed experimentally for Na2CO3 within the limits of the
experimental resolution.

These results show that the scattering from athree-dimensionalcrystal undergoing
a continuousm = 2 ferroelastic transition takes the form of a power-law singularity,
rather than the delta function characteristic of Bragg scattering resulting from long-range
crystallographic order. This scattering law is identical with the corresponding expression
for the scattering fromtwo-dimensional systemssuch as a smectic liquid crystal [5] and a
two-dimensional crystal below the Kosterlitz–Thouless transition [11].

However, at temperatures above and belowTc, there is no analytical solution for the
scattering function and it must be calculated numerically, which was the approach that we
have adopted in analysing our neutron diffraction data. Continuing with the treatment of
Mayer and Cowley [4], the argument of the second exponential in (1) is

F = a(G)

∫ 3

0
dk

1 − J0(ku⊥)(
κ2 + k2

)1/2 (9)

whereJ0(ku⊥) is the zeroth-order Bessel function with an argument which is the product
of a wavevector and a displacement perpendicular to the eigenvector of the critical mode.
κ is the so-called inverse correlation length, which is defined as

κ = vλ−1/2. (10)

κ is thus proportional toC1/2
44 , the square root of the soft elastic constant, and it controls

the temperature dependence of the scattering function.

3.2. Analysis of the neutron diffraction data

In the data analysis procedure, we concentrated on the scattering at (0 0 4). This is because
of the wavevector dependence of the exponentα in the scattering law: for the (0 0 2)
position we found that the exponent is very close to that expected for diffuse scattering
from non-critical acoustic modes (which follows the approximate lawS(q) ∼ q−2), while
for the (0 0 6) position the exponent is so close to zero that the diffuse scattering atTc is
spread out over a large portion of reciprocal space and its intensity is rather weak. The
scattering at (0 0 4) on the other hand is reasonably strong and has a value ofα significantly
less than 2, so that it is favourable for investigating the effects of lattice melting.

In figure 2 we show cuts through the data sets alongq⊥ through the (0 0 4) peak for
three different temperatures. For the highest temperature shown (893 K) the scattering
consists predominantly of sharp Bragg scattering, with weak wings of diffuse scattering due
to the softening transverse acoustic modes. As the sample is cooled towardsTc, the Bragg
scattering weakens while the diffuse scattering from the acoustic modes alongq⊥ becomes
stronger. At 761 K the Bragg scattering is entirely replaced by diffuse scattering with a
cusp-shaped distribution, reflecting the power-law singularity in (8). BelowTc, the scattering
sharpens up again as the diffuse scattering dies away, to be replaced by Bragg scattering.
This process reveals the onset of continuous lattice melting at the phase transition, with
the recovery of long-range order once the transition is passed. In figure 3 we show the
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Figure 2. Transverse (h 0 4) cuts for sample temperatures 893, 773 and 761 K, withTc =
760.6(3) K. The curves are the results of fits to the data of the Mayer–Cowley scattering
function, convoluted with the experimental resolution function. The 761 K data have a clear
cusp-shaped distribution, due to the power-law singularity in the scattering law. The 893 K data
show strong Bragg scattering with weak wings of diffuse scattering from the transverse acoustic
modes. The data taken with a sample temperature of 773 K show an intermediate situation.

scattering along theq‖ direction through the (0 0 4) position. Note that the asymmetric peak
shape for the scattering along this direction arises from the fact that PRISMA utilizes a white
incident neutron beam which has a strongly asymmetric distribution of neutron energies. No
significant diffuse scattering or broadening beyond the limit of the experimental resolution
function is observed at any temperature, supporting our assumption thatλ ' 0 for Na2CO3,
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so that the scattering at the transition point is described by (8).

Figure 3. Longitudinal (0 0̀ ) cuts through the (0 0 4) position for the sample temperatures 893,
773 and 761 K. The curves are the results of fits to the data simply of the experimental resolution
function. Within the experimental resolution, the scattering law appears to be delta-function-like
at these three temperatures.

The curves in figure 2 are fits to the data of the Mayer–Cowley scattering function,
expression (1), convoluted with the experimental resolution function. The free parameters
in each fit were a flat background, a centre (to allow for slight misalignment errors), a
scale factor, andκ, the Mayer–Cowley correlation length. In this calculation the integral
over the critical modes, i.e.F in equation (9), is performed from 0 to a cut-off wavevector
3. It was found that as3 was increased, the wings of diffuse scattering at large values
of q⊥ become stronger. This is because3 effectively controls the contribution of the
acoustic modes to the scattering in the wings. We varied3 until the calculation predicted
negligible diffuse scattering for values ofq⊥ beyond 0.3, consistent with our experimental
observations, and then it was held fixed in all fits to the data. We found that the value of
3 that gives the best agreement with the experimental data is 0.27 Å

−1
. This value shows
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that the main contribution to the scattering comes from the transverse acoustic modes in the
region between the zone centre and out to about half the distance to the zone boundary.

Also required was the value of the parametera(G), which controls the exponent of
the power law alongq⊥ (expressions (6) and (7)). This was determined from the data set
obtained closest to the transition temperature (which was the 761 K data set), because of
the dominance of the power-law diffuse scattering close to the transition.a was then kept
fixed in all subsequent fits. We found that the value ofa for the (0 0 4) peak is 0.78(2) at
Tc. Using equation (7), this predicts that the values ofa for the (0 0 2) and (0 0 6) peaks
are 0.20 and 1.76, respectively. These values were found to be in excellent agreement with
the observed scattering at these positions. For the (0 0 8) position, equation (7) predicts that
a > 2, which means that there is no longer a power-law singularity at this point, and the
scattering is finite for allq⊥, like a liquid structure factor. The experimental observations
are in agreement with this, since there is no trace of any significant scattering at the (0 0 8)
position above the level of the background.

Figure 4. A transverse cut through the scattering at the (0 0 6) position at a sample temperature
of 762 K. The curve is a fit to the data of the Mayer–Cowley scattering function, with parameters
obtained from the analysis of the (0 0 4) scattering.

The fits to the observed data of the Mayer–Cowley model are excellent. As stated
above, we concentrated on the scattering at the (0 0 4) position, but found that the model
also gives a very good description of the scattering at the (0 0 2) and (0 0 6) positions. For
instance, in figure 4 we show the scattering at the (0 0 6) position at a temperature of 762 K,
together with a fit of the Mayer–Cowley function. The parameters used were obtained from
the analysis of the (0 0 4) data, so thatκ = 0.10 anda = 1.76. These were then kept fixed
in the fit, and the only parameters that were allowed to vary were a flat background, a centre
and a scale factor. The agreement factor obtained wasχ2 = 0.95. The fact that we obtain
such good agreements for the (0 0 2) and (0 0 6) scattering, as well as for that at (0 0 4)
indicates that our assumption thatλ ∼ 0 is correct, and that the scattering at the transition
may be approximated well by equation (8). The alternative more general scattering law
(equation (4)) is wholly inappropriate. If we had used this law, we would have found that
the exponentα = 0.61 for the (0 0 4) peak, so thata = 1.39. Applying equation (7), we
would then find that for the (0 0 6) position,a = 3.13. However, this value ofa cannot be
physically correct, because it means that the exponentα = −1.13, and there would then be
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no divergence in the scattering at the (0 0 6) position. There must be a divergence, since
we observe a peak in the scattering at this position for all temperatures. This strengthens
our claims that the scattering law withλ ∼ 0 (i.e. equation (8)) is appropriate.

Figure 5. Temperature dependence of the inverse correlation length,κ. Note that the reduced
temperatureτ = (T − Tc)/Tc. The curve is a fit of the expected temperature dependence ofκ

(equation (11)).

In figure 5, we show the values ofκ obtained from the fits. Sinceκ is essentially
the inverse correlation length for the low-temperature phase, it should have the following
temperature dependence:

κ ∝ τ 1/2 |ln τ |−1/6 (11)

with the reduced temperatureτ = (T − Tc)/Tc. The logarithmic correction arises from the
fact that the transition belongs to them = 2 universality class [1, 2]. The curve in figure 5
shows a fit of this temperature dependence to the values ofκ. The agreement factor for the
fit was χ2 = 1.1 and the transition temperature,Tc, was obtained as 760.6(3) K. We note
that an attempt to fit the data without the logarithmic correction in the above expression
for κ gives a somewhat poorer agreement factor, thus providing further support for the
argument that logarithmic corrections to the critical properties must be made form = 2
transitions.

4. Inelastic neutron scattering results

The above analysis of the single-crystal neutron diffraction data hinges on whether our
assumption thatλ ' 0 is valid or not. We have already discussed various justifications
for this assumption. We will now present preliminary measurements of the temperature
dependences of theC33 andC44 elastic constants, which add further weight to our argument.

In figure 6, we show the temperature dependences of theC33 andC44 elastic constants.
C33 softens gently as the temperature is increased, reflecting the non-critical thermal
expansion of the crystal. However,C44 is clearly the critical elastic constant, because
it softens towards zero on cooling towardsTc. Unfortunately, apart from the highest-
temperature data point, the fitted values forC44 are slightly underestimated because of the
difficulty in fitting to a very small frequency in the presence of much larger frequencies; the
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Figure 6. Temperature dependences of theC33 andC44 elastic constants in Na2CO3, as obtained
by inelastic neutron scattering measurements. The elastic constants are displayed in units of

THz2 Å
2
. The lines are guides to the eye. The line forC44 is chosen to pass through the

highest-temperature data point andTc.

highest-temperature value ofC44 is reliable, because we have inelastic data that is almost
from the pure transverse acoustic mode.

Using the behaviour of theC33 elastic constant, we have obtained a value for the
dispersion parameterw (equation (3)) at the transition. We can then calculateλ, using
the parametera that we have determined from the diffraction measurements (equation (7)).
If we assume thatλ is small, so that equation (8) holds for describing the diffraction
profile at the transition, then we find thatλ = 26.8 THz2 Å

4
. However, if we say that

the diffraction profile in the plane of critical wavevectors is given by the more general
scattering law (equation (4)), we find thatλ = 8.5 THz2 Å

4
. These two values are of the

same order. The question is, how small doesλ have to be before we can assume that
λ ∼ 0, so that equation (8) holds? Mayer and Cowley [4] useλ to define a non-critical
length,d = (λ/w)1/2, which is essentially the length scale of the correlations in the plane
perpendicular to the direction of the diverging mean-squared atomic displacements. This
length scale is then about 1.3̊A. However,d contains a factor of 2π in the denominator,
so converting it to a real distance gives us the length scale 8Å. Hence, the correlations
perpendicular to the diverging displacements are of the order of only a single unit cell.
This is to be expected, since the fluctuations that occur at the transition point are large-
scale uncorrelated shears of the chains of octahedra against each other along thec-axis.
Our non-critical length scale is then effectively the diameter of a single chain, which is
approximately what we find. We therefore feel confident that our treatment of the Na2CO3

diffraction data, where we assumed thatλ ∼ 0, is valid.

5. Conclusions

We have presented results from combined single-crystal neutron diffraction and inelastic
neutron scattering experiments on the ferroelastic phase transition in Na2CO3. These results
have allowed us to test rigorously the theoretical predictions of Mayer and Cowley [4]. We
find an excellent agreement between our observations and these predictions, indicating that
complete lattice melting occurs in Na2CO3. This involves a continuous divergence of the
mean-squared atomic displacements at the ferroelastic transition, so that the crystalline long-
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range order is destroyed and Bragg scattering is replaced by diffuse scattering with a finite
intrinsic width. We find that Na2CO3 approximates to a special case of the Mayer–Cowley
theory where, rather than softening only around the zone centre, the critical transverse
acoustic branch softens for all wavevectors in the critical plane. This means that the long-
range order is only destroyed in a two-dimensional sense and is preserved parallel to the
crystallographicc-axis.
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