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An analysis of simulated framework structures based on the rigid-unit model

quanti®es the distortion of polyhedra from their ideal geometric forms and

decomposes the motions of the structure into components of rigid-unit

displacement, rigid-unit rotation and distortion. Case studies analysing the

behaviour of quartz and of other silicates demonstrate that the method provides

a novel way of extracting information from reverse Monte Carlo simulations. A

program called GASP has been developed to perform this analysis and is freely

available to researchers. Rotations are handled using the rotor method of

geometric algebra.

1. Introduction

While crystal structures might be expected to be highly rigid,

framework structures such as aluminosilicates in fact display

considerable internal ¯exibility via cooperative motions of

polyhedral groups of atoms. This fact has important conse-

quences for the modelling of framework structures. We

present a methodology, namely reverse Monte Carlo with

geometric analysis, that quanti®es the signi®cance of such

¯exibility in the dynamics of framework structures.

The question of the rigidity or ¯exibility of framework

structures in three dimensions remains poorly understood.

Constraint counting as used by Maxwell fails to capture the

¯exibility of structures in which symmetry makes certain

constraints redundant. This shortcoming is particularly rele-

vant to crystal framework structures such as silicates, which

possess many degrees of freedom and in which the SiO4

tetrahedra rotate and translate without distortion (Dove et al.,

2000). These rigid-unit modes (RUMs) can manifest them-

selves as soft modes in displacive phase transitions (Giddy et

al., 1993; Hammonds et al., 1996), as sources of negative

thermal expansion (Heine et al., 1999; Welche et al., 1998) and

as mechanisms for large-amplitude thermal motion of vertex

atoms at low energy cost (Gambhir et al., 1999).

RUMs can be identi®ed in reciprocal space using the

`split-atom' model (Hammonds et al., 1994). While this

approach can successfully identify candidate soft modes for

phase transitions, and quantify to a degree the rigid-unit

¯exibility of a structure, the model does not capture the real-

space motion of the structure. Firstly, this approach operates

in the limit of in®nitesimal amplitude; secondly, rotations are

inherently anharmonic, as the motion of atoms is not linear

in the rotation angle; and thirdly, rotations are not commu-

tative. A motion of atoms due to a large number of active

RUMs will therefore differ from a superposition of RUM

eigenvectors.

Reverse Monte Carlo (RMC) modelling allows us to

simulate con®gurations of atoms based directly on experi-

mental data (McGreevy & Pusztai, 1988; McGreevy, 1995).

The RMC technique used to generate the con®gurations in

this paper was modi®ed to account explicitly for both long-

range and short-range order (Tucker et al., 2000; Tucker, Dove

& Keen, 2001; Tucker, Keen & Dove, 2001). Our con®gura-

tions are consistent with the total scattering intensity, the pair

distribution factors and the intensities of the Bragg peaks.

We have been working for some time on a method to

extract information on RUM motion in real space from such

techniques (Wells, Dove & Tucker, 2002; Wells, Dove, Tucker

& Trachenko, 2002; Wells, 2003) in order to complement the

reciprocal-space treatment of rigidity described by

Hammonds et al. (1994). The principal problem is to model the

behaviour of the polyhedra formed by real atoms in such a

way as to relate it to the behaviour of the ideal polyhedra that

are the objects of the rigid-unit model. Our analysis now not

only quanti®es the total atomic motion but also allows for both

rotational and displacive motion of the polyhedra, whereas the

earlier approach of Wells, Dove & Tucker (2002) and Wells,

Dove, Tucker & Trachenko (2002) was restricted to rotational

motion only.

We use the language of geometric algebra (GA; Lasenby et

al., 2000), a form of Clifford algebra, in which the basis vectors

of three-dimensional space and Hamilton's quaternions exist

within the same algebra. It is thus particularly well suited to

the description of rotations. None of our results depends in

detail on the form of the rotation operator used (it is simply

computationally convenient for us to use the GA formalism)

and so we will only quote those expressions necessary for the

interpretation of our results.

The combination of RMC modelling with geometric

analysis represents a new methodology, RMC+GA, for

obtaining information on the behaviour of framework struc-

tures. This geometric analysis can also be applied to con®g-
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urations generated by other methods, such as molecular

dynamics (MD).

2. Finding best-fit polyhedral motions

Suppose that we have two slightly different forms of the same

structure, in which each polyhedron has undergone some

displacement, rotation and distortion due to the motion of the

atoms but there has been no change in topology, i.e. no bonds

have been broken or have formed. Speci®cally, let us take two

independently generated RMC ®ts to the same data; since

RMC includes a stochastic element, these ®ts will differ in

detail as to the positions of the atoms. As argued by Wells,

Dove, Tucker & Trachenko (2002), we take each ®t as an

instantaneous snapshot of the system in dynamic disorder.

Two independent (uncorrelated) ®ts can be taken as two

snapshots separated by an in®nite time interval.

We could also compare two different frames from a mol-

ecular dynamics simulation, either successive frames sepa-

rated by a single time step or two frames with a wider temporal

separation.

By comparison of the two structures, polyhedron by poly-

hedron, we can identify the displacements and rotations of the

polyhedra, and the remaining distortion, namely the differ-

ence in shape between the two forms of the same polyhedron.

We proceed by de®ning `mismatch scores', representing the

differences between the two structures, and then minimizing

these scores as a function of the rigid-unit motion of the

polyhedra. We can also compare the polyhedra in a simulated

structure with those in an idealized structure with perfectly

regular polyhedra, so as to quantify the distortion of the

polyhedra or to identify an RUM acting as a soft mode for a

phase transition.

The steps in the comparison process are as follows:

comparison of atomic positions between the two con®gura-

tions; displacement of polyhedra so that their centres coincide;

and rotation of the polyhedra so that their orientations match

as closely as possible. The process is illustrated in Fig. 1.

Effectively, we decompose the motions of all the atoms of the

polyhedron into a bodily displacement (given by the

displacement of the central atom), a bodily rotation and a

residual distortion.

2.1. Definition of mismatch scores

We de®ne an initial mismatch score to be the sum of the

squares of the displacements of all the atoms from one

con®guration to the other. Thus, if the atoms in one con®g-

uration have positions ri and each atom's position in the

second con®guration is ri ��ri , the initial mismatch score

before any ®tting takes place is now de®ned to be

Mbefore �
P

i

�r2
i : �1�

Since this score is simply a sum over atomic contributions, we

can either consider the mismatch score for the structure as a

whole or decompose the score by atomic species; for each

species, we obtain a mean-square atomic motion

�r2
spec

�� �� � nÿ1
spec

P

ispec

�r2
i �2�

and an r.m.s. atomic displacement

�rspec � �r2
spec

�� ��1=2
; �3�

while, of course, the r.m.s. atomic displacement taken over all

atoms is simply

�r � M
1=2
before: �4�

Since Mbefore scales linearly with the size of the system,

comparison between different systems is easier if we divide M

by the size of the system ± that is, the number of polyhedra ± to

obtain the value of M per polyhedron. The mismatch values in

the case studies that follow are given in this form.

Having obtained these measures of the atomic motion, we

now consider the structure as an assemblage of polyhedra,

decomposing it as illustrated in Fig. 1. We make the approx-

imation that the displacement of each polyhedron is equal to

the displacement of its central atom. We now wish to identify

the rotational motions of structural polyhedra. Let us consider

the structure bond by bond. For each bond, there is a vector

from the central atom to an atom q at a vertex of the poly-

hedron p; for one form of the structure, we call this vector pq,

for the other form, pq0. Our assumption, from the rigid-unit

picture, is that there exists a rotation of the polyhedron p that
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Figure 1
The process of ®tting; the comparison of structures proceeds via
decomposition into polyhedra, displacement for coincidence of centres,
and rotation, leaving some residual distortion. Comparison of the
magnitude of the residual distortions with the magnitudes of the atomic
motions reveals the signi®cance of rigid-unit motion.
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takes the set of vectors pq very close to the set pq0. We can

write down a vector pq00�pq;B�, representing the vector pq

after a rotation B; this allows us to write a mismatch vector, m,

given by mq � pq00 ÿ pq0. Minimizing the total magnitude of

all the mismatches for the polyhedron, Mp �
P

q m
2
q, with

respect to the parameters of the rotation B will give the

rotation that best ®ts pq onto pq0. The value of Mp before

minimization with respect to B represents the degree of

mismatch between the polyhedra when they have been

displaced so that their centres coincide but they have not yet

been allowed to rotate. We therefore designate this value as

Mp;fit centres. The ®nal value of Mp, representing the residual

distortion of the polyhedra, we write as Mp;after.

Mafter, the average value of Mp;after for all the polyhedra in

the structure, can be compared with the original measure of

the degree of atomic motion, Mbefore per polyhedron, in order

to obtain a measure of the importance of rigid-unit motion.

For concision, we frequently refer to Mbefore as the disorder

score and to Mafter as the distortion score.

Full mathematical details of the process of ®nding the best-

®t rotation are given by Wells, Dove & Tucker (2002).

However, note that the quantity de®ned in that paper as

`Mbefore' or as `total disorder' is, in fact, the sum over all

polyhedra of our Mp;fit centres and is not related to Mbefore or the

disorder score as de®ned in the present paper.

2.2. Interpretation of rotors

We describe a rotation using three independent variables,

Bx;y;z, which de®ne a `bivector' object describing a `rotor'

operator; these are concepts of geometric algebra. To interpret

the results in the case studies that follow, it suf®ces to interpret

B in terms of an axis b̂ and an angle '. The size of the rotation

angle ', in radians, is given by

' � 2 arcsin� Bj j=2�: �5�
The axis of the rotation is given by a unit vector, b̂, whose

Cartesian components, bi, are given by

P

i

b2
i � 1; �6�

bx : by : bz � Bx : By : Bz: �7�
The case B � 0 is the identity operation, that is, R�0� � 1. To

®rst order, therefore, the values of Bx;y;z are the rotations

about the x; y; z axes, in radians.

2.3. How important is rigid-unit motion? Comparison of

mismatch scores

We wish to de®ne a measure of the importance of rigid-unit

motion in the dynamics of a structure. Perfect accommodation

(zero distortion score Mafter) cannot be this criterion, since

even when RUMs are dominant, higher-frequency distortive

modes will also be active. Some distortion of the polyhedra is

therefore inevitable. In the disorder score, each atom contri-

butes the square of its displacement, �r2. For each atomic

species we ®nd an r.m.s. atomic displacement

�rspecies � �r2
species

�� ��1=2
: �8�

The distortion score is the sum of the mean-square displace-

ments of the vertex atoms from their geometrically ideal

positions; when different types of polyhedra are present, this

value will, of course, be different for each. Thus, from the

distortion score, we can obtain the r.m.s. distance of vertex

atoms from ideal vertices, datom vertex, and these distances can

be compared with the r.m.s. atomic displacements in order to

gauge the importance of rigid-unit motion. Our identi®cation

of the displacement of central atoms with the displacement of

polyhedra means that central atom species make no direct

contribution to the distortion score. The signi®cant compar-

ison is therefore between the motion of vertex atom species

and the distortion of polyhedra. In the case of quartz discussed

below, for example, the r.m.s. motion of O atoms is twice as

large as the r.m.s. distortion, d, at room temperature, and four

times as large at high temperatures in the � phase.

The value of Mfit centres is not particularly signi®cant in itself.

We do, however, note that, when rotational amplitudes are

large, Mfit centres lies at or above the value of Mbefore. If, on the

other hand, displacements are more signi®cant than rotations,

Mfit centres will lie below Mbefore. Thus far, we ®nd rotational-

dominant behaviour in the crystalline framework silicates such

as quartz, while silica glass also shows signi®cant displacive

motion.

Evidently, the ®tting process generates a rotor for every

polyhedron in the structure. The r.m.s. magnitude of the rotor,

or of a component of the rotor, provides an indication of the

magnitude of rigid-unit motion in the structure, and it may be

of interest to observe this magnitude as a function of

temperature. Furthermore, it is possible to plot the distribu-

tion of rotor components for all the polyhedra, rather than

®nding an r.m.s. value; this process may yield information on

the nature of the rigid-unit motion. We use both forms of

analysis in our discussion of quartz below.

3. Applying a force model via geometric modelling

The geometric model on which this analysis is based, in which

each polyhedron exists both as a set of real atoms and as an

ideal geometric form, can itself be used to generate con®g-

urations of atoms by establishing the ideal forms ®rst and then

constraining the real atoms to ®t them. This process provides a

simple means of studying the geometric response of frame-

works to substitutional defects or compression, and of rapidly

relaxing idealized structures (for example, silica networks with

180� SiÐOÐSi angles) to obtain realistic bond lengths and

angles.

The model requires several iterations over two distinct

steps. In the ®rst step, we ®t a geometrically ideal polyhedron

over each real polyhedron using the GA rotor-®tting

approach, so that the vertices of the ideal polyhedra provide a

close match to the positions of the vertex atoms. The initial

®tting of the ideal polyhedron involves only three variables

(the parameters describing the orientation of the polyhedron),

and this step is easily performed using the method given by
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Wells, Dove & Tucker (2002). In the second step, each atom

moves within a simple-harmonic force model based on the

positions of the vertices. The displacement of the atom relative

to the position of an ideal vertex can be divided into the

components parallel and perpendicular to the direction of the

ideal vertex±centre (e.g. SiÐO) bond. The parallel component

represents the extension of the bond, while the perpendicular

component represents distortion of the internal bond angles of

the polyhedron. To each component we associate a spring

force, tending to pull the atom towards the ideal position. The

three-body terms constraining the OÐSiÐO bond angles are

thus replaced by constraints on the displacement of the vertex

atoms from their ideal positions. In keeping with the principle

of using two-body rather than three-body potentials, the

centre±vertex±centre (e.g. SiÐOÐSi) bond angle constraints

are represented as constraints on the centre±centre distances.

Having relaxed the atoms within this simple force model, we

then re®t the ideal polyhedra over the real polyhedra using

rotor ®tting and iterate until the structure is fully geome-

trically relaxed. The geometrically ideal polyhedra therefore

represent a form of multibody potential in which the evalua-

tion of bond angles is unnecessary, as angular information is

implicit in the shape of the polyhedron. It is, of course,

possible to include constraints on the relaxation by, for

example, pinning certain atoms or polyhedra in place. This

allows for a direct connection between the real-space and

reciprocal-space pictures of polyhedral motion, since the ideal

polyhedra of the model are the objects of RUM theory. Thus

we can both obtain the RUM component of a given set of

atomic motions from the motions of the ideal polyhedra, and

apply one or more RUM eigenvectors to the ideal polyhedra

and observe the response of the real polyhedra.

This geometric modelling process has been used success-

fully to model the high-P deformation mechanism of a zeolite

framework with EDI topology (Gatta & Wells, 2004).

4. Program availability and capability

We hope that the analysis will be of interest to the crystal-

lography community. We have therefore implemented it in a

self-contained program, called GASP (geometric analysis of

structural polyhedra). The source code is written entirely in

Fortran 90 and is available with documentation from http://

www.esc.cam.ac.uk/minsci/downloads/gasp®les.tar.gz. Ques-

tions, comments, bug reports and ®xes should be reported to

the corresponding author. The program in its current version

(1.5) performs three principal functions. The ®rst function,

known as preconditioning, analyses a structure and identi®es

the polyhedra within it. During this process a connectivity ®le

is generated, recording which atoms are bonded together, and

an ideal polyhedron is ®tted over each real polyhedron,

quantifying the distortion of the polyhedra from their

geometrically ideal forms. If the connectivity is already known,

it can be provided as input. Tetrahedra, octahedra and planar

triangles can all be present.

The comparison function takes as its input two structures

that have been preconditioned, that is, decomposed into their

component polyhedra. This function performs the analysis

described in x2.1, quantifying the difference between the two

structures and analysing it into components of rigid-unit

displacement, rigid-unit rotation and distortion. The two

structures could be two independent RMC ®ts, an ideal

(average) structure and a ®tted (disordered) structure, two

frames from an MD simulation, or representations of a

structure before and after the introduction of a defect.

The third function makes use of the modelling technique

described in x3 to relax a structure towards geometric ideality.

The program and analysis are designed for the comparison of

structures containing very large numbers (of order 102±105) of

atoms. The program is driven by a text ®le containing

geometric information and program commands. Structures

can be given either in a native .dat format or in the common

.xtl format. Full information on ®le formats and commands is

available with the code.
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Figure 2
Sections through RMC con®gurations of quartz. With increasing
temperature, the variation of atomic positions about the positions in
the average structure (insets) increases dramatically. Note the large
atomic displacements and the apparently rigid-unit character of the
polyhedral motion.
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5. Case study

Our principal case study is the analysis of a series of quartz

con®gurations generated by reverse Monte Carlo ®tting to

total neutron scattering data. Frameworks of corner-linked

SiO4 tetrahedra such as these are the classic objects of the

RUM model, and such frameworks are therefore a suitable

®rst application for our real-space analysis. Our analysis

provides information on the RUM contribution to the

dynamic disorder and the effects of phase transitions on the

RUM behaviour. We quantify the signi®cance of RUM

motions and show that they are very important in the dynamic

disorder, particularly at high temperatures. By analysis of the

� and � phases, we show that the disorder in the high phase

can be explained on the basis of the excitation of RUMs. We

show the effect of the phase transition on the RUM behaviour

in the � phase, demonstrating the link between the symmetry

change due to the transition and the amplitudes of rotations

about different axes.

While quartz shows considerable geometric ¯exibility, it is

not the most ¯exible crystalline silicate. We compare our

results for quartz with those for cristobalite and zeolite Y,

demonstrating that larger amplitudes of atomic motion are

obtained in the more RUM-¯exible frameworks.

5.1. Quartz

In a recent total neutron scattering study of quartz (Tucker

et al., 2000; Tucker, Keen & Dove, 2001), measurements were

performed over a wide range of temperatures below the phase

transition temperature and for some temperatures above the

phase transition. The RMC con®gurations therefore provide

information about changes in both short-range and long-range

order as a function of temperature on heating through the

phase transition. The con®gurations contained 6000 SiO4

polyhedra. Sections of some of the con®gurations so generated

are shown in Fig. 2. It is clear that, as temperature increases,

the variation about the `average' structure (the structure

found from the Bragg peaks) increases markedly. Since RUMs

provide a mechanism for large reorientations of the polyhedra

at small energy cost, we would expect RUMs to play an

important role in this variation. By visual inspection, it would

seem that the polyhedra are undergoing rigid-unit motion.

The rotational motion and polyhedron distortion were

considered by Wells, Dove, Tucker & Trachenko (2002). We

can now complete that analysis by considering also the total

atomic motion. Fortunately, data were available for a large

number of points covering both the low and the high phase,

and Fig. 3 shows the degree of disorder in quartz as a function

of temperature. This graph shows the mismatch scores de®ned

in x2, in AÊ 2 per polyhedron, between two independent RMC

®ts to the scattering data at each temperature.

Note that the tetrahedral distortion is much less than the

total disorder. The large difference between the two indicates

the contribution of RUMs to the dynamic disorder. The value

of Mfit centres lies slightly above the value of the distortion score

Mbefore, indicating that the RUM motions are predominantly

rotational rather then displacive, as discussed in x2.3. Note

particularly that the distortion score is relatively insensitive to

temperature and to the phase transition, while the total

disorder increases sharply with temperature and shows the

phase transition quite clearly.

The tetrahedral distortion can be further divided into the

terms due to variation in bond lengths and due to bending of

the OÐSiÐO bond angle. It is clear that the distortion is

primarily due to bond bending, with a much smaller bond-

stretching component. The nature of the distortions does not

appear to change over the temperature range of this study.

Wells, Dove, Tucker & Trachenko (2002) showed that there is

no correlation between the distortions in the two different

con®gurations.

Fig. 4 shows the breakdown of the mismatch scores into

r.m.s. motion values for Si and O atoms, plus distortion values

Figure 3
Average mismatch scores, M, in AÊ 2 per polyhedron, for quartz. At each
temperature, we are comparing one RMC con®guration with another,
where both con®gurations are ®tted to the same data. The difference
between the disorder Mbefore and the tetrahedral distortion Mafter is due to
rigid-unit motion. Since the disorder is much greater than the distortion,
the dynamic disorder in quartz is largely accounted for by rigid-unit
motions of the tetrahedra.

Figure 4
The mismatch values for quartz, interpreted as r.m.s. motions of O and Si
atoms, and r.m.s. distortion of SiO4 polyhedra. It is clear that the vertex O
atoms are far more mobile than the Si atoms, as we would expect from
rigid-unit motion. The r.m.s. distortion (distance of O atoms from
geometrically ideal vertices) lies well below the r.m.s. motion of O atoms,
indicating that RUMs make a dominant contribution to the amplitude of
the dynamic disorder.
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for vertex O atoms in SiO4 polyhedra. The motion of O atoms

is twice the distortion value at room temperature and in the �
phase reaches four times the distortion value. This comparison

is very revealing of the importance of rigid-unit motion. Since

the displacement of the Si atoms is identi®ed with the

displacement of the polyhedra, they do not contribute directly

to the distortion value.

5.2. Order parameter in quartz

In terms of the average structure, the � phase of quartz is

obtained from the � phase by the condensation of an RUM as

a soft mode (Vallade et al., 1992). This RUM involves rotations

of the polyhedra about the h100i axes, with the rotation angle

reaching �17� at room temperature. It should be possible to

detect this rotation using geometric analysis. We therefore

compare the ®tted con®gurations with an ideal (zero-order

parameter) high-temperature form and observe the distribu-

tion of rotations of the ®tted polyhedra. We expect to observe

rotations of the polyhedra about the h100i axes, which in terms

of GA means the following; if we plot the X and Y compo-

nents of the rotors for the polyhedra, relative to the high

phase, against each other, the results should cluster about

three points. One point will be at By � 0;Bx ' ' (where

' ' 0:3 radians or 17� at room temperature), while the other

two points will lie at 120� to the ®rst point in the XY plane. If

more than one domain were present in the sample, there

would be six equally spaced clusters instead of three.

This prediction is amply born out by the results given in

Figs. 5±8.

With increasing temperature, the distribution of rotations

relative to the high phase becomes broader as the rigid-unit

component of the dynamic disorder increases in amplitude. In

the � phase, the distribution of rotations becomes isotropic at

about zero and is very broad. It appears that the disorder in

�-quartz arises largely from the excitation of the RUM spec-

trum.

The value of the tetrahedral rotation angle, ', as obtained

by ®tting Gaussians over the rotor distributions and extracting
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Figure 5
X and Y rotor components for polyhedra in a ®tted con®guration at
150 K, relative to their orientations in the ideal � phase. The distribution
of the rotations of the polyhedra, relative to the average positions in the �
phase, clearly shows the rotations about the h100i axes by which the �
phase is derived from the � phase.

Figure 7
X and Y rotor components for polyhedra in a ®tted con®guration at
793 K, relative to their orientations in the ideal � phase. At high
temperatures near the phase transition, the distribution is so broad that
the average rotation can barely be discerned. Note, however, that the
distribution retains its threefold symmetry.

Figure 6
X and Y rotor components for polyhedra in a ®tted con®guration at
473 K, relative to their orientations in the ideal � phase. As the
temperature rises, the distribution of the rotations broadens. The
polyhedra display more variation about the mean positions as RUM
amplitude increases in the dynamic disorder.

Figure 8
X and Y rotor components for polyhedra in a ®tted con®guration at
1073 K, relative to their orientations in the ideal � phase. The distribution
of orientations has become isotropic about zero and is very broad,
indicating the large amplitude of rigid-unit motion of the polyhedra.
There is no evidence for the formation of domains of the � phase.
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the peak position, is plotted in Fig. 9. At room temperature, we

®nd an average rotation of 17� relative to the � phase, as

expected.

5.2.1. Amplitude of rotational motion. The �±� phase

transition is clearly visible in the dynamic disorder, which

drops dramatically as the temperature falls below the transi-

tion temperature. There exist phonon modes that are RUMs in

the high-symmetry � phase but develop a component of

tetrahedral distortion in the low-symmetry � phase. This

change is accompanied by a dramatic decrease in amplitude as

the energy cost of the distortion increases the frequency of the

mode. We attribute the changes in dynamic disorder with

temperature to the effects of the symmetry change on the

RUM phonons. We investigate this effect by considering the

distribution of polyhedral rotations in the dynamic disorder, as

obtained from the analysis in x5.1. For each polyhedron, there

is a rotation describing its reorientation from one con®gura-

tion to the other. The distribution of rotor components Bx;y;z

describing these rotations is a Gaussian centred on zero. The

r.m.s. value of the rotor component is a measure of the

amplitude of rotational motion, as shown in Fig. 10. It appears

from the behaviour of the rotor components that, in the �
phase, the polyhedra are freer to rotate about axes lying in the

xy plane than they are about the z axis, a fact that re¯ects the

hexagonal symmetry of the structure. The effect of the phase

transition, however, with its imposition of an average rotation

of the polyhedra about the h100i axes, is to constrain the x and

y rotations and reduce them to the same amplitude as rota-

tions about the z axis.

5.2.2. RUM frequencies and amplitudes and their relation

to the order parameter. We now look more closely at this

effect, whereby the symmetry-breaking in the phase transition

affects the rotational behaviour, by considering the link

between the order parameter, the frequencies of the RUMs

and their amplitudes. A simple Einstein model for the rota-

tional oscillations of the polyhedra suggests that

h�2i / P

modes

T=!2
mode; �9�

and we therefore plot h�2i=T, a measure of
P

modes 1=!2
mode,

against T to observe the behaviour of the RUM frequencies.

The split-atom model (Giddy et al., 1993, Hammonds et al.,

1994) would suggest that, as the average tilt, '
�� ��, of the

polyhedra relative to their positions in the � phase increases

from zero, modes that are RUMs in the � phase gain

frequency in proportion to sin '
�� ��. Since the phase transition in

quartz is of almost tricritical character (Carpenter et al., 1998),

and the data do not approach the phase transition closely

enough to allow us to observe any ®rst-order discontinuity, we

take it that

'
�� �� / �1 ÿ T=Tc�1=4: �10�

As a simple model, we suppose that the value of h�2i=T for the

high phase is a result of a population of RUMs having a typical

frequency !RUM, and that h�2i=T / 1=!2
RUM. We extrapolate

linearly from the values in the high phase to obtain the

quantity h�2i=TRUM, that is, the predicted value of h�2i=T if all

the RUMs from the high phase remained RUMs in the low

phase.

We now suppose that RUMs in the low phase develop a

component of tetrahedral distortion and gain frequency �! in

proportion to the growth of the order parameter:

�!=! � K�1 ÿ T=Tc�1=4. These modes will therefore have

their amplitude reduced and our prediction for h�2i=T then

becomes

h�2i=T � �h�2i=TRUM� 1 � K�1 ÿ T=Tc�1=4
� �ÿ2

: �11�

We perform two separate ®ts, one to the average of the X and

Y rotor components, and another to the Z rotors. The results

are plotted in Fig. 11. For the X and Y rotors, the model ®ts the

data well, with a value of K � 0:75. For the Z rotors, however,

the ®t is best with K � 0:19. This outcome is understandable

in terms of our model in which rotations about the z axis are

more constrained than those about the x and y axes in the high

phase.

Figure 9
The average rotation of the polyhedra in an RMC con®guration of quartz,
relative to their positions in the ideal � phase. The rotation displays a
dependence on the order parameter. Unfortunately the distribution of
angles near the transition is so broad that the parameter cannot be
obtained with any accuracy in this region.

Figure 10
The r.m.s. rotor components (amplitudes of rotation of polyhedra) in the
dynamic disorder of quartz. The r.m.s. values of the rotor components
show different behaviour for the XY and the Z components with
temperature. Rotations about the Z axis appear more constrained than
those about the X and Y axes in the high-symmetry phase.

electronic reprint



This result con®rms the impression obtained from the rotor

components in Fig. 10; rotations about the z axis are

constrained throughout, while rotations about axes in the xy

plane are freer in the high phase but become constrained

because of the symmetry change in the phase transition.

5.3. Comparison with other crystalline silicates

As we have seen, quartz displays a considerable degree of

geometrical ¯exibility; however, it is not the most ¯exible of

the crystalline silicates.

Tucker, Squires et al. (2001) demonstrated that the struc-

tural disorder in the high phase of cristobalite could be

accounted for on the basis of rigid-unit motion, without the

need for a domain model. Wells, Dove, Tucker & Trachenko

(2002) considered the ¯exibility of the cristobalite structure

from the point of view of RUM theory, showing that it is

greater than that of quartz.

Zeolites are another class of framework structures for

which an RUM analysis is fruitful. The high symmetry and

large unit cells of some zeolite structures give them a large

number of RUMs, and in some cases, the number of RUMs

can even be a ®nite fraction of the total number of modes

(Hammonds et al., 1998).

We have performed geometric analyses on cristobalite

con®gurations ®tted to total neutron scattering data at ®ve

temperature points and on siliceous zeolite Y con®gurations

®tted to total neutron scattering data at two temperature

points, using the same RMC technique as for the quartz. A

geometric analysis of the cristobalite con®gurations, consid-

ering only the rotational motions, was performed by Wells,

Dove, Tucker & Trachenko (2002). We now present the results

of our full analysis in the form of the r.m.s. motions of the Si

and O atoms, and the r.m.s. distortion of the SiO4 polyhedra

(Fig. 12). The corresponding values for quartz, from Fig. 4, are

also given for comparison.

The zeolite and the cristobalite display very similar levels of

atomic motion and of tetrahedral distortion; these values may

therefore be typical of highly ¯exible crystalline silica. The

degree of atomic motion is considerably higher than that seen

in quartz, re¯ecting the greater geometric ¯exibility of these

two structures. For the zeolite, cristobalite and quartz in the �
phase, the ratios of the r.m.s. oxygen motion to the r.m.s.

tetrahedral distortion are similar and indicate the dominance

of rigid-unit motion in the dynamic disorder, while in � quartz

at lower temperatures, this ratio decreases, as the symmetry

change from the phase transition decreases the geometric

¯exibility.

6. Conclusions

We have developed an analysis connecting the motion of

atoms in real space to the concepts of rigid-unit theory. Using

this approach, we can quantify the importance of rigid-unit

motion in dynamic disorder. We have shown that the method

of `reverse Monte Carlo with geometric analysis' (RMC+GA)

is extremely useful for extracting information from RMC

simulations of framework structures. The method is imple-

mented in a Fortran 90 code, GASP, which is freely available.
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