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Abstract
The reverse Monte Carlo (RMC) modelling method, although initially
developed for interpreting structural data from liquids and amorphous materials,
has been extensively applied to similar data from crystalline systems. This
has been especially beneficial for materials which display a large amount of
disorder. The work in this area will be briefly reviewed here, including a
summary of the range of crystalline materials which have been studied using
RMC modelling. Recent developments made specifically to improve the RMC
modelling method for crystalline systems will also be described.

1. Introduction

The reverse Monte Carlo (RMC) computer modelling method is an inherently straightforward
procedure. Atoms within a three-dimensional configuration are chosen randomly and moved
randomly one at a time; after each move, calculated structural functions are compared
with equivalent experimentally determined functions. If the move improves the agreement,
then the move is accepted; if it worsens, then the move is accepted with a reduced
probability. Atoms continue to be moved in this manner until the agreement with the data
is minimized and subsequent moves only cause the agreement factor to deviate by small
amounts around the minimum. The resulting configuration of atoms may then be considered
as a representative three-dimensional structure consistent with the experimental structural data.
Further information relating to the general RMC method may be found in other articles in this
issue, or recent reviews on the subject (for example [1, 2]).

It is easy to see why such a modelling scheme is attractive to those researchers investigating
liquid and amorphous structures. Total scattering structure factors and radial distribution
functions from neutron or x-ray scattering experiments may be used as the experimental data
and the method provides a mechanism for ‘fitting’ a structural model to these data in a way
which is loosely similar to the familiar Rietveld refinement method for powder diffraction data.
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It is also one of the very few practical methods for producing three-dimensional models of
liquid and amorphous structures without recourse to simulations using interatomic potentials.
It is therefore natural that the RMC method was developed with these systems in mind;
forerunners of the method were developed for selenium-based glasses [3, 4] and early RMC
papers considered liquid argon [5] and silica glass [6] amongst other systems.

In contrast, it is less obvious why the RMC method might be able to make a significant
contribution to the understanding of the structures of crystalline materials. On the one hand,
extremely effective methods already exist for determining crystal structures from diffraction
data (including the Rietveld method mentioned above) and, on the other hand, the feature
of the RMC method of emphasizing disorder in a structure is likely to be inappropriate for
ordered crystalline materials. However, and perhaps surprisingly, some of the earliest RMC
publications concerned the behaviour of crystalline AgBr [7–9]. These papers described total
scattering studies of powdered samples of AgBr as a function of temperature very close to the
melting temperature. The aim was to determine whether it was possible to use these data to
identify structural characteristics which may be associated with either the onset of superionic
behaviour or with the proposed pre-melting disorder. The data were analysed using RMC
modelling and it was found that a small, but increasing proportion of silver ions began to
occupy the interstitial tetrahedral sites in the rock salt structure as the temperature was raised.
In addition, the models could be used to identify the mechanism for cation mobility and to
determine the anisotropic shape of the cation distributions. It was surmised that the disorder
would lead to a ‘true’ superionic state in AgBr, although this is interrupted by the melting
transition. This conclusion was subsequently supported by later structural work on the high-
pressure rock salt phase of AgI which does undergo a gradual transition to a superionic phase
with the same mechanism as AgBr [10].

2. Disorder in crystals

In the context of this paper, the significance of the work on AgBr (described above) was that
the authors identified a circumstance where the RMC method provided additional information
which could not be obtained unambiguously from ‘traditional’ crystallographic structure
determination. In this case, characterizing the structural disorder associated with ionic
conduction was essential in order to understand the physical processes in AgBr close to melting.
In more general terms, it was the local instantaneous deviations from the time-average long-
range structure which were important.

Rietveld refinement, and other structure refinement methods which rely solely on the Bragg
peak positions and intensities, produce an average structural model. This gives information
about space group symmetry, unit cell metrics and average atom positions within the unit
cell. These are of fundamental importance for all structural investigations. However, when
a material displays deviations from this average structure, whether as a result of thermal
vibrations, substitutional disorder, short-range distortions or something else, an average
structural model has limited flexibility to accommodate these local effects. This is because each
local region within the structure no longer accurately mimics the average: the deviations are
now significant. The average structure is able to invoke large anisotropic atomic displacement
parameters and an increased number of partially occupied sites to reflect these increased local
deviations, but the average structural model is, by definition, unable to characterize correlated
structural deviations.

Another effect of structural disorder in crystalline materials is the observation of an
increase in diffuse scattering intensity in diffraction experiments. Diffuse scattering can be
analysed in many ways, depending on the type of disorder responsible for the scattering and
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which approximations can be justified [11]. For situations where the disorder is substantial
and complex, and where the scattering data are limited (many analyses rely on single-crystal
diffuse scattering data), molecular dynamics computer simulation has had a major impact,
particularly for materials where the disorder is dynamic in nature. The RMC modelling
method also has a role to play in this area, insofar as it can access structural detail that is
not straightforward to extract using other methods. This is because it typically relies on total
scattering from powdered samples, it is completely general and it is not dependent on potential
functions. Total scattering (i.e. the Bragg and diffuse scattering contributions in a diffraction
experiment) is the routine measurement for liquid and amorphous samples. Once the data
have been rigorously corrected, they may be Fourier transformed to produce real space pair
correlation functions [12]. These functions correspond to a ‘snapshot’ of the structure and as
such provide complementary information to the time-average structure obtained from Bragg
scattering alone. The implications of this for interpreting crystalline disorder will be developed
further in the following sections.

It should also be pointed out that there is a growing interest in the effect of structural
disorder on the physical properties of crystalline materials and in developing tools for
understanding and characterizing this disorder. Examples of this might be high-temperature
superconductors (oxygen disorder), CMR materials (local dynamic distortions), zeolites (host–
guest systems), NTE materials (anomalous thermal vibrations) and C60 and related compounds
(molecular disorder). It is therefore a highly topical area of scientific study.

3. RMC method developments for crystalline systems

There have been two major developments of the RMC method to improve its effectiveness
for crystalline systems. The first, resulting in the program RMCPow [13], calculates the
scattering functions in three dimensions and then performs a powder average to compare with
total scattering data. The second, producing the program RMCProfile [14], calculates the total
scattering via real space radial distribution functions but with the addition of a calculation of the
Bragg peak profile function. The latter RMCProfile approach will be considered first, since
it retains elements of the ‘standard’ RMC methodology, and the development in RMCPow
will lead naturally from the discussion of RMCProfile. However, before discussing either
approach, it is important to consider the total scattering data themselves.

3.1. Total scattering data from powders

The long-range ordered nature of crystals means that it is even more important to measure
total scattering data to high Q with good instrumental resolution. Unlike total scattering from
many liquids, the scattering often does not become flat and featureless until very high values
of momentum transfer, Q, are reached, because the local structure may be extremely well
defined. Also, at low temperatures, the Bragg peak intensities may not be suppressed until
very high Q is reached by the Debye–Waller factors. Equally, the experimental resolution is
important because Bragg peak widths are often resolution limited and a good separation of
peaks improves the structural models.

The GEM powder neutron diffractometer at ISIS [15] balances effective, rapid powder
diffraction measurements with accurate total scattering data obtained from liquids and
amorphous materials. It therefore has all the attributes required for making total scattering
measurements of crystalline materials. The instrument receives pulses of neutrons from the
cold methane moderator at ISIS that scatter from the sample into a wide solid angle of detectors,
arrayed in seven detector banks between 2θ ! 2◦ and 159◦. Careful beam collimation and an
oscillating radial collimator between the sample and detectors keep backgrounds to a minimum.
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Rigorous data correction is possible using the GUDRUN program (based on the ATLAS suite
of programs [16]), to produce quantitative total scattering structure factors, S(Q), from each
bank of detectors.

Typically, for liquid and amorphous samples, the structure factors from the different
detector banks are merged to form one S(Q) encompassing the entire measured range of
Q. The merged S(Q) may then be Fourier transformed to produce a total radial distribution
function, G(r). This procedure causes problems for total scattering from crystalline materials
because each detector bank has a different resolution and the merged S(Q) therefore contains
data with a complex combined resolution function varying with Q. Resolution broadening
also reduces the intensities of the high-r features in G(r). To counter both of these resolution
effects, inverse methods of obtaining G(r) from S(Q), such as MCGR [17], have been modified
to incorporate the resolution functions for the different detector banks. The program MCGRtof
[18] takes a representative G(r) and fits its Fourier transform, convoluted with the appropriate
resolution functions, to the S(Q) from the different detector banks. The representative G(r)

is then varied until good agreement is achieved. This accounts for effects of instrumental
resolution and, provided that a suitably large r -range is used, bypasses high-Q truncation.

In parallel with the above data treatment and manipulation, models of the average structure
are refined using the Rietveld method, fitting the diffraction data from the different detector
banks separately. This not only serves as a starting model for further refinement using
RMCProfile or RMCPow, but also provides the parameters for the resolution functions needed
for MCGRtof and RMCProfile (see below).

3.2. RMCProfile

RMCProfile extends the basic RMC method in two ways. First, it accounts for the instrumental
resolution by convoluting the calculated S(Q) with the appropriate resolution functions prior to
comparison with the data and, secondly, it introduces an additional term to the χ2 comparison
function comparing the Bragg profiles in the powder pattern. The χ2 comparison function for
RMCProfile typically looks like this:

χ2
RMC = χ2

Data + χ2
Constraints (1)

where

χ2
Data =

∑

k

∑

n

[
Scalc(Qi ) − Sexp(Qi )

]2
/σ (Qi ) +

∑

m

[
Tcalc(ri) − Texp(ri )

]2
/σ (ri )

+
∑

j

[
Icalc(t j ) − s ′ Iexp(t j )

]2
/σI (i)(t j) (2)

summing over the n points in each of the k structure factors, S(Q), the m points in the radial
distribution function, T (r), and the j points of the powder profile, I (t). The σ parameters
determine the relative weighting of the different functions in the comparison. (T (r) and S(Q)
are representative real and reciprocal space correlation functions, respectively; other functions
with different normalizations may equally be used. See [12] for details.) Icalc(t j) is given by

Icalc(t j) =
∑

hkl

Lhkl |F(hkl)|2 Rhkl (t j − thkl ) + B(t j) (3)

where Rhkl (t j − thkl ) is the peak shape of the hkl reflection arising from the instrumental
resolution. s′ is a scale factor and B(t) is the background in the diffraction pattern arising from
the diffuse scattering component of the total scattering. These parameters are determined from
a Rietveld refinement of the same diffraction pattern, and for GEM data are a function of the
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neutron time of flight, t j . Lhkl is the Lorentz factor of the hkl reflection and F(hkl) is the
structure factor given by

F(hkl) = 1
Nc

∑

j

b̄ j exp(iQhkl · r j) (4)

where Nc is the number of unit cells in the configuration and Qhkl is the scattering vector of the
hkl reflection. The summation in equation (3) is over all hkl, including symmetry related sets
and those expected to be absent due to translational symmetry (screw axes and glide planes).
The second term in equation (1) refers to additional terms in the χ2 comparison which may
be used to constrain the model to follow known local chemical arrangements (bond lengths,
angles, average coordinations etc) and topologies. An example of how these constraints work
in practice can be found in a paper on amorphous silica in this issue [19].

The starting configuration typically consists of a supercell of the crystal unit cell with the
atoms in their ideal average positions as determined by Rietveld refinement. Various forms
of substitutional disorder may also be introduced into the starting model, as appropriate. The
minimization then follows standard RMC procedures, effectively refining the starting model,
since the final model should also replicate the Rietveld refined average structure. To this
end, the weighting on the Bragg profile term in equation (2) is usually set at a level such
that it dominates the fitting. The final configuration consists of a three-dimensional supercell
of the crystal structure, which has a reliable average structure (it produces good agreement
with the powder diffraction profile) whilst simultaneously reproducing the local instantaneous
deviations from the average (it also replicates the experimental S(Q) and T (r)). This model
may then be interrogated to identify structural features that are important for understanding
the system under study (see examples below).

3.3. RMCPow

The program RMCPow [13] is a development of the RMC method intended specifically for
total scattering from powdered crystalline materials. S(Q) is calculated using the following
equation [20] and assuming that the configuration is a supercell (sc) of the crystal unit cell:

S(Q) = 2π2 N
V

∑

hklsc

|F(hklsc)|2
R(Q − Qhklsc )

Q2
hklsc

(5)

where N is the number of atoms within the configuration of volume V and R is the experimental
resolution function. hklsc are the allowed ‘Bragg’ positions of the supercell and

F(hklsc) = 1
N

∑

j

b̄ j exp(iQhklsc · r j ) (6)

(analogous to equation (4)). The calculation is carried out for all Qhklsc where |Q| is within the
range of Q of the measured S(Q). Equation (6) is therefore calculated at Bragg positions for
the crystal (when hklsc = hkl) and at diffuse scattering positions (when hklsc %= hkl).

There are several benefits of the RMCPow method. First, as with RMCProfile, the
experimental resolution function may be readily incorporated in the comparison with the data.
Secondly, because of the form of the scattering function, magnetic neutron scattering may be
readily included in the RMCPow refinement [20]. This aspect may be used to find solutions
to average magnetic structures. The program has also been developed to include moves which
can be used to mimic substitutional disorder, by randomly swapping atoms. Both these latter
two enhancements are only being developed within RMCProfile at present. There are however,
two drawbacks of the method, both a consequence of forming a continuous one-dimensional
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scattering function from a summation of a three-dimensional function calculated on a discrete
lattice. At low Q, few Qhklsc are available unless a very large configuration is used and hence
the diffuse scattering data must be smoothed. At high Q, the number of Qhklsc within a given
%Q range becomes very large and the calculation becomes very time-consuming. This is
because the number of Qhklsc scales linearly with V , the volume of the supercell configuration
and, more importantly, as Q3

max. This has meant that most studies using this method have

tended to use data with a limited range of Q (e.g. Qmax ! 10 Å
−1

).

4. Analysing the RMC models

There is considerable scope for detailed analysis of the RMC refined models. Since the model
is a supercell of the crystal unit cell, it is possible to average the model onto a single unit
cell. This can be used to generate atom density maps or isosurfaces and also to calculate
average atom positions within the unit cell for comparison with those determined by Rietveld
refinement of the Bragg profile. Given that these density maps mimic the distributions of the
disordered atoms, they can be compared with the average anisotropic atomic displacement
parameters (adps). Any differences can then be ascribed to ‘unusual’ disordering behaviour,
which cannot be readily described with adps. Programs such as atomeye [21] are extremely
useful for viewing both the full configuration and the averaged unit cell distributions.

The models are also able to provide instantaneous bond lengths, as distinct from the
average bond lengths which are determined from analysis of Bragg scattering alone. The
instantaneous value and average may be very different for a disordered material, since the
former is formed from the average of all bonds in the model (i.e. 〈A–B〉) and the latter is the
separation of two average positions (i.e. 〈A〉–〈B〉). To a degree, this information is available
directly from the peak positions in total radial distribution functions. However, for crystalline
materials, 〈A–B〉 can be calculated for subsets of atom types A and B, such as bonds that are
symmetry related to each other. Similar selective bond angle distributions can be calculated
from the models. In this way, it is possible to investigate small instantaneous distortions in
bonded polyhedra.

A more formal parametrization of the above characterization of the local environment
has been developed using a geometrical analysis of the difference between polyhedra within
two independent configurations [22, 23]. Polyhedra from one configuration are optimally
mapped onto equivalent polyhedra in another using translations and rotations. The amount of
residual distortion (bond stretching, bending etc) is then calculated. The relative proportion of
rotational and distortive disorder can then be used to assess the nature of the disorder across,
for example, a disordering phase transition.

Very recently, the extent to which RMC models can be used to extract dynamical
information has been assessed using a statistical analysis of a large number of
configurations [24]. The phonon dispersion curves for MgO produced in this way reproduced
the experimental results in both the low-energy regime and in the energy scale, but were
unable to capture the detail of the high-energy features. However, this method shows promise
for systems where low-energy features are important (for example rigid unit modes in linked
polyhedra and soft mode induced phase transitions) and where the lack of large single crystals
prevents inelastic scattering measurements.

5. A very brief summary of scientific applications

RMC modelling has made valuable contributions to the understanding of the structures of
superionic materials (reviewed in [25]) such as those based on the silver and copper halides,
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where conduction pathways have been mapped out and disordering mechanisms identified.
RMC modelling has been used to investigate the possible ‘paddle-wheel’ ion conduction
mechanism in superionic Li2SO4: the models were used to assess the interplay between the
Li ion diffusion and sulfate group rotation.

Network systems have also been extensively investigated. The structures of many
polymorphs of silica have been analysed using RMC modelling (summarized in [26]).
These studies have been used to investigate similarities and differences between the local
structural environments of the tetrahedral crystalline phases of silica and silica glass: the
high-temperature disordered cristobalite and tridymite phases are found to be locally similar
to the glass. RMC analysis of total scattering data across the α–β phase transition in quartz
provides a holistic interpretation of the phase transition. This showed that the symmetry
change is evident on a short length scale and the phase transition is therefore inconsistent
with microscopic domain models. The RMC models have also been used to interpret high-
temperature piezoelectric behaviour in quartz [27].

A range of molecular materials have also been analysed, including the molecular crystal
SF6 [26] and the behaviour of the NO3 groups through the phase transition in NaNO3 [2].
The structural changes through a number of phase transitions have also been effectively
analysed using RMC modelling. As well as those mentioned above, the distortions associated
with the low-temperature phase transition in SrTiO3 have been characterized using RMC
modelling [28].

There has also been recent work on a range of magnetic systems including an RMC analysis
of the dynamical correlations of the frustrated Kagomé magnet SrCr9x Ga12−9x O19 [29] and a
solution for the magnetic structure of Ba2FeWO6 [30].

It is not possible to include all crystalline applications of RMC modelling in this brief
introductory review and indeed much of the work has already been summarized [1]. Recent
work is also contained in this Special Issue and readers are referred to these articles for further
details of current scientific applications of the RMC technique.

6. Conclusions and future prospects

As stated in section 2, understanding disorder in crystalline materials is becoming increasingly
important. This is reflected in the increasing number of total scattering diffractometers
available and being developed at spallation neutron sources and synchrotron x-ray facilities
worldwide. A major component of their experimental programmes involves measurements
of total scattering from powdered samples. RMC refinement (whether using RMCProfile
or RMCPow) is ideally placed to exploit these high-quality measurements and is one of the
few methods available for analysing these data effectively. Both RMC programs are still being
improved to make them more generally applicable and there is no doubt that total scattering data,
analysed with RMC methods, will continue to make major contributions to the understanding
of structural disorder in crystalline materials for many years to come.
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