
1. Introduction

1.1 Neutron scattering as an emerging tool in Earth 
and Mineral Sciences

Until recently neutron scattering methods had been
applied only sporadically to problems in the Earth and
Mineral Sciences. The current growing interest in the use
of neutron scattering in this field is partly due to the devel-
opment of improved neutron sources, such as the UK ISIS
pulsed neutron source, and the development of new
methods and instrumentation. With regard to instrumenta-
tion, exciting developments have been facilitated by the
possibility for vastly increase coverage by huge banks of
detectors, with high-throughput data handling capabilities
which have been increased by developments in computing,
data storage and communications. Examples are the GEM
general-purpose diffractometer and MAPS magnetic exci-
tations spectrometer at ISIS (the best source of information
is the ISIS web site, http://www.isis.rl.ac.uk/ ). New
instruments give rise to new science possibilities, some of
which have led to the growing interest in mineral sciences
applications of neutron scattering. These include possibili-
ties for diffraction studies of complex minerals with subtle
phase transitions, high-pressure studies, and spectroscopic
studies. With the prospects of more advanced neutron
sources coming on line over the next decade, including
upgrades of ISIS (such as the development of a second
target station), the SNS pulsed source at Oak Ridge (USA),
and possibly the European ESS pulsed source, with the new
opportunities these will give, it is timely to review the
present state of the art in applying neutron scattering

methods to solve problems in minerals sciences. Some of
the possibilities for the future have been reviewed by
Artioli et al. (1996a).

1.2 The interaction of neutrons with matter

Properties of the neutron

The neutron provides a unique probe of the atomic
properties of matter. It carries no charge, and has a
magnetic moment. Because it has no charge, and unlike
electromagnetic radiation and electrons, the neutron does
not interact with the atomic charge distribution. Instead, the
neutron interacts via the strong nuclear force with the
atomic nucleus, and via its magnetic moment with the
magnetisation density fluctuations (spatial and temporal)
of the atoms. The mass of the neutron (1 a.m.u.) is similar
to the masses of atomic nuclei (i.e., from 1–240 a.m.u.).
This means that the momentum and energy of a neutron
can be similar to the momenta and energies of atoms in
normal matter. Furthermore, the wavelength of a beam of
neutrons will be similar to interatomic spacings. As a
result, neutron beams can be used as probes of both struc-
ture and dynamics of materials, as will be highlighted in
this review and in other reviews in this collection. This
includes crystal structure and phonon dynamics, which are
concerned with the atoms, and magnetic structures and
magnetic excitations.

There are two types of processes in which neutrons
interact with matter, namely neutron scattering and neutron
absorption . The interaction of the neutron with matter,
whether through scattering or absorption, is usually quite
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weak, although there are notable (and generally useful)
exceptions. This is in contrast with other probes such as
conventional X-ray diffraction. 

The strength of the scattering from an atomic nucleus is
defined in either of two ways. The first is the formal equiv-
alence of the atomic scattering factor, which for neutron
scattering is called the scattering length (and with units of
length), and it is usually given the symbol b. The second
definition is as a scattering cross section with symbol s
(and with units of area). By convention, the cross section is
linked to the scattering length by s = 4pb2. The use of the
scattering cross section is useful for comparing different
types of interaction between the neutron and the nucleus.

Neutron scattering processes

The scattering interaction between the neutron and
atomic nucleus takes place over extremely short length
scales, of the order of 10–15 m. By contrast, the interaction
between X-rays and the atomic charge distribution operates
at the length scale of the atom, namely around 10–10 m
(1 Å). The amplitude of a scattered beam of radiation varies
with scattering vector Q as the inverse of the size of the
length scale involved in the scattering process. For X-ray
diffraction, this means that there is a considerable reduction
in the amplitude of scattering over the range of values of Q
in a typical experiment (e.g., 0–6 Å–1). On the other hand,
the small distances involved in neutron scattering mean
that there is no appreciable change in the scattering length
over the same range of Q. Together with the high resolution
now possible with neutron powder diffraction instrumenta-
tion, the independence of the scattering length on Q has
helped neutron powder diffraction to become particularly
valuable in determining crystal structures of minerals and
the variation of structure with changing temperature and/or
pressure. This is important because the crystal structures of
minerals can be relatively complicated in comparison with
other inorganic crystals. Neutron powder diffraction is now
an established tool for the study of subtle changes in struc-
ture associated with phase transitions, as reviewed by
Pavese (2002) and Redfern (2002).

Unlike nuclear scattering, the scattering of neutrons by
the magnetic moments of atoms does have a significant
dependence on Q. The magnetisation of an atom arises
from the unpaired electrons in the atoms, and the magneti-
sation density extends across the same length scale as the
charge distribution. This means that the scattering length
for magnetic scattering varies with Q in a manner similar to
that for X-ray scattering.

There are two main types of neutron scattering
processes. The first is coherent scattering, which is the
scattering process in which the scattering from each atom
of the same type is independent of the nuclear isotope and
spin state. In effect, coherent scattering processes average
over isotope number and spin state. The second type of
interaction is incoherent scattering, which accounts for
differences in scattering from atoms of the same type due
to differences in isotope or spin state. Clearly, any atom
with a nucleus of zero spin and with only one isotope will
have a zero incoherent cross section. The separation of

coherent and incoherent scattering processes is described
in more detail in §2.2.

Neutron scattering cross sections are actually relatively
weak. Unfortunately, this is coupled with the fact that even
the most advanced neutron sources have relatively low
fluxes of neutrons as compared to X-ray, laser or electron
radiation sources (see Winkler, 2002, for a discussion of
sources of neutrons). This means that neutron scattering
experiments may be time consuming, and the high costs of
producing and detecting a neutron beam (Winkler, 2002)
mean that neutron scattering experiments are relatively
expensive. However, these negative points are more than
offset by the unique information that can be given by
neutron scattering, as will be highlighted in this and the
other reviews in this collection of papers.

Neutron absorption processes

The other type of interaction between neutrons and
atomic nuclei is absorption . In many cases, the cross
section of neutron absorption is quite low. However, there
are some nuclei that have relatively large absorption cross
sections. These can occur either as resonances, or as an
absorption process that varies as the inverse of the neutron
velocity. Two examples of common neutron-absorbing
materials are boron and cadmium. Both of these are often
used in neutron scattering experiments because of their
absorbing power, usually as components to mask the trajec-
tory of the incoming and scattering neutron beam in order
to avoid measurements of neutrons scattering from else-
where other than the sample.

The low absorption of neutron beams passing through
most materials means that neutrons can penetrate through
the walls of sample environment equipment. This facili-
tates the development of such equipment without needing
to compromise the quality of the types of experiment that
can be performed. For example, good control at high and
low temperatures is a routine operation in a neutron scat-
tering experiment (Pavese, 2002; Redfern, 2002).
Traditionally, high pressures have been easier to work with
using X-ray diffraction and diamond anvil cells, but the use
of time-of-flight neutron scattering techniques (Winkler,
2002) have facilitated considerable progress in neutron
scattering at high pressures (Besson & Nelmes, 1995). It is
now also possible to perform neutron diffraction measure-
ments at simultaneous high pressures and temperatures
(Zhao et al., 1999, 2000; Le Godec et al., 2001, 2002), as
reviewed by Redfern (2002).

The usually low absorption of neutron beams also
means that neutrons will interact with the bulk of the
sample under study. In some circumstances, there can be
measurable differences between the behaviour of a material
at its surface and the behaviour in the bulk (displacive
phase transitions most often give this effect). In such cases,
conventional X-ray and neutron diffraction experiments
may give different results if the results of a conventional X-
ray diffraction experiment are dominated by scattering
from the surface.

Neutron absorption processes are essential for the oper-
ation of neutron detectors. Common absorbing materials in
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neutron detectors are lithium and 3He. Boron (in the
gaseous compound BF3) and gadolinium are also used as
neutron absorbing materials in neutron detectors (see
Winkler, 2002).

Resonance absorption of neutrons can be exploited in
the design of experiments. Fowler & Taylor (1987)
proposed that measurements of the absorption resonance
profile could be used to measure the temperature of a
sample, through the Doppler broadening of the resonance
line (see also Mayers et al., 1989, Frost et al., 1989). This
procedure has recently been exploited for the measurement
of temperature in diffraction experiments at simultaneous
high pressures and temperatures, where thermocouples
would be difficult to use (Le Godec et al., 2001, 2002).

Neutron absorption processes can also be exploited for
macroscopic imaging and tomographic studies of mineral
and melt properties, as reviewed by Winkler et al. (2002).

Variation with atomic number

Neutron scattering and absorption cross sections do not
vary systematically with atomic number (although there are
some general trends, albeit with very large fluctuations
away from these trends). The variation with atomic number

of the coherent scattering lengths, incoherent scattering
cross sections, and neutron absorption cross sections are
illustrated in Fig. 1. Several important features emerge
from a consideration of the data in Fig. 1. 

It can be noted that there are interesting contrasts in the
coherent scattering lengths for groups of atoms or ions with
similar numbers of electrons, such as Mg2+, Al3+ and Si4+.
These will have very similar scattering cross sections for
X-ray diffraction, but significantly different scattering
lengths for neutron diffraction. In fact, there are some
atoms, including 1H, Mn, and Ti, that have negative
coherent scattering lengths. In these cases, the phase of the
scattered neutron beam is reversed compared to the phase
when scattering from atoms with positive scattering length.
This will increase the difference between the scattering
lengths of similar atoms even further.

In Fig. 1 we compare the coherent and incoherent scat-
tering cross sections for all atoms. It can be seen that for
most atoms the coherent scattering cross section is the
larger of the two, which is essential for the study of struc-
ture through diffraction and for measurements of collective
excitations. However, there are some nuclei for which the
cross section for incoherent scattering is particularly large.
1H is one of these nuclei. In a powder diffraction experi-
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Fig. 1. Top, dependence of coherent neutron scat-
tering lengths on atomic number. Middle, compar-
ison of the coherent and incoherent scattering cross
sections for the same range of atomic number. For
clarity, the plot of the coherent scattering cross
sections has been lowered by 50 barns, and a raised
plot of incoherent scattering cross sections multi-
plied by 20 is also included. Bottom, logarithmic plot
of neutron absorption cross sections. Among the
important features of these diagrams are the large
incoherent cross section and negative coherent scat-
tering length for hydrogen (atomic number 1); the
near-zero value of the coherent scattering length of
vanadium (atomic number 23) with an appreciable
cross section for incoherent scattering; the relatively
large absorption cross sections of boron (atomic
number 5), cadmium (atomic number 48) and
gadolinium (atomic number 64), each of which can
be used to provide neutron shielding for precision
experiments; contrast between the coherent scat-
tering lengths of important isoelectronic (or nearly
isoelectronic) atoms, such as the Mg/Al/Si and
Mn/Fe/Co/Ni series. Data are from V.F. Sears, as
quoted in Bée (1988).



M.T. Dove

ment on a hydrous mineral, the incoherent scattering from
the hydrogen nucleus can give a large contribution that
dominates the diffraction pattern for all values of Q, which
effectively limits the accuracy of the information that can
be extracted from the diffraction pattern. However, the
deuterium nucleus has a zero incoherent scattering cross
section, and the problem associated with hydrogen can be
eliminated if the hydrogen atoms in the sample to be
studied can be completely replaced by deuterium.

Figure 1 also shows the wide range of neutron absorp-
tion cross sections. The relatively large absorption cross
sections of some nuclei, such as lithium (Z = 3) and boron
(Z = 5), can be seen to be several orders of magnitude
larger than for atoms with similar mass. Lithium and boron
are used in neutron detectors, and boron is also used in
shielding materials.

1.3 Neutron scattering and the Earth and Mineral 
Sciences

Rinaldi (2002) has reviewed a wide range of reasons
why neutron scattering is of direct interest to the Earth and
Mineral Sciences. We have highlighted above the issues of
sensitivity to nuclei of similar atomic number and the
ability to study magnetic minerals, and the possibility to
study both structure and dynamics.

The wide range of particular advantages of neutron
scattering listed above and in Rinaldi (2002), can be encap-
sulated in the fact that neutron scattering methods have an
astonishing versatility. This versatility arises from the prop-
erties of the neutron. In particular, the wavelengths and
energies of neutrons are comparable to the length and
energy scales of the atoms in solids and fluids. This
contrasts with X-rays, where the wavelength is similar to
the interatomic spacings but the energy is several orders of
magnitude higher than the energy of lattice vibrations.
Laser light and infrared radiation have energies closer to
atomic vibration energies, but their wavelengths are much
larger than interatomic spacings. Since neutron scattering
probes both the length and energy scales of atomic
processes, it is possible to design experiments that focus on
both spatial and dynamic processes at the same time, or
else which focus on one or other. We will formalise this
versatility below.

The versatility of neutron scattering methods can be
illustrated with reference to the hydrogen atom. Many
minerals contain hydrogen, sometimes in the form of
bound or free hydroxide ions, and sometimes in the form
of bound water molecules or as free water molecules
within cavities in the crystal structure. X-rays are very
insensitive to hydrogen, but neutrons are scattered by
both hydrogen, 1H, and deuterium, 2H, nuclei. Hydrogen
1H has an extremely large cross section for incoherent
scattering – this is the cross section for neutron scattering
that can be used to study the motions of individual
hydrogen atoms (§4). Slow motions of the hydrogen
atoms, whether in translational diffusion or reorienta-
tional motions of molecules containing hydrogen atoms,
can be probed by quasi-elastic incoherent scattering
(§4.2, 4.4), and fast motions of individual atoms, as in

lattice or molecular vibrations, can be studied by high-
energy spectroscopy (§4.3). On the other hand, since
deuterium has a reasonable cross section for coherent
scattering and no appreciable cross section for inco-
herent scattering, deuterated samples can be used in
diffraction studies for the location of hydrogen sites in
crystal structures or in studies of individual collective
excitations.

The objective of this article is to review the
formalism of neutron scattering, and to highlight how the
formalism leads to the versatility and the great diversity
of applications of the methods for studies in mineral
sciences. We will start with the general formalism, and
show how it can be separated into several different
components. These include elastic and inelastic scat-
tering, and coherent and incoherent scattering. The
specific features of these different components will be
illustrated using brief examples. We will focus mostly on
methods that have already been used for studies of
mineral behaviour, and will only briefly comment on
methods (such as measurements of magnetic properties,
small-angle scattering and surface reflectometry) that
have yet to be used for routine studies.

2. General formalism for neutron scattering

2.1 The neutron scattering law

A typical neutron scattering experiment will involve
measuring the intensity of the neutrons scattered from a
beam incident on a sample. The scattering process will
involve a change in the wave vector of the beam, which is
denoted by the scattering vector Q. The scattering process
may also involve a change in the energy of the neutrons E.
This will be determined by the angular frequency w of
some dynamic fluctuation in the sample, so that

E = w (1).

The intensity measured in an experiment is converted
into a function of Q and w, and is proportional to the
dynamical structure factor, S(Q,w). This function repre-
sents the Fourier transforms of the time and spatial fluctu-
ations of the atomic density (or spin density for magnetic
neutron scattering). We present the formalism by consid-
ering the scattering from point particles, which is appro-
priate to the case of neutron scattering because, as noted
earlier, the length scale of the interaction between a neutron
and atomic nucleus is around five orders of magnitude
smaller than the wavelength of the neutron beam. For a
given particle of label j at position rj at time t, the number
density can be expressed as the Dirac delta function:

rj(r,t) = d(r – rj(t)) (2).

The spatial Fourier transform of the number density is
given as

rj(Q,t) = òrj(r,t)exp(iQ×r)dr = exp(iQ×rj(t)) (3).
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The fluctuations in time are expressed through the
cross-correlation function

fjk(Q,t) = <rj(Q,t)rk(–Q,0)> (4),

where the angular brackets denote an average over all initial
times. In a neutron scattering process, the contribution of
each atomic nucleus to the amplitude of the scattered beam
is weighted by the scattering length bj, which reflects the
strength of the interaction between the neutron and the
nucleus. As a result, when we consider the fluctuations of
the whole sample that will give rise to the neutron scat-
tering, we weight each contribution accordingly and write

F(Q,t) = 
1–
N S

j,k
<bjbkrj(Q,t)rk(–Q,0)>

= 
1–
NS

j,k
bj
—

bk<rj(Q,t)rk(–Q,0)> (5),

where N is the number of atoms. This function is known as
the intermediate scattering function. The overbars repre-
sent the average implicit in the time averaging of the cross-
correlation functions, and can be separated from the
fluctuations in the density functions because the scattering
lengths do not depend on time.

The dynamical structure factor is given by the time
Fourier transform of F(Q,t):

S(Q,w) = òF(Q,t)exp(iwt)dt

= 
1–
NòS

j,k
bj
—

bk<rj(Q,t)rk(–Q,0)>exp(iwt)dt (6).

In many cases this is expressed in terms of energy rather
than angular frequency, using the conversion given in equa-
tion (1):

S(Q,E) = 
1–
NòS

j,k
bj
—

bk<rj(Q,t)rk(–Q,0)>exp(iEt/ )dt (7).

The formalism may now appear to be rather compli-
cated, but we can turn this to our advantage by considering
special cases, each of which leads to a special technique
that can give more-or-less unique information about the
system being studied. This includes separation of coherent
from incoherent scattering processes, elastic from inelastic
scattering processes (both of which are discussed immedi-
ately below), and techniques in which we can integrate over
either energy or scattering vector. It is the fact of being able
to carry out the separation of different scattering processes
that leads to the versatility of neutron scattering methods
highlighted in the introduction.

2.2 Separation of coherent and incoherent neutron 
scattering

In discussions of S(Q,w), it is often assumed that the
neutron scattering length for any element in a crystal is the
same for each atom of a particular element. This implies
the assumption that the scattering length is independent of
the nuclear isotope number and the nuclear spin state. In
practice, what we have actually been doing is to average out
all these effects, as we will see below.

For many nuclei, the spin is zero so that the spin-depen-
dent components of the nucleus–neutron interactions are
absent, and even when the nuclei have spin, the spin effects
are often relatively weak. Moreover, for many important
elements only one isotope occurs in significant quantities.
For example, the isotopes of oxygen, 15O, 16O and 17O,
occur with relative abundances 1%, 98% and 1% respec-
tively. Hence the assumption of constant scattering length
for the atoms of many elements is quite justified. However,
there are important exceptions. The two major isotopes of
nickel are 58Ni (relative abundance of 68.3%) and 60Ni
(relative abundance of 26.1%), with respective scattering
lengths of 14.4 and 2.8 fm, with neither of these two nuclei
having a non-zero value of the spin. On the other hand,
hydrogen (1H) is an example where the spin-dependence of
the nucleus–neutron (in this case the proton–neutron) inter-
action is very important, and this isotope has a relative
abundance of more than 99.9% in natural hydrogen. The
proton and neutron both have spin values of 1/2, which
under the laws of quantum mechanics can be aligned in
four ways. Three of these have parallel alignment, giving a
total spin of S = 1 and z component Sz = –1, 0 or +1,
whereas the fourth has antiparallel alignment and S = 0.
The scattering lengths for parallel and antiparallel align-
ment are 10.4 and –47.4 fm respectively, giving an average
value of only –3.74 fm. Sodium is another nucleus with an
incoherent scattering cross section that arises from the spin
states; the incoherent scattering length, 3.56 fm, is close to
the coherent scattering length, 3.63 fm. Vanadium is
unusual in that the sum of the coherent contributions is
almost zero, with only a significant incoherent cross
section. We therefore need to consider how the neutron
scattering function can be modified to account for these
effects, and we shall find that there are considerable appli-
cations from this extended approach. The comparisons
between values of the coherent and incoherent scattering
cross sections are illustrated in Fig. 1. A compilation of
scattering lengths and cross sections has been reproduced
by Bée (1988).

In order to account for different scattering lengths for
atoms of the same type, we separate the intermediate scat-
tering factor (equation 5) into two components:

F(Q,t) = Fcoh(Q,t) + Finc(Q,t) (8).

where the coherent term is given as

Fcoh(Q,t) = 
1–
NòS

j,k
bj
–

bk
– <rj(Q,t)rk(–Q,0)> (9),

and the incoherent term is given as

Finc(Q,t) = 
1–
NS

j,k
(bj
—

bk – bj
–

bk
–

)<rj(Q,t)rk(–Q,0)> (10).

The coherent term has an average value for the scattering
length and therefore contains the information about
coherent (i.e. correlated) processes, such as Bragg and
phonon scattering. For most applications, the coherent term
is expanded in terms of instantaneous atomic displace-
ments from mean positions, and this enables the formalism
to be applied to studies of phonon dispersion curves and
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other dynamic processes. This expansion will be discussed
later.

The incoherent term is not yet written in a useful form. We
note, however, that we do not expect there to be any correla-
tion between the particular value of the neutron scattering
length and the site. This means that we have the condition

bj
—

bk = bj
–

bk
–

for j ¹ k (11).

Hence only the terms for j = k remain, so that

Finc(Q,t) = 
1–
NS

j
(bj

–2 – bj
– 2)<rj(Q,t)rj(–Q,0)> (12).

For reference, we can now define two scattering cross
sections:

sj
coh = 4pbj

– 2

sj
inc = 4p(bj

–2 – bj
– 2) (13).

We can write the equation for the incoherent structure
factor in its expanded form:

Finc(Q,t) =
1—

4pNSj
sj

inc<exp(iQ×[rj(t) – rj(0)])> (14).

It is convenient to define a probability distribution
function, G(r(t),r(0)), which gives the probability of
finding a particle at a position r(t) at time t if it had a posi-
tion r(0) at time 0. Thus we can write the equation in a new
form:

Finc(Q,t) =
1—

4pNSj
sj

incòexp(iQ×[rj(t) – rj(0)])

G(r(t),r(0))p(r)dr(t)dr(0) (15),

where p(r) is the probability of finding the atom at position
r at time 0. The significance of writing the intermediate
scattering function this way is that for all problems of
interest the time-dependence of the atomic motions are
most conveniently analysed through the rate equations that
govern the time-dependence of G(r(t),r(0)).

The main point that should be appreciated at this stage
is that the incoherent scattering function contains the
dynamic information for individual atoms, provided they
have sufficiently large incoherent cross sections. This
dynamic information may include the motions due to all
the phonon modes in the crystal, complementary to the

temperature factor, but it may also include diffusion
dynamics if important. This is reviewed briefly below (§4);
a comprehensive treatment has been given by Bée (1988).

2.3 Separation of elastic and inelastic scattering

Elastic scattering arises from the static component of a
crystal structure (the idea applies equally well to a glass,
but not to a fluid phase), and therefore has w = 0. However,
it is not identical with S(Q,w = 0), as will now be
explained.

The function S(Q,w = 0) can be written as

S(Q,w = 0) = òF(Q,t)dt (16).

We can separate F(Q,t) into two components, a constant
term and a term that depends on time and either tends to a
zero as t ® ¥ or else oscillates around zero at large t. Thus
we can write

F(Q,t) = F(Q,¥) + F’(Q,t) (17),

where the first term is the constant term, and the second
contains all the time dependence. The Fourier transform of
the time-dependent term will give the same energy spec-
trum for w ¹ 0 as the full F(Q,t). The Fourier transform of
the constant term will yield a d-function at w = 0:

òF(Q,¥)exp(iwt)dt = F(Q,¥)d(w) (18).

From equation (5) the function F(Q,¥) can be written
as

F(Q,¥) = 
1–
N S

j,k
<bjbkrj(Q,¥)rk(–Q,0)>

= 
1–
NS

j,k
bj
—

bk<rj(Q)> <rk(–Q)> (19),

where we have used the fact that over infinite times the
fluctuations in the density function are uncorrelated. For
coherent scattering, equation (9), this will reduce to

Fcoh(Q,¥) = 
1–
N½S

j
b
–

j <rj(Q)>½2

(20).

The important point to appreciate from this discussion
is that the elastic scattering is the Fourier transform of the
time-independent component of the intermediate scattering
function. The Fourier transform of a constant function will
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zero value in the long time limit, its Fourier
transform will contain a delta function at zero
frequency. It is this delta function, and not
simply the scattering at zero frequency, that
corresponds to elastic scattering.



give a d-function at zero frequency. This is not the same as
the zero-frequency component of the scattered intensity.
We illustrate this point in Fig. 2. If F(Q,t) has a relaxational
component, the integral of the time-dependent part, which
gives a zero-frequency contribution to S(Q,w), is non-zero.
However, it forms part of the continuous distribution of
S(Q,w) rather than as a separate d-function.

2.4 Magnetic neutron scattering

The formalism of neutron scattering can be readily
extended for magnetic scattering. To illustrate the point, we
consider magnetic diffraction using an unpolarised beam of
neutrons. The magnetic equivalent of equation (20) is

Fmag(Q,¥) = 
1–
N½S

j
qjpj<exp(iQ×rj)>½2

(21),

where the magnetic interaction vector q is given by

q = m/m – Q(Q×m)/Q2m (22),

and m is the magnetic moment of an atom or ion. If a is the
angle between m and q,

q =½q½ = sina (23).

The magnetic scattering amplitude, p, is given by

p =  
e2g
—
2mc2 gJf (24),

where e is the electron charge, g is the magnetic moment
of the neutron, m is the mass of the electron, and c is the
speed of light. g is the Landé factor, J is the total orbital
angular momentum number of the atom, and gJ gives the
magnetic moment of the atom. f is the form factor that
depends on Q in a similar manner to the behaviour of the
X-ray atomic scattering factor. Over the useful range of
values of Q, p has values similar to the values of the
neutron scattering length for nuclear scattering, b (Fig. 1).
We will not develop the theory of magnetic scattering in
this review, but it should be noted that the formalism for
nuclear scattering presented here, both for elastic and
inelastic scattering, can be extended for the study of the
structures and dynamics of magnetic materials.

3. Formalism for coherent neutron scattering

3.1 Coherent inelastic neutron scattering

We now develop the analysis of the neutron scattering
function for the case when atoms vibrate about their mean
positions, as in a crystalline solid (for more details, see
Ashroft & Mermin, 1976; Dove, 1993). The instantaneous
position of atom j can be written as

rj(t) = Rj + uj(t) (25)

where Rj is the average position of the atom, and uj(t)
represent the instantaneous displacement of the atom from

its average position. The intermediate scattering function,
equation (9), can therefore be written as

F(Q,t) = 
1–
N S

j,k
b
–

jb
–

k exp(iQ×[Rj – Rk])<exp(iQ×[uj(t) – uk(0)])>

(26).

If the atoms move with harmonic motions, a standard
result gives

<exp(iQ×[uj(t) – uk(0)])> = exp – 
1–
2 <(Q×[uj(t) – uk(0)])2 >

= exp – 
1–
2 <[Q×uj(t)]2 > – 

1–
2 <[Q×uk(0)]2> + <[Q×uj(t)][Q×uk(0)]>

(27).

The first two terms in the expanded exponent corre-
spond to the normal temperature factors (see Willis &
Pryor, 1975; Ashcroft & Mermin, 1976; Castellano &
Main, 1985):

exp – 
1–
2 <[Q×uj(t)]2 > = exp(–Wj) ; 

exp – 
1–
2 <[Q×uk(0)]2 > = exp(–Wk) (28).

The third term can be expanded as a power series:

exp(<[Q×uj(t)][Q×uk(0)]>) = 
¥

S
m=0

1—
m!<[Q×uj(t)][Q×uk(0)]>m (29).

The first term in the series, m = 0, corresponds to elastic
scattering, which we will discuss below. The second term,
m = 1, turns out to be the most interesting of the other terms
in the series. Within the harmonic theory of lattice
dynamics, the instantaneous displacement can be written as

uj(t) = 
(Nm
—1—

j)1/2S
k,n

ej(k,n)exp(ik×rj)Q(k,n) (30),

where Q(k,n) is the normal mode coordinate for a phonon
of wave vector k and branch n (the number of branches in
a crystal containing z atoms per unit cell is equal to 3z), and
ej(k,n) is the normalised vector that gives the relative
displacements of each atom. Treating the normal mode
coordinate as a quantum operator, it can be shown that the
m = 1 term contributes the following term to the dynamical
scattering factor:

S1(Q,w) = 
1–
N S

j,k
b
–

jb
–

k exp(iQ×[Rj – Rk])exp(–Wj – Wk)

ò<[Q×uj(t)][Q×uk(0)]>exp(–iwt)dt

= 
1–
N S

n 2w(
— —

k,n)
½Fn(Q)½2

([1 + n(w)]d(w + w(k,n)) + n(w)d(w – w(k,n)))(31),

where the phonon structure factor component is given as

Fn(Q) = S
j

b
–

j—
mj

exp(–Wj)exp(iQ×Rj)Q×e(k,n) (32).
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The formula for the one-phonon dynamical scattering
factor requires some unpacking. The Dirac delta functions
represent the fact that scattering from a phonon of angular
frequency w(k,n) only occurs for changes in the energy of
the neutron beam of ± w(k,n). The probability of phonon
scattering is determined by the thermal population of
phonons, which is determined by the Bose-Einstein factor
n(w):

n(w) = 
exp
—

( w /
—1—

kBT)–1
— (33).

The case where the scattering mean has lost energy
corresponds to the situation where the neutron beam has
scattered following the creation of a phonon, and this
process occurs with probability [1 + n(w)]. The case where
the scattered beam gains energy corresponds to the situa-
tion where the neutron beam absorbs a phonon, and proba-
bility of this process is given by the number of phonons
n(w). At high temperatures the intensity from a single
phonon is proportional to

S1(Q,w)µkBT—w2
d(w ± w(k,n)) (34).

In both cases the intensity of scattering is determined by
the phonon structure factor which accounts for the relative
positions of atoms and the relative orientations of the scat-
tering vector Q and the displacements of the atoms. These
factors give selection rules for the one-phonon neutron
scattering process, which are not as restrictive as the selec-
tion rules in Raman or infrared spectroscopy, and which
can be useful in separating measurements when there are a
large number of phonons for any wave vector k. 

The terms for m > 1 involve multiphonon processes.
These processes do not give enough structure in measured
spectra to be useful, and understanding the behaviour of
these processes is mostly motivated by the need to subtract
them from absolute measurements of intensities in both
inelastic and total scattering measurements.

The one-phonon coherent inelastic processes described
above are often used for measurements of phonon disper-
sion curves with single crystal samples (Chaplot et al.,
2002). These studies are not trivial, and as a result it is
often the case that measurements will only focus on a small
subset of all phonon modes (particularly the lower energy
modes). Examples of measurements of relatively complete
sets of dispersion curves of minerals include calcite
(Cowley & Pant, 1970), sapphire (Schober et al., 1993) and
quartz (Strauch & Dorner, 1993). The measured dispersion
curves for quartz are shown in Fig. 3. It should be appreci-
ated that the measurements of the high-frequency modes
are particularly difficult – it can be seen from equation (34)
that the one-phonon intensity scales as w–2. Since these
modes can be better accessed by other spectroscopic
probes, and indeed their variation across range of wave
vector is often slight, it is often not worth attempting to
measure complete sets of dispersion curves. Moreover, the
experimental difficulties are increased with more complex
minerals. Examples of partial sets of dispersion curves
include the olivines forsterite (Rao et al., 1988) and fayalite
(Ghose et al., 1991), pyrope (Artioli et al., 1996b),
andalusite (Winkler & Bührer, 1990) and zircon (Mittal et
al., 2000a).

Because of the difficulties in obtaining full dispersion
curves, inelastic coherent scattering measurements using
single crystals may focus on selected modes. An example
is a detailed study of an anomalous inelastic scattering
process associated with a particular zone boundary mode
in calcite (Dove et al., 1992; Harris et al., 1998). The rel-
evant phonon dispersion relation is shown in Fig. 4. The
frequency of the lowest mode dips considerably at the zone
boundary, and softens on increasing temperature. This is
shown in inelastic neutron scattering spectra for different
temperatures in Fig. 5. This mode is actually the soft mode
for the high-pressure displacive phase transition in calcite.
In addition to the phonon peak, there is a broad band of
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inelastic scattering that is localised (in Q) at the zone
boundary. This anomalous inelastic scattering can be seen
as a weak feature barely above the background level at
energies lower than the phonon peak at ambient tempera-
ture in Fig. 5. The intensity of this scattering increases
rapidly on heating, eventually dominating the spectra at
high temperatures. The spectra have been analysed by
using a model in which the phonon is coupled to a relax-
ation process in the crystal, although there is no clear iden-
tification of the nature of this relaxation process. There is
an order-disorder phase transition at 1260 K (which has
also been studied by neutron powder diffraction, Dove &
Powell 1989). Phonon instabilities associated with phase
transitions have also been studied by inelastic neutron
scattering in quartz (Boysen et al., 1980; Bethke et al.,
1987, 1992; Dolino et al., 1992) and leucite (Boysen,
1990).

It is also possible to perform inelastic coherent scat-
tering measurements on polycrystalline samples, either

performing measurements as a function of the modulus of
the scattering vector, Q, or integrating over all Q to obtain
a weighted phonon density of states. The latter type of
measurement was used to obtain the first experimental
evidence for a significant enhancement of low-energy
rigid-unit modes in the high-temperature phase of cristo-
balite (Swainson & Dove, 1993). Measured phonon densi-
ties of states have been reported for complex minerals such
as almandine (Mittal et al., 2000b), pyrope (Pavese et al.,
1998), sillimanite and kyanite (Rao et al., 1999), orthoen-
statite (Choudhury et al., 1998) and fayalite (Price et al.,
1991). 

With spectrometers such as the MARI instrument at
ISIS it is now possible to perform inelastic scattering
measurements from powdered samples as functions of Q.
The value of these types of measurements is that they
enable comparisons to be made between the excitation
spectra of different phases. Fig. 6 shows measurements for
the two phases of cristobalite (Dove et al., 2000a). It is
clear that there is considerable additional scattering at low
energies (below 5 meV) in the high-temperature disordered
phase. This scattering can be associated with the rigid-unit
modes discussed by Swainson & Dove (1993), Hammonds
et al. (1996) and Dove et al. (2000b and c). It has also been
shown by these measurements that the inelastic neutron
scattering spectra of silica glass is closely related to the
spectra of the two phases of cristobalite (Dove et al., 2000a
and b).

There has been a considerable effort in the physics and
chemistry communities to use inelastic neutron scattering
methods to study magnetic dynamics, which can often be
described as spin waves. Measurements of spin wave
dispersion curves can provide information about the inter-
actions between atomic magnetic moments, the so-called
exchange interactions. There have been comparatively few
inelastic neutron scattering measurements on magnetic
minerals. Spin wave dispersion curves have been reported
for hematite (Samuelson & Shirane, 1970), and crystal
field magnetic transitions in Co-bearing cordierite and
spinel phases have been studied by inelastic neutron scat-
tering (Winkler et al., 1997).
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Fig. 5. Inelastic neutron scattering spectra from calcite at the
(1/2,0,–2) zone boundary point for several temperatures. The
important points are the phonon peak that softens on heating, and
the additional scattering at lower frequencies that increases dramat-
ically on heating (Harris et al., 1998).

Fig. 6. Inelastic neutron scattering data for
the two phases of cristobalite, obtained as
functions of both scattering vector and
energy transfer. High intensities are shown
as lighter shading. The important point of
comparison is the additional scattering seen
at low energies in the high-temperature b
phase. The data were obtained on the MARI
chopper spectrometer at the ISIS spallation
neutron source.
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3.2 Coherent elastic scattering and Bragg scattering

The case m = 0 in equation (29) gives the result:

F0(Q,t) = 
1–
N S

j,k
b
–

j b
–

k exp(iQ×[Rj – Rk])exp(–Wj – Wk)

= 
1–
N½Sj

b
–

jexp(iQ×Rj)exp(–Wj)½
2

(35).

This result is independent of time. As a result, the time
Fourier transform gives a delta function:

S0(Q,w) = òF0(Q,t)exp(–iwt)dt

= 
1–
N½Sj

b
–

j exp(iQ×Rj)exp(–Wj)½
2
d(w) (36).

This result is equivalent to the elastic scattering, i.e. the
w = 0 limit of S(Q,w), obtained earlier, equations (18) and
(19). This can be demonstrated by starting from the general
equation for the intermediate structure factor for coherent
neutron scattering:

S
j

b
–

j <exp(iQ×Rj)> = S
j

b
–

jexp(iQ×Rj)<exp(iQ×uj)>
= S

j
b
–

j exp(iQ×Rj)exp(–<[Q×uj]2>) (37).

This is the normal Bragg diffraction structure factor,
but can be generalised to include glasses. For glasses, its
application relies on the fact that the atoms vibrate around
mean positions that do not change over the time scale of a
measurement. This is not the case for fluids, and as a result
there is no elastic scattering for a liquid.

Bragg diffraction is commonly used in two modes. The
most common is powder diffraction, with data analysed using
the Rietveld refinement method. This method is now quite
fast on a high-intensity neutron source, and resolution can
also be high. An example of a high-resolution measurement is
shown in Fig. 7. Powder diffraction can be used for studying
the response of a structure to changes in temperature or press-
ure, particularly if there is a displacive or order/disorder

phase transition. Examples of temperature-induced displacive
phase transitions studied by neutron powder diffraction
include cristobalite (Schmahl et al., 1992), leucite (Palmer et
al., 1997), calcite and the analogue sodium nitrate (Swainson
et al., 1997) and lawsonite (Myer et al., 2001). Examples of
the use of neutron powder diffraction for the study of cation
ordering include the åkermanite–gehlenite solid solution
(Swainson et al., 1992), Mn/Mg ordering in cummingtonite
(Reece et al., 2000) and cation ordering in other amphiboles
(Welch & Knight, 1999), cation ordering in the
ilmenite–hematite solid solution (Harrison et al., 2000),
cation ordering in various spinel phases and spinel solid solu-
tions (Harrison et al., 1998, 1999; Pavese et al., 1999a,b and
2000a; Redfern et al., 1999), and cation partioning in olivine
phases (Henderson et al., 1996; Redfern et al., 1998, 2000),
and phengite (Pavese et al., 1997, 1999c, 2000b). Powder
diffraction is an excellent tool for the variation of structure
with temperature for properties such as thermal expansion,
e.g. crocoite (Knight, 2000), or for studies of dehydration,
e.g., gypsum (Schofield et al., 1997) and fluorapophyllite
(Stahl et al., 1987). As noted in §1.2, neutron scattering is
much more sensitive to scattering from hydrogen or
deuterium than X-rays, and because of this neutron powder
diffraction has often been used to study the behaviour of
hydrogen in minerals. Examples include analcime (Line et
al., 1996), laumontite (Stahl & Artioli, 1993), lawsonite
(Myer et al., 2001), gypsum (Schofield et al., 2000) and the
amphiboles (Welch & Knight, 1999; Reece et al., 2000).
Recent exciting developments in high-pressure neutron scat-
tering are most advanced in powder diffraction. Examples of
some of the studies that have been carried out include several
studies of brucite (Parise et al., 1993; Catti et al., 1995; Le
Godec et al., 2001, 2002), FeSi (Wood et al., 1997), hydro-
garnet (Lager & von Dreele, 1996), cristobalite (Dove et al.,
2000), muscovite (Catti et al., 1994) and Phase A (Kagi et al.,
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Fig. 7. High-resolution powder diffraction measurement from
orthoenstatite, obtained on the HRPD diffractometer at the ISIS
spallation neutron source (courtesy of S.A.T Redfern).

Fig. 8. Map of diffuse scattering measured in b-quartz, using the
PRISMA indirect-geometry spectrometer at the ISIS spallation
neutron source (Tucker et al., 2001a). The most intense scattering
is shown as the darker regions (such as the scattering from the
points in the reciprocal lattice). The most important features are the
streaks of diffuse scattering, which correspond to low-energy rigid
unit phonon modes (Hammonds et al., 1996).



2000). It is now possible to perform neutron powder diffrac-
tion meaurements at simultaneous high pressures and tempera-
tures (Zhao et al., 1999, 2000; Le Godec et al., 2001, 2002).

Neutron Bragg diffraction can also be used with single
crystals (Artioli, 2002). Single-crystal diffraction is capable
of giving structural information with higher precision than
with powder diffraction, although at the cost of a greatly
increased time necessary for a single measurement that
precludes studies at many temperatures or pressures.
Examples of single-crystal neutron diffraction measure-
ments include anorthite (Ghose et al., 1993), beryl (Artioli
et al., 1995a), pyrope (Artioli et al., 1997), diopside
(Prencipe et al., 2000), enstatite (Ghose et al., 1986), cation
ordering in olivine (Artioli et al., 1995b; Rinaldi et al.,
2000) and hydrogen bonding in schultenite (Wilson, 1994).

In addition to the use of Bragg diffraction for determi-
nation and refinement of crystal structures, Bragg diffrac-
tion can be used to give information about the internal states
of stress within a material. This is reviewed by Schäfer
(2002). A few magnetic neutron diffraction measurements
have been reported. These include ilvaite (Ghose et al.,
1984, 1990), hedenbergite (Coey & Ghose, 1985), Li-
aegerine (Redhammer et al., 2001) and the ilmenite-
hematite solid solution (Harrison & Redfern, 2001).

3.3 Coherent diffuse scattering

The coherent diffuse scattering from a crystalline mate-
rial is defined as the total diffraction with the Bragg scat-

tering subtracted. The diffuse scattering corresponds to a
measurement of S(Q,w) at a fixed value of Q integrated
over all w:

S(Q) = òS(Q,w)dw (38).

Since F(Q,t) is the reverse Fourier transform of S(Q,w),
the equation for S(Q) is simply the zero-time component of
the reverse Fourier transform:

S(Q) = F(Q,0) = 
1–
N S

j,k
b
–

j b
–

k <exp(iQ×rj)exp(–iQ×rk)> (39).

Expressing this in terms of the density functions, and
subtracting the Bragg scattering to give the diffuse scat-
tering, we obtain

Sdiffuse(Q) = 
1–
N S

j,k
b
–

j b
–

k (<rj(Q)rk(–Q)> – <rj(Q)> <rk(–Q)> (40).

The diffuse scattering can therefore be seen as arising
from instantaneous fluctuations of the atomic density from
the average density. Many aspects of the technique of
neutron diffuse scattering have recently been discussed by
Nield & Keen (2001).

There have been far fewer studies of minerals using
diffuse scattering than diffraction studies. An example of a
measurement of diffuse scattering from a single crystal of
quartz heating into the high-temperature b phase is shown
in Fig. 8 (Tucker et al., 2001a). The important features are
the streaks of diffuse scattering, which correspond to scat-
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Fig. 9. Left: maps of scattering from Na2CO3 at
various temperatures, showing the Bragg peaks and
the diffuse scattering associated with the Bragg
peaks. Right: cuts through the Bragg peaks, showing
the decline of the intensity in the Bragg peaks on
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of diffuse scattering around the Bragg peaks. The
data have been fitted by a model of this type of
ferroelastic phase transition. The measurements were
obtained by Harris et al. (1996) on the PRISMA indi-
rect-geometry spectrometer at the ISIS spallation
neutron source.
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tering from low-frequency rigid unit phonon modes
(Hammonds et al., 1996), and which are less prominent in
diffuse scattering measurements from the a phase. The
main problem with such large-scale diffuse scattering
measurements lies in the interpretation. It is very difficult
to develop data-based models, and such measurements are
usually used for comparing with independent model calcu-
lations. 

Diffuse scattering measurements have more success for
the study of specific features as a function of temperature,
such as critical scattering associated with a phase transi-
tion. An example is the study of the critical scattering asso-
ciated with the phase transition in NaNO3 (Payne et al.,
1997). An interesting example is the diffuse scattering in
Na2CO3 associated with the displacive hexagonal–mono-
clinic phase transition at 760 K (Harris et al., 1996); a
neutron powder diffraction study of the phase transition has
been reported by Harris et al. (1993) and Swainson et al.
(1995). Maps of the single-crystal diffuse scattering are
shown for several temperatures in Fig. 9, together with
detailed cuts through the peaks of diffuse scattering. This
phase transition is an unusual example of a second-order
ferroelastic phase transition in which the acoustic softening
takes place over a plane of wave vectors (the acoustic soft-
ening is seen macroscopically as the softening of the c44
elastic constant, which is isotropic within the plane normal
to [001]). It has been shown on general grounds that the
ferroelastic instability in such as case will lead to a diver-
gence of the temperature factors, similar to the behaviour
in two-dimensional melting (Mayer & Cowley, 1988). This
will lead to the Bragg peaks vanishing, being replaced by
broad diffuse scattering. This effect is clearly seen in the
data shown in Fig. 9.

3.4 Coherent total scattering

When dealing with isotropic samples, we have to
average the scattering function over all relative orientations
of Q and r. We write rjk = |rj – rk|, and obtain the orienta-
tional average (Q = |Q|):

<exp(iQ×[rj – rk])> =
1—

4p ò
2p

0
djò

p

0
sinqdqexp(iQrjkcosq)

= 
1–
2 ò

+1

–1
exp(iQrjkx)dx

= 
sin(—

Qrjk
—Qrjk) (41).

Using this average, we obtain

S(Q) = 
1–
N S

j,k
b
–

jb
–

k sin(Qrjk)/Qrjk

= 
1–
N S

j
b
–

j
2 +

1–
N S

j¹k
b
–

j b
–

k sin(Qrjk)/Qrjk (42),

where we separate the terms involving the same atoms (the
self terms) and those involving interference between
different atoms.

Rather than perform a summation over all atoms pairs,
we can express the equation using pair distribution func-
tions. First we define gmn(r)dr as the probability of finding
a pair of atoms of types m and n with separation between
r and r + dr. This function will have peaks corresponding
to specific sets of interatomic distances. For example, in
silica (SiO2) there will be a peak corresponding to the
Si–O bond at ~1.6 Å, a peak corresponding to the O–O
bond at ~2.3 Å, and a third peak corresponding to the
nearest-neighbour Si…Si distance at ~3.2 Å. g(r) will be
zero for all r below the shortest interatomic distance, and
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will tend to a value of 1 at large r. Thus we can rewrite
S(Q) as

S(Q) = S
m

cmb
–2

m + i(Q) + S0 (43),

i(Q) = r0S
m,n

cmcnb
–

mb
–

n ò
¥

0
4pr2(gmn(r) –1)sin—

Qr
—Qr

dr (44),

where cm and cn the proportions of atoms of type m and n
respectively, and r0 is the number density. S0 is determined
by the average density, and gives scattering only in the exper-
imentally inaccessible limit Q ® 0. It is convenient to write
the pair distribution functions in either of two overall forms:

G(r) = S
m,n

cmcnb
–

mb
–

n(gmn(r) –1) = S
n

i,j=1
cicjb

–
ib
–

j(gij(r) –1) (45),

D(r) = 4prr0G(r) (46).

Thus we can write the scattering equations and associ-
ated Fourier transforms as

i(Q) = r0 ò
¥

0
4pr2G(r)

sin—
Qr
—Qr

dr (47),

Qi(Q) = ò
¥

0
D(r) sinQr dr (48),

G(r) = 
(2p)
—1—

3r0
ò
¥

0
4pQ2i(Q)

sin—
Qr
—Qr

dQ (49),

D(r) = 
2–p ò

¥

0
Qi(Q)sinQrdQ (50).

This formalism is discussed in more detail by Keen
(2001) and Dove et al. (2002).

The technique of total scattering is described in more detail
elsewhere in this special collection (Dove et al., 2002) and by
Dove & Keen (1999). To illustrate the point, we show total scat-
tering data Qi(Q) for berlinite, AlPO4, in Fig. 10 obtained using
several different banks of detectors in the modern instrument
GEM at ISIS. Each bank will measure the total scattering signal
over a different range of values of Q. The low-Q data show
Bragg peaks superimposed on a background of diffuse scat-
tering. The high-Q data show only oscillatory diffuse scattering,
which can be related to the shortest interatomic spacings. The
resultant pair distribution function D(r) is shown in Fig. 11. 

The important point about the data shown in Fig. 11 is
that it has been possible to resolve separately the peaks in the
pair distribution functions associated with the AlO4 and PO4
tetrahedra. To achieve this resolution it is essential to perform
total scattering measurements to large values of Q (see the
discussion of Dove et al., 2002). This is something that can
be achieved using spallation neutron sources such as ISIS.

Neutron total scattering experiments have been used in
studies of phase transitions in various silica polymorphs
(Dove et al., 1997, 2000b and c; Keen & Dove, 1999;
Tucker et al., 2000a, 2001a and b), for a comparison of the
structures of crystalline and amorphous silica (Keen &
Dove, 1999, 2000), and for a direct determination of the
thermal expansion of the Si–O bond (Tucker et al., 2000b).
Further examples are given by Dove et al. (2002).
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3.5 Small-angle coherent scattering

Most of this article focuses on structural features on the
atomic scale, but important processes (such as exsolution)
have rather longer length scales (of order 10–1000 Å).
These produce density fluctuations over a length scale
covering many atoms, which lead to interference effects in
the scattered neutron beams. Because the length scales are
relatively large, the scattering processes occur for small
values of Q, and hence they are called small-angle scat-
tering. Typically the signature of small-angle scattering is a
peak centred on Q = 0, with a width that is related to the
characteristic length scale of the long-range density fluctu-
ations. The strength of the small-angle scattering is deter-
mined by the contrast between the mean scattering lengths
of different regions in the sample. For this reason small-
angle scattering in solids is most easily seen for exsolution
processes, where the variation in the density across the
sample is associated with clustering of different types of
atoms (similarly, one important application of small-angle
scattering is to study clustering of molecules in solutions).

The simplest analysis of small-angle scattering is
through the Guinier formula, which is appropriate for the
exsolution of small particles within a matrix. In this limit,
the intensity of small angle scattering is

I = I0 exp(–Q2R2
g /3) (51),

where Rg is the radius of gyration of the particles. For
spherical particles of radius R,

R2
g = 3R /5 (52).

Other formulations of the small-angle scattering law
have been developed for other mechanisms of density fluc-
tuations, including cases that cannot be described as parti-
cles within a matrix. At the time of writing, small-angle
scattering is a tool that has yet to be routinely exploited
within Earth and Mineral Sciences beyond a few cases,
including a study of opals by Graetsch & Ibel (1997). 

4. Formalism for incoherent scattering

4.1 General considerations

Hydrogen is the ideal atom for the incoherent scattering
of neutrons, since the cross section for incoherent scat-
tering is large relative to its own coherent scattering cross
section and the cross sections of most atoms likely to be
encountered in natural materials. Hydrogen often occurs as
part of a molecule, such as water or methane. Consider first
a single hydrogen atom in a molecule. Its instantaneous
absolute position, r(t), can be written as

r(t) = R(t) + d(t) + u(t) (53),

where R(t) is the instantaneous position of the centre-of-
mass of the molecule (not to be confused with the mean
position, for which we used the same symbol earlier), d(t)

is the instantaneous position of the hydrogen atom with
respect to the molecular centre-of-mass assumed to have
constant magnitude but variable direction, and u(t) is the
vibrational displacement of the atom from its ‘mean’ posi-
tion (magnitudes d » u). Note that we are taking account of
the fact that the motions associated with the vibrational
displacement u(t) are much faster than the rotational
motion of the molecule, which is why we can treat the
behaviour of the bond vector d(t) separately from the vibra-
tional displacement u(t), equation (14).

We are fundamentally interested in the quantity
<exp(iQ×[r(t) – r(0)])> (equation 14). This can be written as

<exp(iQ×[r(t) – r(0)])> =

<exp(iQ×[R(t) – R(0)]) ´ exp(iQ×[d(t) – d(0)])

´ exp(i(Q×[u(t) – u(0)])> (54).

If the translational, rotational and vibrational motions
are not coupled, we can perform the averages on the three
exponential terms separately, obtaining the total function
(with self-explanatory notation),

Ftot
inc(Q,t) = Ftrans

inc (Q,t) ´ Frot
inc (Q,t) ´ Fvib

inc (Q,t) (55).

When we take the Fourier transforms, we have the
convolution of the incoherent inelastic scattering functions
for the three types of motion:

Stot
inc(Q,w) = Strans

inc (Q,w) Ä Srot
inc (Q,w) Ä Svib

inc (Q,w) (56).

In practice the different types of motion within crystals
occur on sufficiently different time scales that the effects of
the convolution do not cause any major problems in the
analysis of incoherent neutron scattering data – these prob-
lems mostly occur in the study of molecular fluids.

4.2 Atomic diffusion

Incoherent neutron scattering can be used to provide
information about the motions of individual atoms as they
diffuse through a crystalline or liquid medium, which are
described by the time dependence of R. One example is the
diffusion of hydrogen atoms in metals such as palladium.
Atomic hydrogen enters the metal in interstitial sites, and is
able to jump from site to site rather quickly. Another
example is diffusion within molecular fluids. For these
cases incoherent neutron scattering can provide informa-
tion about the time constants for the diffusion and the diffu-
sion pathways.

Consider first the case of isotropic diffusion, as in a
simple liquid or as a first approximation to a crystal. In this
case there is no potential to worry about. The probability
distribution function G(r(t),r(0)) in equation (15), which
we rewrite as G(r,t), r = r(t) –r(0), is determined by the
standard rate equation for diffusion (Fick’s second law):

¶G—¶t
= DÑ2G (57),
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where D is the diffusion constant. This has the solution

G(r,t) = (4pDt)–3/2 exp(–r2 / 4Dt) (58),

where r is the modulus of r. This solution is consistent with
the boundary conditions:

G(r,0) = d(r)

òG(r,t)dr = 1 for all t (59).

Substituting the solution into the equation for the inter-
mediate scattering function (noting that for the present case
the probability p(r) is constant for all values of r) leads to
the result

Finc(Q,t) = exp(–DQ2t) (60),

where Q is the modulus of Q, and N is the number of
atoms. Fourier transformation gives the final incoherent
scattering function for our example:

Sinc(Q,w) = 
1–p (D

—
Q2
—DQ2

—
)2 +

—w2 (61).

The final scattering function for the case of isotropic
diffusion is thus a single Lorentzian function centred on
zero frequency with a frequency width that varies with Q2

and amplitude that varies as Q–2. The width is also propor-
tional to the diffusion constant D, and hence the time
constant associated with the diffusion. In general this peak
is narrow (by some orders of magnitude) compared to
phonon frequencies, and the term quasi-elastic scattering
has been coined to describe such scattering. Incoherent
quasi-elastic neutron scattering (IQNS) probes time scales
that are so much slower than the time scales for phonon
motion that special instruments have to be designed for
these experiments. The typical resolution of an IQNS
instrument will range from 108 to 1010 Hz, which is much
finer than the typical value of 1011 Hz for a triple-axis spec-
trometer.

For crystalline media, the basic model needs to be
modified in two ways. Firstly we need to take account of
the position-dependent potential, and secondly we also
need to take account of the fact that the diffusion constant
will in general be a tensor rather than a single value,
reflecting the fact that the diffusion will be easier in some
directions than in others. The mathematics gets far beyond
the scope of this book at this point, but three points should
be noted. Firstly, the general form of the Q2-dependent
Lorentzian term is usually recovered from more compli-
cated treatments, although the general solution may contain
a superposition of several Lorentzian functions. However,
by analysing data obtained over a range of values of Q,
particularly as Q tends to small values, the behaviour of the
individual components (particularly the lowest-order
component) can be deduced. Secondly, because the diffu-
sion constant is a tensor and hence anisotropic, the scat-
tering function will depend on the orientation of Q rather
than only upon its magnitude. Work with powders will
therefore give an average over all orientations, which may

not matter if it is known that diffusion is only significant
along one direction in the crystal. Thirdly, the existence of
a periodic potential (as found in a crystal) leads to the exis-
tence of elastic incoherent scattering when Q is equal to a
reciprocal lattice vector. This elastic scattering contains
information about the strength of the periodic potential. In
many cases the effect of the potential is to cause the
diffusing atoms to be able to exist only on well-defined
sites within the crystal, and the diffusion proceeds by the
atoms jumping between these sites. In the limit where the
time taken to jump is much less than the average time that
an atom remains in a site standard jump diffusion models
can be used in the interpretation of the quasi-elastic scat-
tering.

The incoherent scattering method has not yet been used
for studies of diffusion in mineral sciences. The main appli-
cations could be for the study of hydrogen diffusion in
minerals and fluids, for which there have been extensive
measurements on metals. Bée (1988) describes many of the
experimental and theoretical details, including the develop-
ment of the formalism beyond the ‘trivial’ case described
above.

4.3 Collective vibrations and vibrational spectroscopy

Having remarked that the frequency regime for the
observation of translational diffusion is much lower than
for phonons, we should also note that the time dependence
of both R and u contains a contribution from the phonons.
We can broadly interpret the time-dependence of R as
arising from lattice vibrations in which the molecules move
as rigid bodies, giving the lower-frequency modes, and the
time-dependence of u as arising from the higher-frequency
internal vibrations of the molecules. These motions can be
measured if the incoherent spectrum is recorded over the
appropriate frequency range. The resultant form of Sinc(w),
when averaged over Q, gives the phonon density of states
weighted by the relevant incoherent neutron cross sections.
For systems containing hydrogen, the spectrum will be
dominated by the motions of the hydrogen atoms.

Vanadium is an unusual system in that the scattering
lengths for the two spin states are of opposite sign and
nearly equal magnitude, leading to a very small coherent
scattering length (as a result of which vanadium is very
suitable for making sample holders for neutron scattering,
as it will not contribute any Bragg scattering to the
measured spectrum), but to a reasonably large incoherent
scattering cross section (see Fig. 1). The incoherent scat-
tering from vanadium is often used to calibrate neutron
scattering instruments. Vanadium has therefore been used
for the measurement of the phonon density of states using
incoherent neutron scattering.

The fact that hydrogen has a large incoherent cross
section means that incoherent neutron scattering can be
used for vibrational spectroscopy. We have previously
noted that there is not a significant wave vector dependence
for the high frequency modes, which means that the
phonon modes measured as a density of states will have
sharp peaks and will not require a good average over scat-
tering vectors. The advantage of incoherent neutron scat-
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tering as a tool for vibrational spectroscopy over light scat-
tering methods is that there are no selection rules that cause
modes to be unobservable.

Although the phonon modes have a much higher
frequency than the energies associated with translational
diffusion and rotational motions, the quasi-elastic scat-
tering is convoluted with the vibrational spectrum. In prac-
tice this convolution gives rise to a Debye–Waller prefactor
to the correct expression for the quasi-elastic intensity,
exactly as in the case of coherent neutron scattering.

An example of the information that can be obtained
using vibrational incoherent neutron spectroscopy is shown
in Fig. 12, which gives the spectra for analcime in various
states of hydration and a comparison with the closely
related structure leucite. The fact that the intensities of the
spectra are reduced as the hydrogen content of the samples
is lowered indicates that the spectra are dominated by the
incoherent scattering from the hydrogen atoms. The spectra
have two main features. The first is a peak around 15 meV,
which is due to whole molecular librations. The second
feature is a broader peak around 50 meV. This arises from
the coupling of the water molecules to the vibrations of the
network of SiO4 and AlO4 tetrahedra. Similar studies have
been carried out on bassanite, gypsum and cordierite
(Winkler & Hennion, 1994; Winkler, 1996) and small-
pored zeolites (Line & Kearley, 2000).

4.4 Rotational motions

As a molecule rotates about its centre-of-mass, the rela-
tive positions of the hydrogen atoms, d(t), move over the
surface of a sphere of constant radius d. This motion is
called rotational diffusion, as the end point of the vector d
diffuses over the surface of the sphere. We will first
consider the simple illustrative case of isotropic rotational

diffusion of an atom – this is a good model for a molecular
liquid, and is also a good first-approximation for systems
such as crystalline methane just below the melting
temperature, where experiments indicate that although the
positions of the molecules are ordered on a lattice, the
molecules are freely rotating. We can define the orientation
of d by the polar angle W = (q,f). The relevant probability
distribution function, G, for equation (15) is now a function
of W(t) and W(0). Formally G(W(t),W(0) is the probability
of finding the bond orientation at W(t) at time t if it has the
orientation W(0) at time 0, and it follows a similar rate law
to the case of translation diffusion:

¶G—¶t
= DRÑ2

WG (62),

where DR is the rotational diffusion constant, and its
inverse gives the time constant for reorientational motions.
The differential operator in spherical coordinates is given
as

Ñ2
W =

sin
—1—q

¶
—¶q sin q

¶—
¶q + 

sin
—1—

2 q
¶2
—¶f2 (63).

As for the case of translational diffusion, the apparent
simplicity of the rate equation belies the complexity of the
solution. And, as before, we can only quote the solution
(Bée, 1988):

G(W(t),W(0)) = 4pS
¥

=0
exp(–DR ( + 1)t)S

+

m=–
Ym(W(t))Y *

m (W(0))

(64),

where the functions Ym(W) are the normal spherical
harmonics (the * indicates the complex conjugates).
Substitution of this expression generates the intermediate
scattering function:

Finc(Q,t)µj20(Qd) + 
1–pS

¥

=1
(2 + 1) j2(Qd)exp(–DR ( + 1)t (65),

where the functions j are the regular Bessel functions. The
Fourier transform gives the incoherent scattering function:

Sinc(Q,w)µ j20(Qd)d(w)

+ 
1–pS

¥

=1
(2 + 1) j2(Qd)—

(DR
—DR—

( + 1
—

))2
—( + 1)—

+w2 (66),

where d(w) is the Dirac delta function. This equation has
two components. The first ( = 0) is an elastic peak centred
on w = 0, which will be considered in more detail below.
The second is a superposition of Lorentzian peaks, with
widths that are independent of Q. The lowest order term in
this second component ( = 1) has a width equal to 2DR,
and higher order terms have larger widths. On the other
hand, the amplitudes of the quasi-elastic components are
dependent on Q through the Bessel functions.

The theory needs to be modified to take account of
orientational crystal potentials. For example, the ammo-
nium molecular ion, NH+

4, is known to undergo frequent
reorientations in the CsCl form of ammonium chloride.
The electrostatic potentials are sufficiently anisotropic to
ensure that the N–H bonds lie along the á111ñ directions –
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there are effectively two independent orientations of the
ammonium ion on this site. This results in a more compli-
cated scattering function, but the essential details – namely
the elastic and the quasielastic components – are preserved.
A complete description of the theory for a range of
complex situations is given by Bée (1988). 

It is often found that the temperature dependence of the
width of the quasi-elastic component follows an Arrhenius
relation,

t–1 = D = D0exp(–ER/RT) (67),

where ER is the activation energy associated with the rota-
tional motion.

An example of a quasi-elastic spectrum associated with
rotations of water molecules in analcime is shown in Fig.
13 (Line et al., 1994). This spectrum has had the elastic
peak subtracted out. The important point from the Fig. is
the energy range of the quasi-elastic spectrum, which is
much lower than the energy range of vibrational excitations
seen in Fig. 12. It is clear that high resolution is required
for quasi-elastic scatterning experiments – the various
types of technology are reviewed by Bée (1988).

The widths of the quasi-elastic spectra for analcime
have been shown to be constant with Q, and to increase on
heating. These features are consistent with rotational
motions that become faster with increasing temperature.
The Arrhenius plot of the relaxation time (the inverse of the
width of the quasi-elastic spectrum) is shown in Fig. 14.
The fit to the data gave an activation energy of
ER/R = 780 ± 200 K (Line et al., 1994).

4.5 Elastic incoherent scattering function

The quasi-elastic incoherent scattering gives a means of
measuring the time constants for rotational diffusion. The
elastic component, on the other hand, gives information
concerning the positions of the hydrogen atoms.

The elastic component is used to define the elastic inco-
herent structure factor (EISF) IEISF(Q):

IEISF(Q) = 
Sel
—

(Q)
—Sel

+ Sqe

(Q)—
(Q)
— (68),

where Sel(Q) is the intensity of the incoherent elastic peak,
and Sqe(Q) is the intensity of the quasi-elastic peak inte-
grated over all energies. The integration of S(Q,w) over all
frequencies is equal to F(Q,0). Thus the elastic component
Sel(Q) is given by the = 0 term, and the quasi-elastic term
SQE(Q) is given by the terms for ³ 1. Given that j (x) tends
to the value 0 when x = 0 for all values of ¹ 0, we see that
IEISF(Q) has a maximum value of 1 at Q = 0. We also note
that the form of IEISF(Q) is determined only from geometric
properties – there is no dependence on the time constants
and hence no dependence on temperature, apart from any
dependence of the structure on temperature.

For isotropic rotational motions of molecules, the EISF
has the simple form

IEISF(Q) = 
sin—

Qr
—Qr

(69),

where r is the radius of the molecule. The model of
isotropic rotational diffusion is usually not realistic for
most types of rotational diffusion. Usually the rotational
diffusion is influenced by the rotational potential experi-
enced by the molecules, which will have the same
symmetry as the local site. The development of a model for
the rotational diffusion from which the form of IEISF(Q) can
be calculated is usually extremely difficult, and analytical
solutions only occur for idealised cases such as uniaxial
rotation in an n-fold potential or for jump motions between
a small number of well-defined orientations. Inevitably it is
necessary to use a model that is an oversimplification of
the real situation, but given that even a simple model will
capture the essential dynamic and geometric aspects of the
motion this may not be too much of a problem. In the inter-
pretation of measurements of IEISF(Q) it is common to
compare the experimental data with the predicted function
obtained from the model, in order to assess whether the
model is correct. In many cases the calculated form of
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IEISF(Q) does not have any free parameters – the parameters
in the model are quantities such as the bond lengths, which
are known in advance. 

The biggest problem in extracting IEISF(Q) from experi-
mental data is accounting for multiple scattering. Because
the incoherent cross section for hydrogen is so large, there
is always a high probability that any neutron will be scat-
tered more than once whilst travelling through the sample.
The effect of this will be to reduce the size of the elastic
component, and hence of IEISF(Q). The existence of
multiple scattering will be revealed if the extracted form of
IEISF(Q) tends towards a limiting value lower than 1 for
small values of Q. Complicated methods are available for
accounting for multiple scattering, but a better approach is
to reduce the size of multiple scattering in the experiment
by the use of thin samples, and to measure spectra only for
transmission with short path lengths or reflection. It is the
problem of multiple scattering that has discouraged the use
of single crystal samples, given that the best single crystal
samples will ideally be in the form of a thin flat plate with
the large faces being coincident with a crystal plane of
interest. It is clear that there should be a higher information
content if single crystals are used, in that for rotational
diffusion in an anisotropic potential it is expected that the
elastic incoherent structure factor will have a dependence
on the direction of the scattering vector Q as well as on its
magnitude. Despite the experimental difficulties, some
measurements of IEISF(Q) have been obtained from single
crystals.

The measured EISF for analcime is shown in Fig. 15
(Line et al., 1994). The data are fitted by two types of
curves. The first is a standard isotropic rotational EISF as
given by equation (69), with the effective radius being
fitted at each temperature and reproduced in the figure. The
second type of curve is again based on the standard
isotropic rotational EISF with a molecular radius of 0.88 Å,
but allowing for the possibility that only a fraction a of the
water molecules participate in the rotational motions. The
data cannot give a judgement as to the most appropriate
model. For small molecules such as water, it is necessary to

extend the measurements to higher values of Q, but there
are then difficulties with overlapping Bragg peaks.

The only other study of quasi-elastic scattering from
rotations of water molecules in minerals was carried out by
Winkler et al. (1994) on hydrous cordierite. There is
considerable scope for developing this line of work with
minerals that contain molecular water. Quasielastic scat-
tering experiments provide unique information about the
dynamics of water molecules, both in respect to the time
scales for motion and the geometric changes associated
with these motions. 

6. Summary

The main point that I have sought to convey in this
review article is that neutron scattering has a tremendous
versatility that can be exploited for studies of mineral
behaviour. This versatility is being constantly extended as
new neutron sources and new instrumentation come into
operation. The focus of this review has been on how this
versatility arises from the fact that the characteristic length
and energy scales of neutron beams are closely matched to
those of the atoms in condensed matter, enabling neutron
scattering to provide information about structure and
dynamics. These two aspects are encapsulated within the
general formulation of the neutron scattering law. The
versatility of neutron scattering is further enhanced by the
unique possibility to separate out both coherent and inco-
herent scattering.

We have described in detail a selection of the neutron
scattering techniques that are routinely used in the wider
science communities and which have been more-or-less
picked up by the Earth and Mineral Sciences community.
These include coherent inelastic scattering for single crys-
tals and polycrystalline samples, diffraction on powders
and single crystals, single-crystal diffuse scattering, total
scattering from polycrystalline materials, vibrational inco-
herent scattering, and incoherent quasi-elastic scattering.
The review also touches on magnetic scattering (diffraction
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and inelastic) and small-angle scattering, both of which are
ripe for exploitation. This review has not touched on some
other applications, such as surface reflectometry and deep
inelastic scattering (otherwise known as neutron Compton
scattering), which again are ripe for exploitation.
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