
Introduction

Powder diffraction measurements have traditionally
focused on accurate measurements of the positions and
intensities of Bragg peaks. The former can give a good
determination of the lattice parameters, and the latter
contain information about the average positions of atoms.
With the development of the Rietveld method more than
three decades ago, neutron powder diffraction has matured
into a powerful tool for structure determination and refine-
ment, as discussed elsewhere in this issue (Redfern, 2002).
In the Rietveld method, the background scattering is
modelled using polynomials with fitted coefficients.
However, it is frequently found that the background
contains characteristic oscillations and structure, as noted,
for example, in the case of the high-temperature cubic
b-phase of cristobalite, SiO2 (Schmahl et al., 1992). This
structured background is the diffuse scattering, which
many single-crystal experiments reveal to have a strong
variation across reciprocal space. Diffuse scattering
contains information about fluctuations of the atomic
structure from the arrangement of the average positions
(see discussion in the opening paper of this issue, Dove
2002). These fluctuations contribute to the short-range
structural order of the material.

The case of b-cristobalite shows clearly the type of
short-range order, or fluctuations from the average struc-
ture, that can give rise to diffuse scattering. The average

position of each oxygen atom lies exactly half-way between
two silicon atoms (Schmahl et al., 1992). If this is taken
literally, it implies that the Si–O–Si bond is linear, which is
known to be a high-energy configuration of these atoms.
Crystallographic analysis more properly gives the distribu-
tion of positions of the atoms. Usually the average position
of an atom is taken to be the mid-point of its distribution of
positions, and the overall distribution is often represented
by a three-dimensional Gaussian function. The width of
this distribution is known as the atomic displacement
parameter. In the case of b-cristobalite, the spread of distri-
butions of the oxygen atoms has significant elongation
normal to the Si…Si vector, as shown in Fig. 1a. This
implies that there is considerable bending of the O–Si–O
bond, but still with the mid-point of the distribution of posi-
tions of the oxygen atoms corresponding to a linear bond.
It is reasonable to ask whether the O–Si–O bond is ever
linear, and whether, instead, the midpoint of the Si….Si
separation is really a minimum in the distribution of
oxygen positions. This would correspond to the O–Si–O
bond always being bent, with the position of the oxygen
atom being randomly distributed in an annulus around the
midpoint of the Si…Si vector. This can be modelled in a
structure refinement by using a set of equivalent positions
for each oxygen atom with a partial occupancy (Schmahl et
al., 1992). Figure 1b shows the case of refining six sites for
each oxygen atom, and this leads to an improved level of
agreement with the diffraction data. In crystal structure
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analysis, the distance between mean positions is often
taken to be approximately equal to the bond length. When
the mean position of the oxygen atom is exactly half way
between its neighbouring silicon atoms, the distance
between the Si and O mean positions is significantly
shorter than the normal Si–O bond length. When the mean
position of the oxygen atom is taken to be one of the six
sites in the annulus about the Si…Si separation, the
distance between the Si and O mean positions is closer to
the values of the Si–O bond length in many other tetrahe-
drally-coordinated silicates. This point is shown in Fig. 2.

There are, however, limits to how far one can develop
this analysis. The first limitation arises from the very
formalism of Bragg diffraction. Structure is properly
defined by the relative positions of atoms. On the other
hand, the intensities of Bragg peaks contain no information
about the relative positions of atoms, only about the distri-
butions of positions of individual atoms. Put into formal
language, the relative positions of atoms are described
using two particle and higher-order correlation functions,
whereas Bragg diffraction is only a probe of single-atom
distribution functions. The second limitation arises from
the low resolution of a typical diffraction analysis. The
spatial resolution of a structure is given by

Dr =
2p
—
Qmax

(1).

Qmax is the largest value of the scattering vector Q used in
the measurement. For scattering processes with no change
in wavelength l,

Q = 4p sinq/l (2).

In X-ray diffraction with CuKa radiation (wavelength
l = 1.54 Å), the maximum value of Q is 4p/l, so that the
resolution is l/2 = 0.77 Å; this resolution is improved with
MoKa radiation, which gives minimum resolution of
0.35 Å. In a typical 6-site refinement of b-cristobalite, the
distances between two closest sites in an annulus is ca.

0.5 Å. Clearly the 6-site model is pushing against the limits
of the resolution, and at best it can only be said to be but
one possible representation of the spread of positions of the
oxygen atoms. Whilst it is possible to extend the range of
Q, in a typical X-ray powder diffraction experiment with
CuKa radiation the fall-off of the atomic scattering factors
with Q means that it is hard to identify Bragg peaks above
the normal background before reaching Qmax. This is not a
problem with neutron diffraction, but usually for values of
Q typically above 10–15 Å–1 there is too significant an
overlap of Bragg peaks to be able to distinguish them above
the background. This will give a best possible resolution of
0.4 Å in a structure refinement. It is better than with X-ray
diffraction, but may still not be good enough. Furthermore,
in disordered crystalline materials, there will be large
atomic displacement parameters. These also will cause the
Bragg peaks at higher values of Q to become too weak to
be measurable, both in X-ray and neutron diffraction, and
this will again limit the structural information that can be
obtained from analysis of the Bragg diffraction alone.

These limitations can be effectively addressed using the
method of ‘total scattering’. This involves collecting the
complete diffraction pattern to high values of Q, perhaps to
50–60 Å–1 when possible, and performing an analysis of
the total diffraction pattern rather than restricting the anal-
ysis to the Bragg peaks alone. As we have noted, the total
scattering will contain the diffuse scattering, and we will
show below that this contains information about atomic
pair distribution functions. Thus a total scattering experi-
ment on a crystalline material is able to give simultaneous
information about both the long-range crystallographic
order and the short-range fluctuations. It is interesting to
contrast the behaviour over both length scales in disordered
crystalline materials, including some of the phases of
silica, and when heating a material through a phase transi-
tion.

Total scattering methods have long been the only means
of obtaining structural information on glasses or liquids
(e.g. Wright, 1993, 1994, 1997). They are now increasingly
being applied to the study of crystalline phases (e.g.
Billinge & Thorpe, 1998), including, more recently, to the
study of mineralogical materials (Dove & Keen, 1999). The
first study of this type was of the a and b phases of cristo-
balite (Dove et al., 1997), and this work has been extended
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a) b)
Fig. 1. The refined crystal structure of b-cristobalite, with the
atoms drawn as ellipses that represent the Gaussian spread of
distributions of positions (from Tucker et al., 2001a). In a) the
distribution is shown about a single site half way along the Si…Si
vector, and in b) the distribution is based on six mean sites for each
oxygen atom.
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Fig. 2. The apparent short-
ening of the Si–O bond
when the midpoint is
taken to be directly
between the Si…Si vector
as compared to an actual
position displaced from
this midpoint.



to cover several other silica phases (Keen & Dove, 1999,
2000; Dove et al., 2000; Tucker et al., 2000a, 2001a and b).
In this paper we will describe the basics of methodology,
and illustrate the ideas with examples of our work on the
crystalline phases of silica and on the molecular crystal
SF6. 

The formalism of total scattering

We start from the equation for the interference term that
defines scattering of a beam of radiation from an ensemble
of atoms for a given scattering vector Q:

S(Q) = 
1–
N S

j,k
<bjbk exp(iQ×[rj – rk]) (3).

In a powder diffraction experiment, we need to average
over all orientations of Q relative to the vector rj – rk,
because we have the powder average of random grain
orientations. Moreover, on instruments on time-of-flight
neutron sources (such as the GEM diffractometer described
below) data are collected from all around the diffraction
cone and then summed. The average over all orientations of
Q leads to the Debye result (derived, for example, in the
introductory paper, Dove, 2002):

S(Q) = 
1–
N S

j,k
bjbk

sin(Q
—

Qçrj – rk ê
—
çrj – rk ê)

(4).

In fact the individual instantaneous atomic separations are
not useful quantities, because the average is over time and
hence over very many instantaneous configurations.
Instead, it is better to express this function using distribu-
tion functions for the interatomic separations. We therefore
need to separate the components that arise from different
atoms from those that arise when j = k. We therefore write

S(Q) = i(Q) + S
m

cmb2
m

–
(5).

The second term accounts for the terms in equation (4)
with j = k, and is equal to the total scattering cross-section
of the material (it is known as the self-scattering term). The
summation is over all atom types, and cm is the proportion
of atom type m. i(Q) is related to the total radial distribu-
tion function, G(r), by the pair of Fourier transforms

i(Q) = r0ò
¥

0

4pr2G(r) 
sin Qr
—

Qr dr (6),

G(r) = 
(2p)
—1—

3r0
ò
¥

0

4pQ2i(Q) 
sin Qr
—

Qr dQ (7),

with average atom number density r0 = N/V (in atoms/Å3).
G(r) may also be defined in terms of the partial radial
distribution functions gij(r),

G(r) = S
m, n

cmcnb
–

mb
–

n(gmn(r) – 1) (8),

where

gmn(r) = 
4pr2
—nmn—rm

(r)—
dr

(9).

nmn(r) is the number of particles of type n between
distances r and r + dr from a particle of type m and
rm = cmr0. Two other versions of correlation functions are
commonly used. First, the differential correlation function,
D(r), is defined as

D(r) = 4prr0G(r) (10).
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Fig. 3. Example of the representation of the pair distribution func-
tions (pdf) obtained for b-cristobalite at 300°C. Top shows the
Si–O, Si–Si and O–O partial pdf functions (origin displaced), each
of which tend to values of unity at large r by definition. Bottom
shows the merging of the three partial distribution functions into
the neutron-weighted overall functions. G(r) is the weighted sum of
the partial pdf functions (equation 8), which tends to the value 

S
m, n

cmcnb
–

mb
–

n at r = 0, and to a value of zero at large r. D(r), obtained

from G(r) via equation (10), oscillates around zero for large
distances, and approaches zero linearly from negative values as r
tends to zero. T(r), obtained from D(r) via equation (13), has zero
value at low r, and oscillates around a line of constant slope at
larger values of r. D(r) shows the structure in the pair distribution
function most clearly at intermediate and large values of r, whereas
T(r) shows most clearly the pair distribution functions for the near-
ests-neighbour bonds.
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Thus we can write equations (6) and (7) as

Qi(Q) = ò
¥

0

D(r) sin Qr dr (11),

D(r) = 
2–p ò

¥

0

Qi(Q) sin Qr dQ (12).

Second, the total correlation function, T(r), is defined as

T(r) = D(r) + 4prr0 S
m

cmb
–

m

2

(13).

These different functions are illustrated schematically in
Fig. 3. Technically, the function rG(r) is the transform of
the experimentally derived quantity Qi(Q), and thus best
reflects the direct analysis of experimental data. T(r) is
useful because it has a value of zero below the first few
peaks, and D(r) is useful because at larger distances it
oscillates around zero.

A number of alternative representations of the nomen-
clature of total scattering are in common use. Keen (2001)
has compared several of these – we follow closely the
recommendations given in that paper. The formalism is
also reviewed by Wright (1993, 1994, 1997).

Experimental methods

Basic requirements

Neither the experimental procedure necessary for
performing total scattering measurements, nor the treat-
ment of data prior to detailed analysis, are trivial. There are
three main experimental constraints. The first of these is
that it is necessary to perform measurements to relatively

large values of Q, following the earlier discussion
concerning the fact that the resolution is given by the
inverse of Qmax. For an experiment performed with CuKa
X-radiation and collecting data to 2q = 180°, the resolution
is around half of the length of a Si–O bond.  Ideally it
would be useful to aim for a resolution that is a small
percentage of a bond length. With time-of-flight neutrons,
it is possible to obtain good data to values of Q of around
60 Å–1, and even higher if necessary (albeit with the caveat
that the data quality is lower at higher values of Q and
therefore more experimental effort would be required).
This will give a resolution of around 0.1 Å, which is ca. 6%
of the Si–O bond length.

The second essential experimental condition arises
from the fact that the total scattering needs to be a good
integration over all possible changes in energy. The
neutrons can be scattered elastically with no change in
energy (as in Bragg scattering), or scattering inelasti-
cally with either a gain in energy due to the absorption
of one or more phonons or a loss in energy due to
creation of one or more phonons. For an accurate total
scattering experiment, all these processes must be
allowed to occur. The last condition is the hardest. It
implies that the energy of the incident neutron beam
must be higher than the energy scale of the phonons in
the material. 

The third experimental requirement is that background
scattering (i.e. scattering from sources other than from the
sample) needs to be minimised, and that it must be possible
to measure to high values of Q with good statistical accu-
racy. Variations in S(Q) are much weaker at higher values
of Q, which means that data at these values need to be good
if the ripples are to be used to provide information about
structure over short distances.
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Fig. 4. Schematic diagram of the GEM diffrac-
tometer at ISIS (Williams et al., 1998),
showing the banks of detectors that cover most
of the scattering angles. This instrument has
been optimised for both pure diffraction (high
resolution and high intensity) and total scat-
tering (detectors covering a wide range of Q
with high intensity and high stability). The
higher angle banks have the higher resolution
in Q and allow measurements to higher values
of Q, whereas the lower-angle banks allow
measurements to low values of Q.



As a result of these three requirements, the best data are
obtained at spallation time-of-flight neutron sources. There
is a rich flux of high-energy neutrons, and with appropriate
instrument design there are no geometric constraints on the
range of Q accessible for measurements. Certainly it is quite
possible to obtain good data for values of Q in excess of 60
Å–1, beyond which it is often found that the total scattering
signal has reached a constant value (i.e., i(Q) = 0). The
instrument GEM at ISIS is ideal for total scattering experi-
ments, giving large values of Qmax, low intrinsic back-
ground, and high resolution for measurement of Bragg
peaks, in addition to having a high coverage of the range of
scattering angles with banks of detectors. This instrument is
shown in Fig. 4. A reactor source of neutrons has its largest
distribution of neutron energies at lower energies, so that
data can typically be obtained to Qmax ~ 20 Å–1.
Synchrotron sources can also produce high-energy beams
of X-rays to permit measurements to Qmax ~ 30–40 Å–1; we
expect to see an increasing use of synchrotron X-ray beams
for total scattering measurements.

Basic data reduction

The formalism and interpretation of total scattering
experiments are both firmly grounded in the possibility of
the measurements giving absolute values of the intensity of
the scattered beam. This is quite different from some other
neutron scattering techniques. For example, in the Rietveld
method, the scale factor is treated as an adjustable param-
eter, a number of adjustable parameters are used to define a
background function (which is often treated as a polyno-
mial), and other factors such as absorption and extinction
coefficients can also be treated using adjustable parameters.
The values of all these parameters can be varied in the least
squares refinements, and finally should have little effect on
the quantitative values of the important refined structural
parameters. On the other hand, there is no scope for the use
of adjustable parameters in the analysis of total scattering.
The scale factors, background, and absorption corrections
need to be known absolutely. This means that all corrections
need to be measured separately, or it must be possible to
calculate them. The set of corrections (discussed in Howe et
al., 1989; Wright, 1993, 1994, 1997) is:
1 One set of corrections accounts for background scat-

tering from the components of the instrument, the equip-
ment used to control the sample environment (furnaces
or cryostats), and the sample container. These three
experimental components, together with the sample,
also give an attenuation of the signal, which needs to be
accounted for. The procedure for performing these
corrections is outlined in the appendix.

2 The data also need to be properly normalised. Account
needs to be taken of multiple scattering (i.e., processes
in which the beam is scattered more than once within
the sample), and of factors such as the energy spectrum
of the incident beam, solid angles of the detectors, and
detector efficiencies. Multiple scattering can be calcu-
lated for a sample that does not scatter an appreciable
fraction of the incident beam (typically up to around
20%). Its contribution tends to be constant with Q. 

3 The energy spectrum of the incident beam is easily
measured using a special detector, called the monitor,
positioned just in front of the instrument. All measured
spectra must be scaled by the spectrum recorded in the
monitor. The factors concerned with the detectors can
be taken into account by performing a measurement of
the incoherent scattering from a sample of vanadium
that is ideally of the same size as the sample. The
coherent Bragg scattering from vanadium is extremely
weak (which is why it is so useful in this context).
However, the Bragg peaks can still be observed in the
measurement, and are taken account of by fitting the
vanadium scattering with a smooth function that lies
below the Bragg peaks. The intensity of the incoherent
scattering from vanadium is known theoretically (it is
independent of Q and given by the inelastic cross
section), and therefore the normalisation of the
measurements is straightforward. Multiple scattering
corrections need to be applied also to the scattering
from the vanadium used for normalisation.

4 The other important correction is known as the Placzek
correction. In an X-ray experiment, the changes in
energy of the scattered X-ray beams are tiny compared
to the energy of the incident beam. This means that the
scattered beam has almost the same wavelength as the
incident beam, and when scattering at a fixed angle the
value of Q can be established from the equation (2).
However, in neutron scattering, the change in energy
gives rise to a significant change in wavelength. In a
total scattering experiment, there is no measurement of
the energy of the neutrons when they reach the detec-
tors, and hence the wavelength is unknown. In effect,
the integration over energy implicit in a total scattering
experiment is performed at constant scattering angle
rather than constant Q. The correction required to bring
the integral back to constant Q is the Placzek or inelas-
ticity correction. It also needs to account for the fact
that the efficiency of a detector typically scales as the
inverse of the neutron velocity. The Placzek correction
can be calculated for simple atomic systems (see, for
example, Bacon, 1975; Chieux, 1978), and these
corrections can be adapted for more complex systems
or for different experimental arrangements. 

Data reduction and analysis of G(r)

Once the data have been corrected as outlined above,
the task is to obtain G(r) or its alternative forms. With the
data properly normalised, the first stage is to subtract the
self-scattering term from S(Q) to give i(Q) (equation 5),
and then to generate Qi(Q) for the Fourier transform of
equation (12). The functions i(Q) and Qi(Q) are compared
in Fig. 5, showing the range of detail within the data,
including the oscillations in Qi(Q) at large Q that reflect the
structure of polyhedral units within the material.

If data are collected in a single measuring process, such
as from one set of detectors, a single function Qi(Q) can be
constructed for Fourier transform. There are two issues that
need to be considered. The first is that the Fourier trans-
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form will contain ‘truncation ripples’ due to the finite
range of Q being used. These are reduced if Qmax is
increased, particularly if Qi(Q) is close to zero at Qmax. It is
common to multiply Qi(Q) by a modification function
M(Q) that falls smoothly to zero at Qmax, such as 

M(Q) = 
sin(p—pQ/

—Q/—
Qmax

—Qmax) (14)

(Wright, 1994). Whilst this reduces the termination ripples
in the Fourier transform, it does mean that the resultant
G(r) is convoluted with the Fourier transform of M(Q).
This leads to a broadening of the peaks in G(r), which is
particularly significant for low values of Qmax.

The second issue in the analysis of i(Q) is that the
measurements will contain the effects of the experimental
resolution. If the resolution is not taken into account, its
effect will be that the resultant G(r) will be multiplied by
the Fourier transform of the resolution function. This will
lead to a reduction in the size of G(r) on increasing r. The
issue of resolution is not trivial, since the resolution func-
tion is actually a function of Q.

On instruments such as GEM (Fig. 4), different sets of
detectors will measure i(Q) for different ranges of Q, and
the data will need to be combined in some way to perform
the Fourier transform of equation (12). One approach
might be to paste the measurements of i(Q) for different
ranges of Q into one single overall i(Q) function. However,
each set of detectors will be subject to a different resolution
function, and it is not possible to properly account for this
in the subsequent Fourier transform. One solution to the
problem is to construct G(r) using inverse Fourier methods.
In this approach, a trial form of G(r) is adjusted until its
Fourier transform is in close agreement with the experi-
mental measurements of i(Q). It is relatively straightfor-
ward to account for resolution in this approach, and there
are no termination ripples. The inverse Fourier transform
can be compared with any number of sets of data, each with
different ranges of Q and resolution. We use a Monte Carlo
method to adjust the trial form of G(r) pointwise, using the
MCGR program of Pusztai & McGreevy (1997) modified
to account for the resolution from time-of-flight neutron
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instruments. This modified program is called MCGRtof,
and is described in detail elsewhere (Tucker et al., 2002a).

The analysis of G(r) or its alternative representations
can be considered with two aspects. The first is the analysis
of the distinct peaks at low r. These contain information
about the true distribution of interatomic distances, which
may be different from the distances between the mean posi-
tions determined by crystal structure refinement from the
intensities of the Bragg peaks. This is illustrated by our
measurements on quartz (Tucker et al., 2000a, 2001b). The
D(r) functions over a wide range of temperatures, encom-
passing the a–b displacive phase transition, are shown in
Fig. 6. The position of the first peak gives the mean instan-
taneous Si–O distance, which is denoted as dáSi–Oñ and
shown as a function of temperature in Fig. 7. This is
compared with the temperature-dependence of the distance
between the mean positions as obtained from analysis of
the Bragg peaks, denoted as dáSiñ–áOñ. These distances were
obtained by Rietveld refinement of the same data used to
obtain G(r). Clearly the temperature dependence of dáSi–Oñ
is different from that of dáSiñ–áOñ, with the former showing
only a weak positive variation with temperature and the
latter having a significant variation that reflects the phase
transition. In particular, dáSiñ–áOñ decreases on heating,
particularly on heating in the high-temperature b-phase,
and it is probable that this can be understood as a result of
increased rotational vibrations of the SiO4 tetrahedra which
give the appearance of bond shortening. This difference
between dáSi–Oñ and dáSiñ–áOñ is even more acute in b-cristo-
balite if the average position of the oxygen atom is taken to
be half way between two silicon atoms (Tucker et al.,
2001a). Even when using the split-site model, the distance
between the mean postions of the silicon and oxygen atoms
is still lower than the mean instantaneous Si–O distance.

The analysis of the pair distribution functions has been
carried out on a number of silica phases. The overall
temperature dependence of the Si–O bonds in all phases is
shown in Fig. 8 (Tucker et al., 2000b). From the analysis
we obtained a value for the coefficient of thermal expan-
sion of the Si–O bond of 2.2 (± 0.4) ´ 10–6 K–1. Other
attempts to determine the intrinsic temperature dependence
of the bond have been indirect, through applying correc-
tions to the crystal structure from detailed analysis of the
thermal displacements parameters (Downs et al., 1992).
The coefficient of thermal expansion obtained from G(r) is
lower than that obtained by indirect analysis from the
crystal structure (see discussion of Tucker et al., 2000b).

The second aspect of the analysis of G(r) concerns its
form for distances beyond the first few peaks. There will be
too many overlapping peaks to be able to identify specific
neighbour distances, but this region of G(r) can provide
information about mid-range order. Consider the D(r)
functions for quartz shown in Fig. 6. The main features
across all distances broaden on heating, which shows the
increase in thermal disorder. Many features vary smoothly
though the a–b phase transition without significant
change. In particular, the positions of the lower-r peaks
vary only slightly with temperature. However, the positions
of some of the features at larger r have a variation with
temperature that reflects the variation of the volume of the

unit cell, which in turn has a variation with temperature
that is strongly correlated with the displacive phase transi-
tion. The case of cristobalite is particularly interesting for
the mid-range distances (Dove et al., 1997; Tucker et al.,
2001a). For distances greater than 5 Å, the features in G(r)
are quite different, which can be traced to changes in the
oxygen–oxygen partial distribution functions (Tucker et
al., 2001a). This shows that the structure of b-cristobalite is
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in quartz obtained from the pair distribution functions (open
circles), and compared with the distances between the mean posi-
tions obtained from crystal structure refinements (filled squares)
and the RMC analysis (filled circles). The crystal structure has two
distinct distances between the Si and O distances, which are shown
separately. The instantaneous Si–O and O–O distances vary only
weakly with temperature, whereas the distances between the mean
positions are clearly affected by the a–b displacive phase transi-
tion. The variations of both the instantaneous Si–Si distance and
the distance between the mean positions of neighbouring Si atoms
reflect the phase transition on heating.
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significantly different from that of a-cristobalite over
distances as small as one unit cell length. A similar analysis
has been carried out for the high-temperature phase of
tridymite (Dove et al., 2000).

Reverse Monte Carlo modelling

The obvious question posed by the preceding discussion
is how the crystal structure of a material such as quartz or
cristobalite can accommodate a significant difference
between the instantaneous Si–O bond length and the
distance between the mean positions of the two atoms. The
fact that there have been various proposals in the literature
for the structures of the high-temperature disordered phases
in the cases of quartz and cristobalite (and also to a lesser
extent in tridymite, where the issues are similar) suggests
that this issue is not trivial. What is required is a data-based
model for the whole structure that goes beyond considera-
tion only of nearest-neighbour distances. The Reverse
Monte Carlo (RMC) method (McGreevy & Pusztai, 1988;
McGreevy, 1995) provides one useful tool in this direction. 

The basis of the RMC method is straightforward. The
atomic coordinates in a configuration are adjusted using a
Monte Carlo algorithm to improve agreement between
calculated functions and experimental data. For total scat-
tering measurements, the important data are G(r) or i(Q)
(or their variants). An energy function can be defined with
the following form based on the differences between the
calculated (subscript ‘calc’) and experimental (subscript
‘exp’) values of i(Q) and G(r):

c2
RMC = S

m

c2
m

c2
i(Q) = S

k
S

j
[icalc(Qj)k – iexp(Qj)k]2

/s 2
k(Qj) (15).

c2
G(r) = S

j
[Gcalc(rj) – Gexp(rj)]2

/s 2(rj)

c2
f = S[f calc – f req]2

/s 2

The s variables give specific weightings, and can be related to
experimental standard deviations, or set to favour one type of
data over another. The last term in equation (15) matches any
quantity calculated in the RMC configuration, which we
denote as f calc, against a pre-determined (or required) value
f req, and acts as a set of constraints. The most common form of
constraint is on bond lengths or bond angles (Keen, 1997,
1998). These constraints need not be artificial, and can be
based on the same experimental data. For example, if a bond
length constraint is used, the value of the bond length can be
set to equal the position of the corresponding peak in G(r), and
the spread of bond lengths as controlled by the value of s2 can
be equated to the width of the corresponding peak in G(r).

The starting point is a configuration of atoms based on
a model structure, which will be the average crystal struc-
ture when the analysis is being carried out on crystalline
materials. The Monte Carlo process involves a series of
steps in which an atom is chosen at random and then moved
by a random amount. This will lead to a change in the value
of c2

RMC , which we denote as Dc2
RMC . If Dc2

RMC is negative,
the change is accepted and the process repeated. If Dc2

RMC
is positive, the move is accepted with probability
exp(–Dc2

RMC /2). The process is repeated for many 
steps, until c2

RMC oscillates around a stable mean value.
The RMC method was developed by McGreevy &

Pusztai (1988), initially to use total scattering data for the
development of structural models of fluids and glasses for
which there is no equivalent of an average crystal structure.
More recently the RMC method has been used for the study
of crystalline materials (Mellergård & McGreevy, 1999,
2000; Tucker et al., 2001c). In principle, the use of the RMC
method for crystalline materials could be carried out in
exactly the same way as for liquids and amorphous mate-
rials. The main difference between the two types of data is
that there are sharp Bragg peaks in the crystalline case that
are absent in data from liquids and amorphous materials.
However, in the basic methodology of RMC this difference
is not significant. Sharp Bragg peaks imply structural order
over effectively infinite distances. On the other hand, the
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RMC configuration is of finite size of the order of 1000 unit
cells, and the G(r) function can only be calculated up to the
distances of size L/2, where L is the length of the shortest
side of the RMC configuration. The Fourier transform will
therefore contain truncation ripples. In order to make a valid
comparison between the i(Q) from an RMC configuration
with experimental data, the i(Q) must first be convoluted
with the Fourier transform of a box function of size L/2:

i’(Q) = 
1–p ò

¥

–¥
i(Q’) sin (L—

Q–
—/2(Q—

Q’
–Q’ ))dQ’ (16).

Thus the sharp Bragg peaks of the data are artificially
broadened before comparing with the calculated i(Q). This
implies some degradation of data used in the RMC method,
and, particularly for studies of crystalline materials, it
would be helpful to avoid this situation.

Mellergård & McGreevy (1999, 2000) have developed a
new version of the RMC program (called RMCPOW) in
which the calculated i(Q) is calculated for a three-dimen-
sional grid of scattering vectors Q, and then mapped onto the
one-dimensional representation of the powder measurement.
The values of Q that can be used are determined by the
dimensions of the RMC sample. The individual calculations
are broadened before being added, so that the resultant i(Q)
is a continuous function and not a discreet set of spikes. In
principle, this broadening can be related to the experimental
resolution. The main problem with this approach is that it
becomes computationally demanding when measurements of
Q are taken to ideally large values, because the size of the
grid scales with the cube power of the maximum value of Q.

We have used a different approach, in which we combine the
data for i(Q) and G(r) with data for the explicit intensities of the
Bragg peaks. Initially we used the Pawley (1981) method to
extract the intensities of Bragg peaks from the diffraction data
(Tucker et al., 2001c). The Bragg peak intensities are incorpo-
rated into the basic RMC method by adding the following term:

c2
Bragg = S

h,k,
(Icalc(hk ) – Iexp(hk ))2

/s 2
hk (17).

The program is called RMCBragg, and has been used for
studies of quartz and cristobalite. It has been described in
Tucker et al. (2001c).

More recently we have incorporated a full profile fitting
of the diffraction data, as in Rietveld refinement, using the
full resolution function for the Bragg peaks (Tucker et al.,
submitted). Thus we write down the equation for the
diffraction pattern as

Iprofile (tj) = B(tj) + S
j
S
h,k,

R(tj – thk )IBragg(hk ) (18),

where B(tj) is the background at tj, R(tj – thk ) is the resolu-
tion function associated with an hk reflection, and
IBragg(hk ) is the integrated intensity of the hk reflection,
which we can write as

IBragg(hk ) = L(Qhk ) êF(hk ) ê2 (19).

L(Qhk ) is the Lorentz factor, and |F(hk )|2 is the square of
the structure factor of the hk reflection. Multiplicity is
accounted for by explicit calculations for all combinations

of hk . The elastic scattering profile is incorporated into the
RMC model through the new residual,

c2
profile = S

k
S

j
(Icalc

profile(tj)k – Iexp
profile(tj)k)2

/s 2
k(tj) (20),

where the sum over k denotes the inclusion of diffraction
patterns from different banks of detectors (each with a
different range of Q and different resolution). The back-
ground function, B(t), in equation (18) arises from the
diffuse scattering, and it is treated as a fitted function
because it is not directly given by the computed G(r). The
program for this work is called RMCprofile, and will be
described in detail elsewhere (Tucker et al., submitted).

Inclusion of the Bragg peak intensities has the merit of
ensuring that the RMC method is giving both single-atom
and pair distribution functions that are consistent with the
full range of data, or equivalently giving both the long-range
and short-range order implied by the data. RMC is clearly
based in statistical mechanics, and like nature will lead to a
maximisation of the entropy consistent with fulfilling the
constraints of the energy function defined by c2. This means
that the configurations produced by the RMC method will
have the maximum amount of disorder possible whilst being
consistent with the experimental data. What is not known is
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whether there is a wide range of configurations with equal
data consistency, but with varying degrees of disorder. This
is, in fact, one of the criticisms levelled at the RMC method,
and is known as the uniqueness problem. We believe that this
problem is rather over-stated – we would expect there to be
many configurations that are consistent with the data
because nature in an experiment produces many configura-
tions that contribute to the same data set. By using as wide
a set of data as possible, together with data-based
constraints, the variation between different configurations of
factors such as degree of order can be minimised. We have
shown in Tucker et al. (2001c) that using different subset
combinations of the data lead to very similar final configu-
rations as measured by the c2 functions.

The other main advantage in using Bragg peaks is that
they give to the simulation some of the three-dimensional
nature of the problem. The total scattering data are strictly
one-dimensional, i.e., the measurements are only dependent
on Q = |Q| rather than on the truly three-dimensional Q. It is
also true that the Bragg peaks are measured in a one-dimen-
sional sense. However, if it is possible to extract reliable
values for the intensities of the Bragg peaks in the diffrac-
tion profile, the fact that each Bragg peak can be associated
with a three-dimensional Q = ha* + kb* + c* means that we

do recover some of the three-dimensional nature of the
problem in the data. The outcome is that we would expect
the three-dimensional distribution of atom positions to be
reproduced reasonably well in the RMC simulation.

Example studies

1. Example of RMC data fitting: sulphur hexafluoride

Although not a mineralogical example, recent work on
the molecular crystal SF6 highlights several of the aspects of
the analysis described in this paper. There are two crystalline
phases. Between 90–230 K the crystal structure is body-
centred cubic, with one molecular per lattice point (Dolling
et al., 1979). The S–F bonds lie along the á100ñ directions,
but with considerable orientational disorder. This disorder
has been studied in detail using molecular dynamics simula-
tion techniques (Dove & Pawley, 1983, 1984). The origin of
the orientational disorder seems to arise from the fact that
when the molecules are ideally aligned in their average posi-
tions, the shortest distance between the closest F atoms of
neighbouring molecules, with the interatomic vector lying
along the unit cell edge, would be too short. As a result, the
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molecules are constantly pushing each other out of the way,
and this results in tumbling motions of the molecules. This
problem is resolved at low temperatures by a phase transi-
tion to an ordered structure with monoclinic symmetry
(Powell et al., 1987; Dove et al., 1988).

Figure 9 shows the set of Qi(Q) data from different
banks of detectors on GEM for both phases of SF6, which
have been fitted by the MCGRtof program. Figure 10
shows the normal diffraction pattern, I(t), for both phases
fitted by the profile fitting part of RMCprofile. The D(r)
functions are shown in Fig. 11. Examples of layers of
molecules from the resultant RMC configurations of both
phases are shown in Fig. 12.

The intermolecular F…F pair distribution functions for
the disordered phase highlight how it is possible to extract

information from the RMC simulations. The main interest
concerns the shortest F…F contacts along along á100ñ.
Given the S–F distance of 1.565 Å obtained from the total
T(r), and the unit cell parameter of 5.89 Å, the shortest
F…F distance to be 2.76 Å if the molecules were in ordered
orientations. However, it was argued on the basis of mol-
ecular dynamics simulations (Dove & Pawley 1983, 1984)
that this contact distance would lead to too close an overlap
of the electron distribution in the two atoms, and that the
molecules would reorient in a disordered manner in order
to allow the shortest contact distances to expand. This
process should be seen in the F…F distribution functions.
Unfortunately, these are complicated functions, because for
two molecules there will be 36 distances. In Fig. 13 we
show the g(r) function for all F…F contacts, including both
inter-molecular and intra-molecular. It is not possible to
draw any conclusions from this function. In Fig. 13 we also
show the components for two distinct sets of inter-mol-
ecular contacts. The most important component is that for
neighbouring molecules along á100ñ. The small peak at the
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Fig. 12. RMC configurations for the disordered (top) and ordered
(below) phases of SF6. These show considerable orientational
disorder of the molecules in the high-temperature phase, and
ordered orientations in the low-temperature phase.
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low-r side of the distribution function is that corresponding
to the shortest contact along á100ñ. It can be seen that the
position of the peak is increased from the value of 2.76 Å
cited above to a value of 3 Å. This is consistent with the
values expected from the molecular dynamics simulation
analysis (Dove & Pawley, 1983, 1984). The important point
illustrated by this analysis, however, is that it is possible to
obtain detailed information about specific aspects of the

sample, information that may otherwise be hidden in
overall distribution functions.

2. Changes in structure arising from phase transitions 
in quartz and cristobalite

The RMC study of quartz (Tucker et al., 2000a, 2001b)
is interesting as giving an illustration of the changes in both
short-range and long-range order that can accompany a
displacive phase transition. The D(r) data for quartz shown
in Fig. 6 highlight several aspects of the change in structure
through the displacive phase transition. It can be seen that
the lower-r peaks have very little temperature dependence.
The variation of the instantaneous Si–O bond length shown
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Fig. 15. Top, Si–Si–Si angle distribution function of quartz
obtained by analysis of the RMC configurations for all tempera-
tures indicated in Fig. 6. The lower temperatures give the sharper
peaks. Note that on heating the two peaks in the range 120–150°
merge to give a single peak at 132.5°. Bottom left shows the
temperature dependence of the midpoints of the two peaks that
merge, and bottom right shows the temperature dependence of the
widths of the peaks that merge. The positions of the peaks clearly
show a dependence on the a–b phase transition, whereas the
widths of the peaks are virtually insensitive to the phase transition
(from Tucker et al., 2000a). 

B

Fig. 14. (100) layers from RMC atomic configurations of quartz
for two temperatures in the a-phase and one in the b-phase. SiO4

units are represented by tetrahedra. The insets show the average
structures obtained from the same configurations. In this projec-
tion the small parallelopiped spaces between tetrahedra become
rectangles in the b-phase, giving a clear representation of the
symmetry change associated with the phase transition (from
Tucker et al., 2000a, 2001b)



in Fig. 7 shows no clear change at the transition tempera-
ture, unlike the distance between the mean Si and O posi-
tions. The same is also true for cristobalite (data shown in
Fig. 8). On the other hand, the positions of some of the
peaks at higher values of r in the quartz D(r) data of Fig. 6
do show a temperature dependence that reflects the temper-
ature dependence of the crystal volume, which is itself
strongly affected by the phase transition. Thus we see that
data for different length scales are affected by the phase
transition in different ways. The other important point to
note is that with increasing temperature the features in D(r)
for quartz are broadened on heating, showing the effects of
thermal disorder.

(110) layers of atomic configurations from the RMC
simulations of quartz at three temperatures are shown in
Fig. 14, one for the a-phase at very low temperature, one at
a temperature just below the a–b phase transition, and one
in the b-phase. This particular projection was chosen

because the shear of the structure can be seen relatively
easily (note the inserts showing the average structure,
particularly the small channel between SiO4 tetrahedra
with a rectangular projection in b-quartz that is sheared in
a-quartz). There are two important points to note. First is
that the RMC simulation has produced a very ordered
structure at low temperature. This highlights that a careful
RMC simulation does not necessarily give an exaggerated
degree of disorder. The second point is that there is a
considerable degree of disorder of the structure, with large-
amplitude rotations of the SiO4 tetrahedra, at high tempera-
tures, in both the a and b phases.

The change in short-range and long-range order in
quartz on heating through the phase transition can be seen
in three-atom distribution functions calculated from the
RMC configurations. Figure 15 shows the distribution
functions for the Si–Si–Si angles. At low temperatures the
distribution function has four peaks. On heating towards
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the a–b phase transition, two of the peaks broaden and
their midpoints become closer. In the b-phase, the two

peaks merge into a broad single peak. The midpoints and
widths of these peaks are shown as functions of tempera-
ture in Fig. 15. The temperature-dependence of the
midpoints clearly reflects the change in long-range order
associated with the phase transition. The fact that the
Si–Si–Si angle distribution function clearly reflects the
phase transition means that the changes in long-range order
are felt down to the length scale of two neighbouring tetra-
hedra (the second-neighbour Si…Si distance is ca. 6 Å). It
is sometimes argued that the structure of b-quartz consists
of small domains of a-quartz, but the analysis of the
Si–Si–Si angle distribution function shows that the struc-
tural changes associated with the phase transition are
clearly felt at the length scale of the unit cell. On the other
hand, the widths of the peaks in the Si–Si–Si angle distri-
bution function, shown in Fig. 15, increase significantly on
heating, without any change associated with the phase tran-
sition. These results shows that there are considerable fluc-
tuations of the Si–Si–Si angle, as reflected in the
configuration plots of Fig. 14. The changes in the long-
range order occur on a significant background of large-
amplitudes short-range disorder.
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Fig. 17. Distribution functions for the O–Si–O (top) , Si–O–Si
(middle) and Si–Si–Si (bottom) angles in the two phase of cristo-
balite obtained from the RMC analysis (Tucker et al., 2001a). Note
that only the O–Si–O distribution function has any clear variation
with temperature in the b-phase, but that the all the distribution
functions for the a-phase are markedly different from the corre-
sponding functions in the b-phase.

Fig. 18. Comparison of the diffuse scattering in the (hk0) layer
reciprocal lattice of quartz measured by single-crystal neutron
diffraction and calculated from the RMC configurations at a
temperature in each of the two phases (Tucker et al., 2001b). The
RMC data show the Bragg peaks as single pixels, whereas the
Bragg peaks in the experimental data are broadening by experi-
mental resolution and therefore appear as more prominent features.



Figure 16 shows layers of the RMC configurations of
cristobalite in both a and b phases (Tucker et al., 2001a).
We have shown elsewhere (Dove et al., 1997; Tucker et al.,
2001a) that there is little variation in the structure of b-
cristobalite with temperature. The configuration of b-
cristobalite shows a considerable degree of disorder of the
SiO4 tetrahedra, and there is also a relatively high degree of
disorder in the structure of a-cristobalite (albeit less than in
the b-phase). The changes of structure are also shown by
the Si–Si–Si angle distribution function, shown in Fig. 17.
This function shows a large central peak with two side
peaks in a-cristobalite, but only one peak in b-cristobalite.
As for quartz, this shows that the structure of the b-phase
is distinct from that of the a-phase over the length scale of
one unit cell (this is also clearly seen in the O–O pair distri-
bution functions, Tucker et al., 2001a), but that there is a
considerable degree of short-range disorder. For complete-
ness, we note that similar results have been obtained from
an RMC analysis of the high-temperature phase of
tridymite (Dove et al., 2000).

3. Calculations of three-dimensional diffuse scattering

An interesting challenge is to use the RMC configura-
tions, produced by the one-dimensional total scattering
and some three-dimensional Bragg peaks, to generate
three-dimensional patterns of diffuse scattering. These can
then be compared with single-crystal diffuse scattering
experiments. Such comparisons for quartz (Tucker et al.,
2001b) and cristobalite  (Tucker et al., 2001a) are shown
in Fig. 18 and 19 respectively. The reader should note that

the Bragg scattering in the RMC maps is presented as
single-pixel points, whereas the Bragg scattering in the
experimental data is broadened by the instrumental resolu-
tion and hence appears more prominent than in the RMC
maps. The experimental data for a- and b-quartz are from
neutron scattering measurements on the PRISMA spec-
trometer at ISIS (Tucker et al., 2001b). The experimental
data for b-cristobalite are from TEM measurements (Hua
et al., 1988). The agreement between the experimental
data and the RMC reconstruction is very good in each
case. That may not be too surprising, since the streaks of
diffuse scattering are associated with rigid unit modes, and
these arise from the pattern of constraints imposed by the
three-dimensional network of corner-linked SiO4 tetra-
hedra. On the other hand, the encouraging point about the
quality of the comparisons is that the RMC simulations
have reproduced the physics of the dynamics of these
systems.

In fact, it is possible to quantify the agreement
between the calculated diffuse scattering and the experi-
mental data. The calculated and measured temperature
dependence of the diffuse scattering in quartz (Tucker et
al., 2001b) are compared in Fig. 20. This is a much stricter
test, because it relies on being able to calculate the inten-
sity of the diffuse scattering and its variation through a
phase transition, rather than simply calculating a pattern
of diffuse scattering. It can be seen that the RMC has
reproduced the experimental data in both phases. We are
therefore able to conclude that the RMC method is able to
properly capture the three-dimensional physics of the
system under study.
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Fig. 19. Calculated [001] zone diffuse scattering
for the two phases of cristobalite (including two
temperatures in the high-temperature disordered
phase), compared with TEM measurements (Hua
et al., 1988) of the diffuse scattering in the high-
temperature phase (Tucker et al., 2001a). The
RMC data show the Bragg peaks as single pixels,
whereas the Bragg peaks in the experimental data
are broadening by experimental resolution and
therefore appear as more prominent features.
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Summary

The central point of this review has been to highlight
the way in which neutron total scattering measurements, by
combining both Bragg diffraction and diffuse scattering in
a single experiment, can provide information about long-
range and short-range order simultaneously. This is particu-
larly useful for the study of disordered crystalline
materials, when the local structure fluctuates strongly from
the structure averaged over all unit cells. Key examples of
this are the crystalline silica phases. The Reverse Monte
Carlo method facilitates the development of structural
models that are consistent with the data in all aspects and
across all length scales, through fitting to the total scat-
tering intensity across a wide range of Q, to the pair distri-
bution function, and to the intensities of the Bragg peaks.
Our work in this area has mostly focussed on disordered
crystalline materials, but the RMC method can also be
applied to glasses (Keen, 1997), magnetic materials (Keen
& McGreevy, 1991; Keen et al., 1995, 1996; Karlsson et
al., 2000; Mellergård & McGreevy, 2000), and crystalline
materials with site disorder (Mellergård & McGreevy,
2000). The RMC method has been applied to neutron
single crystal diffuse scattering data (Nield et al., 1995; see
also Proffen & Welberry, 1997a,b, and Welberry & Proffen,
1998, for the application of the RMC method to the anal-

ysis of single-crystal X-ray diffuse scattering data), but the
restricted range of Q that can be obtained in such measure-
ments as compared to the range of Q accessible in total
scattering measurements means that it is not possible to
achieve the same resolution in real space.

Appendix: correction of total scattering data for 
background scattering and beam attenuation

A total scattering experiment requires a number of
measurements in addition to that involving the sample.
These are a measurement with an empty instrument, a
measurement with empty sample environment equipment,
and a measurement with an empty sample container within
the sample environment equipment. We label the measured
intensity from each of these as II (empty instrument), IE
(sample environment equipment), and IC (sample
container), together with IS for the measured intensity from
the sample. We denote the expected intensity, after
accounting for all corrections, with a prime, as I¢, with the
same subscripts. The relationships between the measured
intensities and the expected intensities can be can be
written as the following set of equations:

IE = aE
EI’E + I’I

IC = aC
C,EI’C + aE

C,EI’E + I’I (21).

IS = aS
S,C,EI’S + aC

S,C,EI’C + aE
S,C,EI’E + I’I

The a coefficients give the corrections for each contribu-
tion. The component in the superscript of each a coeffi-
cient denotes the source of scattering, and the subscript
denotes the source of attenuation. The values of all the a
coefficients can be calculated from knowledge of the
components of the experiment. It is assumed that I’I = II. For
example, the measured intensity from the empty sample
environment is given by the intensity from the empty
instrument together with scattering from the sample envi-
ronment that is also attenuated by the sample environment.
The measured intensity of scattering from the empty
container consists of the background from the instrument,
a component of scattering from the sample environment
equipment attenuated by both the sample container and the
sample environment equipment, and a component of scat-
tering from the sample container which is also attenuated
by the sample container and the sample environment equip-
ment. 

In practice, the measurements from both the empty
instrument and the instrument containing the empty sample
environment, II and IE respectively, can be combined to
yield I’E. This is then combined with the measurements of
the empty sample environment and the empty sample can
within the sample environment, II and IC respectively, to
give I’C. Finally, all these separate components of the scat-
tering are combined with the measurement from the sample
to recover the true scattering from the sample alone, I’S.
These corrections are usually applied in a single program,
such as ATLAS (Hannon et al., 1990), into which is read
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Fig. 20. Temperature dependence of the diffuse intensity from
quartz in the (z00) directions. The circles correspond to values
from the diffuse scattering obtained from RMC configurations
around (4.5,3.5,0), whereas the other data points correspond to the
experimental diffuse intensity at (2.5,1.5,0)  and (4.5,3.5,0) (grey
and black squares, respectively). The line is a guide to the eye
through the circles and black squares. All plots have been scaled to
give a maximum of 10 at the transition temperature (Tucker et al.,
2001b).
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details such as the geometry of the instrument, sample
environment and sample can.
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