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Abstract
Ten silicate and aluminosilicate glasses with different number densities and
connectivities were studied by molecular dynamics simulation using the com-
puter program DL POLY [1]. The radial distribution functions, phonon densities
of states and flexibilities of the glass networks were determined, and compared
with those determined for silica [2]. The large-scale flexibility of silica was
found to be similar to that of some of the glasses studied in this work, particu-
larly in relation to rigid-unit-mode-type motions. The degree of localization of
vibrations in fully networked glasses was found to be similar to that in silica,
but the vibrations in glasses containing non-bridging oxygen atoms were found
to be more localized. This is thought to be due to clustering of alkali cations,
which in turn necessarily produces clusters of tetrahedra.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The low-energy dynamics of silicate glasses has attracted a lot of interest. Part of the interest
is driven by attempts to understand the origin of the so-called ‘boson peak’ [3], a peak seen
in measurements of the inelastic spectra at around 5 meV (although this phenomenon is not
discussed in this paper). Another motivation is to identify potential tunnelling states that give
rise to anomalous thermodynamic properties at low temperatures.

Recently [2] we reported studies of the low-energy dynamics of silica glass based on the
results of molecular dynamics simulations (MDSs) and analysis in terms of rigid-unit modes
(RUMs). RUMs are normal modes of motion in which structural polyhedra, such as SiO4 and
AlO4 tetrahedra or AlO6 octahedra, can move without distortion. These modes are identical
to the ‘floppy modes’ of Thorpe et al [4], but are specific to motions of polyhedra. The idea
that RUMs can exist in crystalline materials that can be described as frameworks of structural
polyhedra, such as the various phases of silica, was invoked several decades ago to explain phase
transitions in materials such as quartz, and the idea that RUMs may be responsible for low-
energy excitations in silica glasses has been put forward by several authors. In order to be able
to quantify the application of the RUM model to crystalline materials a computational algorithm
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was developed, called the ‘split-atom method’, that allows us to count the number of RUMs
for any wavevector in a crystal. This has allowed us to explain how RUMs are responsible
for structural phase transitions [5], and the RUM model has been able to encompass other
phenomena such as negative thermal expansion [6,7]. The RUM model has been supported by
experimental studies, particularly inelastic neutron scattering [8,9]. In [10] and [11] we applied
the RUM concept to a structural model of silica glass using our split-atom method combined
with MDS. The main finding was that the silica structure has the same RUM flexibility as
crystalline cristobalite, and that the RUM flexibility provides the silica glass structure with
the ability to support large-amplitude localized rotations of the SiO4 tetrahedra. These may
be the motions responsible for two-level tunnelling states implicated in explanations of the
low-temperature thermal properties.

The fact that the silica glass framework can support RUMs is somewhat surprising when
considering the analysis of constraints and degrees of freedom that usually underpins the
quantitative analysis of floppy modes in a glass. The RUM flexibility should arise from an
imbalance between the number of degrees of freedom, F , and the number of constraints, C.
The number of degrees of freedom of any polyhedron is F = 6 (3 rotations + 3 translations).
The number of constraints is counted by noting that there are three constraints operating at each
oxygen shared by two structural polyhedra, which arise from holding the (x, y, z) position of
the corner of one polyhedra at the same (x, y, z) position as the corner of the linked polyhedron.
These three constraints are shared by both linked polyhedra, and with four oxygen atoms per
polyhedron we have C = 6 for each polyhedron. Thus we have C = F . The Maxwell criterion
is that any framework structure is only flexible if C < F , and the structure is rigid if C > F .
Network structures composed of corner-linked tetrahedra are therefore, in the Maxwell sense,
on the border of being under-constrained and over-constrained, and strictly should have no
RUM flexibility. For crystalline materials it is possible for symmetry to reduce the number of
independent constraints to give C < F and hence to allow the structure to support a non-zero
number of RUMs. This point has been demonstrated for some model calculations, and it is
found that when a material undergoes a symmetry-breaking displacive phase transition there is
a drastic reduction in the number of RUMs [5]. However, it is not obvious how the symmetry
argument can be applied to glass structures; nevertheless, it appears that silica glass has an
inherent RUM flexibility that matches that of crystalline silica.

The purpose of this paper is to extend the analysis to other framework glasses. In particular,
we focus on two families of glass structures. The first is alkali aluminosilicates in which
all the tetrahedra, SiO4 and AlO4, can be linked into a three-dimensional framework with
full connectivity. These structures are denoted as Q4. The second family of structures is
the alkali disilicates, of general form X2Si2O5, in which SiO4 tetrahedra are linked to three
others on average. These structures are denoted as Q3. The Q4 structures, of which silica
is also an example, have C = F in the Maxwell analysis. The main purpose of analysing
different compositions is that each composition will have a different structure. In the series
(KAlO2)x · (SiO2)1−x , different compositions x will lead to changes in the structure associated
with the need to accommodate the alkali cations in voids encompassed within the network of
linked tetrahedra. In particular, we find that we get a range of number densities for the Q4

structures that varies by 25%, and it is interesting to investigate whether the changes in structure
and density have an effect on the RUM flexibility. The Q3 structures have F − C = 1.5 per
tetrahedron in a Maxwell sense, which means that the structure will have a high degree of
RUM flexibility. The previous work on silica [2,10,11] gave a preliminary assessment of this
flexibility by artificially removing SiO4 tetrahedra, but by working with the alkali disilicates
it will be possible to quantify this under more realistic conditions. We will work with a range
of Q3 structures with number densities that vary by 35%.
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The approach we take is to generate structures of the glasses using MDS (specifically,
the DL POLY code), starting from a trial crystal structure. The structures of the glass phases
are analysed in terms of radial distribution functions (RDFs), and the dynamics are analysed
through calculations of the density of states (from the velocity autocorrelation functions) and
by calculations of participation ratios for large-scale motions. The RUM flexibility of each
structure is analysed using the split-atom method. The results are compared with the earlier
studies on silica glass, and trends with structure are sought through trends with number density.

We find that there is very little correlation of vibrational properties with number density,
as found both by MDS and RUM analysis. The major effect of density is on the degree of
localization of vibrations. The disilicates have a noticeably different RUM spectrum to the
other glasses, but in the MDS this difference is somewhat less obvious.

We also observe large-scale reorientational motions similar to those observed in a recent
study of silica glass.

2. Methods

2.1. Simulation samples

A number of glass compositions were investigated. Some of these contain only Si as the
tetrahedral atom, whilst others contain both Si and Al. In addition, different alkali cations
are present, to investigate the possible effects of changing alkali cation size on the vibrational
properties of the glasses.

The simulation cell used in this work is that used by other workers [12]; a 3 × 3 × 3
array of unit cells of β-cristobalite (space group Fd3m, a = 7.74 Å, Si at (000), O at ( 1

8
1
8

1
8 )),

where the tetrahedral and octahedral interstices are filled with the number of extra cations
needed to produce the desired composition. The exact location of the extra cations within the
structure is relatively unimportant, since the atoms are expected to mix on heating; however,
before performing any MDS runs, the stuffed structures were relaxed using the lattice energy
program GULP [13] to ensure that none was energetically unfavourable.

The glass compositions investigated were

(i) alkali disilicates X2Si2O5, where X = Na, K, Rb,
(ii) two mixed alkali disilicates NaKSi2O5 and NaRbSi2O5,

(iii) nepheline-type compounds XAlSiO4, where X = Na, K, Rb, and
(iv) compounds of the series (KAlO2)x · (SiO2)1−x , of which KAlSiO4 (also a member of the

previous group of compounds) is the x = 1
2 case. The other two compounds studied were

the x = 1
4 case, KAlSi3O8 (orthoclase composition), and the x = 3

4 case, K3Al3SiO8. The
latter composition is not known in crystalline form, but is especially rich in potassium,
and hence is suitable for investigation.

As we have noted earlier, the primary objective of our study is to compare the dynamic
properties of networks with different network topologies that arise from the different densities
of the different chemical compositions. In order to meet this objective, the primary requirement
is for a wide range of equilibrated samples that do indeed have different densities, and which
have been equilibrated with sufficient care [14,15] to minimize the number of defects (such as
silicon atoms in non-tetrahedral coordination). Where we can compare our simulated structures
with experiment (see below), we find reasonable agreement. It is important to appreciate that
for our objectives it is far more important to generate a wide range of different structures
rather than to focus on the specific details of individual simulations. Because of the high
computational demands of this objective, we did not explore issues of system size, nor did we
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repeat all simulations several times to test for reproducibility (although in our initial cases we
did run several simulations on the same samples in order to test our methodology). We hope
that it can be appreciated that issues of ergodicity are tangential to our objective of studying
the role of network density on dynamic properties.

2.2. Interatomic potential models

The interatomic potentials used in the GULP runs are given as follows. The symbol E represents
energy, r an interatomic distance and θ an angle between two interatomic vectors. A zero
subscript indicates an equilibrium value.

Short-range interactions were modelled by the Buckingham potential:

E = A exp(−r/ρ) − C

r6
. (1)

Coulomb interactions were handled via the standard Ewald sum. The oxygen atoms were
modelled by the shell model where they are considered to consist of a core comprising the
nucleus and inner electrons, and a massless shell of the outer electrons. The core is assigned
a charge of 0.848 19e and the shell a charge of −2.848 19e, such that the overall charge is the
formal value for the oxygen ion. The core and shell are held together by a harmonic interaction
of the form

E = 1
2k2d

2 (2)

where d is the core–shell separation.
Interactions of the form O–Si–O and O–Al–O were modelled by the three-body potential:

E = 1
2K(θ − θ0)

2. (3)

2.3. Molecular dynamics simulations

In this investigation we used the DL POLY code on a parallel computer. We were primarily
interested in simulating the dynamic properties of the glasses at a certain temperature and
pressure. The first stage of our method was to equilibrate the system at the relevant temperature
and pressure using the NPT ensemble, allowing the size of the unit cell to relax, but not its
shape. For the second stage, we switched to the NV E ensemble, for effective simulation of
the atomic dynamics of the system.

For each material, the coordinates of the atoms in the simulation cell were taken, along
with the interatomic potentials acting upon the relevant atoms present (see table 1), and were
used in an initial DL POLY run at a high temperature. The form of the Buckingham potential
was identical to that in equation (1) but a different type of three-body potential, the screened
harmonic potential, was used. This is given by

E = 1
2K(θ − θ0)

2 exp[−(r/ρ1 + r/ρ2)] (4)

and was used so that the three-body terms have a smooth cutoff in space.
Formal charges were used for each ion, and Coulomb interactions were handled using the

Ewald sum. All ions were treated as rigid.
The initial temperature was ideally 6000 K, as this had been used successfully by other

workers [12], but for certain glasses a lower initial temperature was required to prevent the
material from vaporizing. Where this was the case, the initial temperature was still kept as
high as possible to ensure good mixing of the cations. The NPT ensemble was used, with a
timestep of 0.002 ps, and 10 000 simulation steps (a total simulation time of 20 ps).
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Table 1. Interatomic potential parameters.

Potential type Species Parameters Source

Buckingham A ρ C

Na–O 1 226.8 0.3065 0 [12]
K–O 929.32 0.362 0 [12]
Rb–O 2 565.507 0.3260 0 [16]
Si–O 1 036.96 0.3259 0 [12]
Al–O 1 460.3 0.29912 0 [17]
O–O 3116 130 0.1515 61.39 [12]

K θ0 ρ1 (=ρ2)

Screened harmonic O–Si–O 880.67 109.47 0.3259 [12]
(three-body) O–Al–Oa 880.67 109.47 0.3259
Core–shellb k2

O–O 74.92 [17]

a Assumed identical to O–Si–O.
b Core–shell potential employed in GULP only.

Upon completion of the 6000 K run, the final cell parameters and atomic coordinates were
used as the start configuration for another run at 5000 K, with the same ensemble, timestep and
number of simulation steps. This procedure was used repeatedly to lower the temperature to
1000 K in steps of 1000 K, and then finally to 293 K. The final stage of the simulation process
was to take the output from the 293 K run and perform a final run again at 293 K but with
100 000 steps and using the NV E ensemble. We determined the vibrational properties from
the output from this run.

3. Analysis of structures

Due to the large numbers of data generated in this work, we have not included results for each
property for all ten glasses. Instead, representative examples of structures, graphical data etc
are given, and the full results are available for viewing and downloading on the internet at
http://www.esc.cam.ac.uk/minsci/downloads/glass/.

3.1. Equilibrium configurations from MDS

For each glass, the structure was computed at each of the simulation temperatures. Examples
of the final glass structures at 293 K are given in figure 1.

3.2. Connectivities

The theoretical connectivities of the glasses depend on the proportion of alkali cations present,
since these are well documented as network modifiers. The presence of Al is also an important
factor due to the difference in charge between Al and Si. It can be shown that for the disilicate
compositions, the ideal average connectivity is 100% Q3, and that all the other compositions
investigated are ideally 100% Q4 on average. A detailed explanation of this is given in [18].

To investigate the connectivity, the percentage of tetrahedral and non-tetrahedral
coordination polyhedra for each glass at each temperature was determined using an in-house
customization of the crystal structure program MSI Cerius2.

At high temperatures at the beginning of the simulation, the glass structures are
considerably disordered and the Al and Si atoms have a variety of coordination numbers. On
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Figure 1. Example glass structures at 293 K.

cooling, the structures revert to mainly tetrahedral coordination of Al and Si, but some other
polyhedra remain. Figure 2 shows the evolution of coordination polyhedra in the structures.
The majority of the glass structures contain 100% tetrahedra, although a few fivefold- and
sixfold-coordinated polyhedra around Al and Si persist in some structures. This becomes
relevant when computing the vibrational properties, as is discussed below.

3.3. Radial distribution functions

The atomic RDF for each composition was determined using an in-house customization of
Cerius2. The probability of finding an atom of type j within a spherical shell of radius r and
thickness dr from atom i is given as ρjgij (r)4πr2 dr , where ρj is the number of atoms of type
j per unit volume, and gij (r) is the atomic RDF. We form the functions

tij (r) = 4πrgij (r) = nij (r)/r (5)

where the integral of nij (r) gives the number of contacts within a given range of values of
r . Sample plots of tij (r) are given for Na2Si2O5, KAlSi3O8 and KAlSiO4 in figure 3. Also
shown in these figures is the sum of the atomic pair correlation functions, T (r).

The first peaks are Si–O, Al–O (if Al is present) and O–O. The RDFs for the disilicates
show a broader and rather asymmetric Si–O peak than those for the other compounds, due
to the presence of non-bridging oxygens (NBOs) in the disilicate structures—Si–ONBO are
distinctly shorter than Si–OBO . For example, we chose at random ten bonds of each type in
the K2Si2O5 structure; the average Si–ONBO length was 1.473 Å, while the average Si–OBO

length was 1.612 Å.
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Figure 2. Percentage of tetrahedrally coordinated Si (and Al where applicable) in the glasses at
each stage of MDS.
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Figure 3. Calculated RDF for the glasses, in T (r) form (‘Total’), showing constituent tij (r)

functions.

3.4. Comparison of calculated RDFs with experiment

Experimentally determined RDFs exist for Na2Si2O5 (x-ray diffraction) [19] and KAlSi3O8

(neutron diffraction) [20]. These are reproduced in t (r) form in figure 4 for comparison with
figure 3.

Our main interest here is to compare the positions of the main features with our calculated
individual pair RDFs. The main features in the experimental RDF for K-feldspar are
reproduced in our calculations. In the case of sodium disilicate, the O–O RDFs are not
observed because the oxygen scattering power for x-rays is too weak. The remaining features
are reproduced in our calculated pair RDFs.
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Figure 4. Experimentally determined RDFs for Na2Si2O5 and KAlSi3O8. Reproduced from [19]
and [20].

Table 2. Number densities (atoms Å−3) for glasses. ρ indicates total number density; ρ′ indicates
number density of tetrahedral atoms (Si, Al if present, O).

Q3 Q4

Glass ρ ρ′ Glass ρ ρ′

Na2Si2O5 0.058 0.045 NaAlSiO4 0.067 0.057
NaKSi2O5 0.052 0.040 KAlSiO4 0.054 0.046
NaRbSi2O5 0.051 0.040 RbAlSiO4 0.052 0.044
K2Si2O5 0.044 0.035 KAlSi3O8 0.058 0.054
Rb2Si2O5 0.043 0.034 K3Al3SiO8 0.053 0.042

3.5. Number densities

The number densities (in atoms Å−3) of the glasses are given in table 2, both for all atoms and
for tetrahedral atoms alone. There is approximately 25% variation in number density for the
Q4 compounds and approximately 35% variation for the Q3 compounds. Such a variation is
of course expected, since larger cations will necessitate the formation of larger voids in the
silicate framework, and will hence decrease the number density.

The number density is of interest because it may be an important factor in the RUM
analysis. The lower the density, the more open the framework of linked tetrahedra, and the
degree of openness may be expected to have an impact on the flexibility of the framework.
Part of the motivation for this study is to examine this possibility, and is the reason why we
have worked with samples that have a wide range of densities.

4. Analysis of MDS dynamics

In order to characterize the glasses, we analysed their structures in three ways. Firstly, we
calculated the phonon density of states, g(ω), to examine vibrational similarities between
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Figure 5. Phonon density of states for K3Al3SiO8 showing contributions from each atom type.
Scale is offset on x-axis for clarity.

glasses of the same compositional suites, and to determine the nature of contributions to g(ω)

from each type of atom. Secondly, we investigated the large-scale flexibilities of the glasses
by probing their ability to undergo structural reorientations. Finally, we investigated the short-
term structural variations by comparing configurations at regular intervals during MDS and
analysing the differences between them.

4.1. Phonon densities of states

For each glass, the trajectories of atoms were recorded during the MDS. These trajectories
were then used to calculate the velocity autocorrelation function:

C(t) = 〈v(0) · v(t)〉
〈|v(0)|2〉 (6)

with the angle brackets 〈· · ·〉 indicating an average over time and over all atoms. The Fourier
transform of the mass-weighted velocity correlation function gives the phonon density of
states, g(ω) [21]. Such calculations were performed for each glass, and two examples are
given in figures 5 (for K3Al3SiO8) and 6 (for NaKSi2O5). Also shown in these figures are
the contributions from each atom type. The alkali cations contribute to the low-frequency
vibrations and the tetrahedral atoms to the higher-frequency vibrations.

The total densities of states for compositional suites (disilicates, XAlSiO4 and the
(KAlO2)x ·(SiO2)1−x series) are given in figure 7. These totals are shown without contributions
from alkali cations, to enable easy comparison with those of amorphous silica [10] and
crystalline α-cristobalite [22].

The glasses within each of the disilicate and XAlSiO4 series are remarkably similar.
Those in the (KAlO2)x · (SiO2)1−x series are slightly different at higher frequency, but this is
not within the focus of this paper. The differences at low frequency between the amorphous
and crystalline phases of silica are that the crystalline phase has a relatively slow rise with
ω2 due to the acoustic modes, with distinct peaks due to low-lying optic modes, whereas
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Figure 6. Phonon density of states for NaKSi2O5 showing contributions from each atom type.
Scale is offset on x-axis for clarity.
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Figure 7. Total phonon density of states, excluding contributions from alkali cations, for all the
glasses studied. Also shown for comparison are the densities of states of α-cristobalite (see [22])
and silica (calculation, [10]).

the density of states for silica glass rises somewhat faster without a clear distinction between
acoustic and optic modes. The aluminosilicate glasses in this study all appear to lie between
these two extremes. The rise at low frequency is not as fast as in silica glass, but clearly
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the low-frequency optic modes are spread to the lowest frequencies. There is no systematic
variation with density, although we shall point out some effects of density later in section 5.
It is also interesting that the densities of states for the disilicates are not substantially different
from those of the fully networked glasses; we shall comment on this later.

4.2. Large-scale structural reorientations

Glasses are known to exhibit anomalous thermal properties at low temperatures. For example,
the variation of heat capacity with temperature scales approximately linearly, as opposed to
the normal Debye result, C ∝ T 3 (see, for example, [23]). One proposed explanation for this
phenomenon is the existence of excess low-energy vibrational states [24]. Specifically, the
model suggests the existence of localized low-energy excitations in glasses, with the atoms
taking part in these vibrations being those for which the energy barrier is of the order of kBT .
The possibility of tunnelling between the minima of double-well potentials with such energy
barriers is the main point of this model, hence leading to two-level tunnelling states.

However, the presence of double-well potentials in glasses has not been easy to identify.
In a previous paper [2] it was noted that, during molecular dynamics simulation, parts of the
structure of the silica glass model were able to undergo co-operative rearrangements. These
rearrangements were identified as being responsible for two-level tunnelling states in [25]
and [26].

We performed further MDS runs on K2Si2O5, K3Al3SiO8, KAlSiO4, RbAlSiO4 and
KAlSi3O8, in order to look for evidence for these rearrangements. For each of these, we
calculated σ , the mean square displacement of each atom:

σ = 〈|r|2〉 − |〈r〉|2 (7)

where r is the position of the atom. From this we formed the probability distribution function
P(σ) for each glass; examples are given in figure 8. Atoms with larger values of σ are likely
candidates for participation in large jumps between two minima of double-well potentials. The
majority of atoms with large σ values were found to be oxygen atoms, which is consistent with
the involvement of motions of whole tetrahedra.

Analysis of P(σ) plots for the glasses showed evidence for rearrangements in KAlSiO4,
K3Al3SiO8 and K2Si2O5. No atoms with large σ values were observed in KAlSi3O8 (as can
be seen in figure 8) or RbAlSiO4.

Figure 9 shows the positions of two large-σ oxygen atoms in KAlSiO4 as a function of
time. The atoms jump into a new position at ∼17 ps and back again to the old positions at
∼28 ps. Figure 10 shows a snapshot of the structure at 18.5 ps with the initial structure
superimposed to illustrate the structural rearrangement, and also a snapshot at 30 ps to
illustrate the rearrangement back to the initial configuration (again with the initial structure
superimposed).

In K3Al3SiO8, a rearrangement is seen at ∼28 ps. Here, the atoms do not jump again
within the timescale of the simulation. A snapshot of the structure at 29 ps is given in figure 11.

In K2Si2O5, several rearrangements were seen, all mainly involving one Q1 SiO4

tetrahedron. One of these occurred at ∼9.9 ps and is shown in figure 12. Note that a
previous rearrangement has occurred and the jump is from this configuration back to the
original configuration.

For the jump motions in question, we calculated the participation ratio

Pjump =
(∑ |ujump|2

)2

N
∑ |ujump|4

(8)
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Figure 8. Plots of the distribution of atomic mean square displacements, P(σ), for four glasses.
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Figure 9. Coordinates of two oxygen atoms in KAlSiO4, showing jump at ∼17 ps and back at
∼28 ps.

where ujump = rafter − rbefore is the difference between coordinates after and before the jump.
Collective motions in which all atoms participate equally will have Pjump ∼ 1, but motion
involving a single atom will have Pjump ∼ 1/N .

The jumps in figures 10–12 were found to have NPjump values of 27 (K2Si2O5), 91 and
105 (two jumps in KAlSiO4) and 61 (K3Al3SiO8). By comparison, the jumps observed in
silica [2] had NPjump values of around 30, although these were determined on structures at
50 K rather than 298 K.

Animations of the jumps represented in figures 10–12 are available in the online version
of this article. They can also be viewed from http://www.esc.cam.ac.uk/movies/.
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t = 30ps after second jump, back to
original configuration.

(b)t =18.5ps after first jump.(a)

Figure 10. Snapshots of a group of atoms in KAlSiO4 at 18.5 and 30 ps, initial configuration
superimposed. Oxygen atoms near the centre of the figure are those whose coordinates are given
in figure 9. Animations of these jump events are available in the electronic version of the journal,
file size 1 MB each.

Figure 11. Snapshot of a group of atoms in K3Al3SiO8 at 29 ps, initial configuration superimposed,
showing rearrangement of the two atoms near the centre of the figure. An animation of this jump
event is available in the electronic version of the journal, file size 1 MB.

4.3. Short-term structural variations

In addition to the analysis in section 4.2, which considers large-scale changes over
comparatively large time periods, we can examine the flexibility of the glasses in an alternative
way. For each glass, the final glass structure at 293 K produced from the simulation was used
as the starting structure for a further simulation run, consisting of 2500 simulation steps and
using the NV E ensemble (total simulation time 5 ps). The resulting output was then used as
input for another 5 ps run, and this was repeated until four 5 ps runs were completed.
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t = 10ps after first jump.(b)

t = 9.2ps before jump.(a)

Figure 12. Snapshots of a group of atoms in K2Si2O5 at 9.2 and 10 ps, initial configuration
superimposed. A previous rearrangement has occurred, and the jump is from this configuration
back to the original configuration. Animations of these jump events are available in the electronic
version of the journal, file size 2.9 MB each.

Each of the runs was compared with the previous one by calculating a general participation
ratio:

P =
(∑ |u|2)2

N
∑ |u|4 (9)

where u refers to the displacement of an atom between snapshots, and the parameter N refers
to the number of atoms in the structure. Large values of P imply that differences in structures
between two configurations are spread across most atoms, whereas small values suggest that
there are large localized differences between structures. These can occur if small groups of
atoms can undergo large jump motions.

Participation ratios were calculated separately for the alkali cations in the structure and
the tetrahedron-forming cations (Si, Al if present, O). Values of P near zero indicate localized
short-term variation in the structure, and values nearer unity indicate that any short-term
variation is co-operative across larger regions. The participation ratios calculated for the
alkali metal cations in each glass are given in table 3, and those for the tetrahedron-forming
cations are given in table 4.
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Table 3. Participation ratios for alkali metal cations in the glasses.

Values between snapshots at:

Glass Species 5 and 10 ps 10 and 15 ps 15 and 20 ps Average

Na2Si2O5 Na 0.178 0.241 0.296 0.238
K2Si2O5 K 0.406 0.316 0.362 0.362
Rb2Si2O5 Rb 0.268 0.400 0.310 0.326
NaKSi2O5 Na 0.268 0.344 0.278 0.296

K 0.388 0.190 0.271 0.283
NaRbSi2O5 Na 0.500 0.363 0.441 0.435

Rb 0.274 0.446 0.343 0.354
NaAlSiO4 Na 0.337 0.301 0.427 0.355
KAlSiO4 K 0.431 0.480 0.348 0.420
RbAlSiO4 Rb 0.297 0.294 0.486 0.359
KAlSi3O8 K 0.459 0.388 0.274 0.374
K3Al3SiO8 K 0.307 0.233 0.284 0.275

Table 4. Participation ratios for tetrahedron-forming atoms (Si, Al if present, O) in the glasses.

Values between snapshots at:

Glass 5 and 10 ps 10 and 15 ps 15 and 20 ps Average

Na2Si2O5 0.437 0.409 0.533 0.460
K2Si2O5 0.432 0.424 0.329 0.395
Rb2Si2O5 0.436 0.453 0.508 0.466
NaKSi2O5 0.420 0.431 0.496 0.449
NaRbSi2O5 0.462 0.533 0.519 0.503
NaAlSiO4 0.525 0.514 0.488 0.509
KAlSiO4 0.476 0.484 0.546 0.502
RbAlSiO4 0.457 0.544 0.561 0.521
KAlSi3O8 0.495 0.533 0.535 0.521
K3Al3SiO8 0.531 0.428 0.413 0.457

The values of the participation ratios for all systems are smaller for the alkali cations
(average around 1/3) than for the tetrahedral atoms (average closer to 1/2). This is consistent
with the fact that the tetrahedral atoms are linked into an infinite network, and therefore motions
of the tetrahedral atoms will have higher correlations with neighbouring atoms. The motions
of the alkali cations can only be correlated through their coupling to the network, and it is
probable that some alkali cations have a weaker coupling than others. For the tetrahedral
atoms, the disilicates have a slightly lower average participation number. This follows from
the fact that there are significantly more non-bridging Si–O or Al–O bonds in the disilicates,
leading to the possibility of large-amplitude localized motions of groups of tetrahedra that are
not fully connected to the network.

5. RUM analysis

In crystalline silicates, it is often found that RUMs lie on special planes of wavevectors, which
are determined by the crystal symmetry. Such planes of wavevectors are absent in glasses, and
hence we need to use a different method for RUM analysis. This method involves calculating
the density of states, as has been used to study the RUM flexibility of some crystalline
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Figure 13. Hypothetical density of states for a silica glass configuration with 9% of the tetrahedra
removed, for comparison with CRUSH densities of states for disilicates.

systems [5, 8]. The true RUMs will be calculated to have zero frequency, but modes on
the same phonon branch as the RUMs with wavevectors close to the RUM wavevectors will
have very low frequencies. The density of states approach will highlight the RUM flexibility
through the calculation of the frequencies of these other modes. In a normal system without
RUMs, the density of states will follow the normal Debye behaviour, i.e. g(ω) ∝ ω2. On
the other hand, if a system contains RUMs, the limiting form of g(ω) will deviate from the
Debye behaviour, often tending towards a constant value as ω → 0, or for particularly flexible
networks having a peak in g(ω) around ω = 0.

The program we used for the RUM analysis is CRUSH [27,28]. This program treats the SiO4

and AlO4 tetrahedra as rigid units within the framework of molecular lattice dynamics. All
bridging oxygen atoms are replaced by pairs of atoms that are associated with one tetrahedron or
the other, and these split atoms are held together by harmonic springs with equilibrium lengths
of zero. The springs therefore act to resist any motion that moves them apart. Essentially the
method involves solving the dynamical matrix for a random set of wavevectors and forming
the density of states g(ω). We used random wavevectors to avoid artificial periodic effects in
the density of states.

It should be noted that the density of states from CRUSH, which we shall label gC(ω) for
clarity, is not expected to resemble the density of states obtained from the MDS, g(ω); the
latter is the more realistic quantity, but we are using CRUSH diagnostically as a method of
quantifying the RUM flexibilities of the glasses. In the MDS the real forces will ensure that
the RUMs do not have zero frequencies, so that the Debye limiting behaviour is observed for
very small wavevectors. However, as was seen in the MDS calculations, the true density of
states rises faster than the Debye form on increasing frequency.

The motivation for calculating gC(ω) for the glasses studied in this work is to investigate
whether the differing connectivities (Q3 versus Q4) of the glasses results in different low-
frequency flexibility, and whether the results for silica glass with artificial defects from [2] are
reproduced in real glasses with similar connectivities (i.e. the disilicates).
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Figure 14. CRUSH densities of states. The large numbers of RUMs (up to 300) in the disilicates
are not shown.

The gC(ω) curve for defect silica glass in [2] is reproduced in figure 13. By comparison,
the gC(ω) for the glasses in this study are given in figure 14. The two main observations are
(a) the similarity of the gC(ω) for the disilicates with that of the defect silica glass and (b) the
similarity between gC(ω) for glasses in the same compositional suite.

The similarity between gC(ω) for the defect silica glass and gC(ω) for the disilicates is
convincing, with both exhibiting a gap at ω ∼ 0 and a large number of RUMs compensating
for this gap.

The similarity between CRUSH densities of states for glasses in the same compositional
suite is somewhat surprising. We might expect that, since the number densities vary by up to
35%, the behaviour would also vary, but this is not the case.

We also note that the different connectivities of the glasses results in different low-
frequency behaviour. The densities of states for the Q3 glasses has a large gap at low ω,
compensated by the large number of RUMs, whereas in the case of Q4 glasses tend towards a
constant value as ω → 0. Hence, the Q3 glasses exhibit much more RUM flexibility than the
Q4 glasses.

As an aside, we can comment on the behaviour for the XAlSiO4 compounds. There is an
apparent difference in the behaviour between these compounds at ω ∼ 0, which is shown in
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Figure 15. CRUSH densities of states for the XAlSiO4 and (KAlO2)x · (SiO2)1−x compounds in
the region ω ∼ 0. KAlSiO4 is a member of both compositional series and hence appears on both
plots.

figure 15—for X = K and X = Rb there are apparently higher numbers of RUMs than there
are for X = Na. This is an artefact; the coordination polyhedron data for these compounds
(figure 2) confirm this—there are a few non-tetrahedral polyhedra persisting in the equilibrium
configurations at 293 K, thus there are a few non-bridging bonds, which have increased the
apparent number of RUMs in the structures.

In addition to determining the number of RUMs present in the glasses, we can determine the
extent to which they are localized. This is achieved by calculating the participation coefficient,
PC:

PC =
(∑ |uC|2)2

N
∑ |uC|4 . (10)

This equation is essentially similar to that for the participation ratio from section 4.2, but with
the uC being the atomic displacements associated with the CRUSH eigenvectors, and N being
the number of units (in this case tetrahedra). PC can take values from 1/N to 1 for a particular
vibration, with a value of 1 indicating that all atoms participate equally in that vibration.

The participation coefficients for the glasses are given in figures 16–18. Also plotted for
interest (see figure 19) are the participation coefficients for silica glass and the defect silica
glass [10]. Some interesting points can be made; firstly, the ω = 0 modes have the same
spread of values (0–0.8) in the disilicates and the defect silica glass. However, the spread of
PC values for the other vibrations is approximately 0–0.8 for the disilicates, but only 0.4–0.8
for the defect silica glass—i.e. the vibrations in the real disilicates are more diverse in their
degrees of localization than those in the defect silica glass.

Comparing the PC plots for compositional suites, we note that once again, compounds
within each of the disilicate and XAlSiO4 suites behave similarly to one another. The spread
of PC values in the XAlSiO4 series is much smaller than that in the disilicate series, suggesting
as we might expect that the Q4 network allows vibrations of a more co-operative nature, whilst
the Q3 networks allow vibrations which are rather more localized.

The PC values for the (KAlO2)x · (SiO2)1−x series are rather interesting. All are ideally
Q4, and thus might be expected to have a small range of PC values—but what actually happens
is that as the potassium content increases, so does the spread of PC values, suggesting that the
alkali cations are also potentially responsible for changes in PC trends between compounds in
the series. It may be that this trend is due to alkali cations clustering together in the structures
as their number increases—that is, vibrations in the tetrahedral network would be forced to be
quite localized if regions of tetrahedra were separated by regions of alkali cations.
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Figure 16. Participation coefficients from CRUSH for X2Si2O5 and XYSi2O5.
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Figure 17. Participation coefficients from CRUSH for XAlSiO4.

If we examine figure 20 we can see that the average participation coefficient for K2Si2O5

is rather lower than one might expect from the other data (it is the point for which P = 0.29).
If one examines the structure of this glass from figure 1, it can be seen that there is a noticeable
large, open region of K atoms visible just below the centre of the figure, and this cluster is
somewhat larger than those in the Na analogue, and even slightly larger than those in the
Rb analogue (structures not shown). This is an interesting point since it is one of the few
apparent differences observed in this work between glasses of the same structural group.
Similarly, examination of the K3Al3SiO8 structure (figure 1) also shows two relatively large,
open clusters of K atoms at the top left and top right, thereby supporting the suggested link



Low-energy excitations of silicate glasses 4877

0 10 20
0.0

0.2

0.4

0.6

0.8

1.0
0 10 20

0.0

0.2

0.4

0.6

0.8

1.0

0 1 200
0.0

0.2

0.4

0.6

0.8

1.0

Frequency/THz

P
ar

tic
ip

at
io

n 
co

ef
fic

ie
nt

 P
C

KAlSi3O8 KAlSiO4

K3Al3SiO8

Figure 18. Participation coefficients from CRUSH for (KAlO2)x · (SiO2)1−x .

Figure 19. Participation coefficients fromCRUSH for silica glass and defect silica glass. Reproduced
from [10].
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Figure 20. Plot of number density against average participation coefficients from CRUSH. Dotted
lines are best fit lines for compositional series.

between alkali clustering and larger ranges of PC values.
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6. Conclusion

This work has focused on comparing the low-energy dynamics of silicate and aluminosilicate
glasses with different number densities and different connectivities of tetrahedra. Changing
number density has been achieved through the inclusion of network-modifying cations of
different size, which causes the networks of linked SiO4 and AlO4 tetrahedra to form cavities
of different sizes. The study has included disilicate and tectosilicate glasses to look for effects
of significant numbers of NBO atoms. The two main tools have been MDS using realistic
interatomic potentials, and the tools of the RUM model. Results have been compared with a
recent study of silica glass.

The first main result is that the low-energy dynamics of the tectosilicate glasses are
relatively insensitive to the number density. This is perhaps surprising, as it might be expected
that more open structures would have a greater degree of flexibility. These similarities were
seen in the densities of states obtained by MDS and through the calculations of the RUM
spectra. The only significant effect of number density was in the participation ratios for RUM
motions, where it was found that the more open structures (those with lower density) have a
greater degree of localization of the vibrations. All tectosilicates studied here have a lower
degree of low-energy flexibility than for silica glass, which is likely due to the additional
binding effects of the network-modifying cations.

The second main result has been to confirm the prediction of the effects of non-bridging
Si–O and Al–O bonds on the RUM spectra that was presented in the earlier study of silica
glass. The existence of non-bridging bonds gives more flexibility to the network. It had been
predicted that the existence of non-bridging bonds would give additional RUMs, which would
be taken from the low-frequency distribution of frequencies rather than from across the broad
distribution of mode frequencies. This result was clearly confirmed for all disilicates studied.

The third main result was the observation of large-amplitude reorientational motions
of groups of tetrahedra similar to those observed in silica glass. These motions have been
identified with the motions associated with two-level tunnelling states in silica glass, and it is
useful to have found similar motions in other silicate glasses.
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