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Abstract

We use a combination of real-space geometric algebra and reciprocal space dynamical matrix analyses to study the effect of

cation substitution on the framework geometries of h-quartz, cordierite and leucite. We show that the geometric stress associated
with the substitution in these framework silicates is absorbed by rigid-unit type motion of those coordination polyhedra near the
substitution site. We find that the inherent flexibility of these structures enables screening of geometric stress, such that the

associated energy cost is minimal and unlikely to influence substitution patterns.
D 2005 Elsevier B.V. All rights reserved.

PACS: 61.72.-y; 63.20.Pw

Keywords: Al–Si ordering; Silicates; Geometric algebra; Rigid unit modes; Strain screening; Framework structures

1. Introduction

Cation substitution is a phenomenon observed repeat-
edly throughout both naturally occurring and synthetic
framework materials; in particular, Al-substituted
(dstuffedT) silicates and zeolites are a class of materials
of great importance to the earth sciences. The substitu-
tion patterns exhibited by these materials are varied, and
can involve order (or disorder) on multiple length scales.
However, some empirical rules do emerge. For example,
the dAl-avoidance ruleT reflects the observation that Al
atoms rarely substitute the centres of connected [SiO4]
tetrahedra in framework silicates. In general, such rules
are qualitatively explained in terms of two balanced
effects. The first considers the electrostatic interaction

between substituted centres; for example, the [AlO4]
coordination polyhedra in siliceous frameworks bear a
negative charge, and so the substitution of adjacent
coordination polyhedra carries with it a large electrostat-
ic energy cost. The second is a geometric effect, which
accounts for the strain introduced by the associated
change in metal–oxygen bond lengths.

Taken at face value, the suggestion that one can min-
imise the geometric strain associated with Al-substitution
by maximising the number of Al–O–Si linkages seems a
natural assumption. However, the manner in which such
geometric strains propagate throughout the crystal lat-
tice, and their effect on possible substitution patterns are
non-trivial issues. To address these, it is important to
explore the way in which framework structures respond
to the introduction of substitutional centres. Such a
response will necessarily depend on the inherent flexi-
bility of the framework; i.e., the degree to which the
framework can distort with minimal energy cost.
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A simple and surprisingly effective interpretation of
framework flexibility is that given by the Rigid Unit
Mode (RUM) model. In this picture, the metal coordi-
nation polyhedra within the framework are viewed as
rigid units, connected to form the required framework
topology. The physical significance of the model lies in
the observation that the forces required to deform co-
ordination geometries are significantly greater than
those required to rotate and/or translate coordination
polyhedra relative to each other. The various combina-
tions of translations and rotations of the rigid units that
preserve the framework topology, such as the octahe-
dral rotation mode in perovskite (Fig. 1), are conse-
quently likely to dominate the dynamical behaviour of
the material. Indeed, those phonon modes that can be
described in this way (termed RUMs) often occur at
very low energy (typically 0–2 THz) and so dictate
many physical properties of the materials in which
they exist. The model has enjoyed much success in
explaining a range of phenomena, including the exis-
tence and nature of phase transitions (Hammonds et al.,
1996) and anomalous thermal expansion behaviour
(Heine et al., 1999; Welche et al., 1998).

In this paper, we show that the topologies of a
number of framework structures are capable of ac-
commodating cation substitution without significant
deformation of individual coordination polyhedra. In
particular, the associated geometric dstressT can be
absorbed by the rotations and/or translations of the
neighbouring coordination polyhedra. The same inher-
ent framework flexibility that gives rise to RUM-type
vibrational motion is shown to allow cation substitution
with a small geometric energy cost.

Our analysis involves the use of two methods: first-
ly, a recently developed geometric algebra approach
that quantifies the influence of rigid-unit motion on
atomistic configurations; secondly, a novel dynamical

matrix method that determines the flexibility of each
framework with respect to changes in size (dbreathingT)
of the coordination polyhedra. We present results for
three representative silicate structures: h-quartz, cordi-
erite and leucite.

2. Geometric algebra analysis

Despite the obvious usefulness of the RUM model in
determining the dominant reciprocal-space influences on
framework structures, the active phonon modes in a real
material do not in practice fall neatly into a family of
RUMs that dominate all motion, and another family of
non-RUMs with minimal effect on atomic displace-
ments. Instead, any mode can include components of
either type of motion, with the relative proportions vary-
ing primarily as a function of mode frequency. As such,
atomistic configurations –dsnapshotsT of instantaneous
atomic positions within a material – will reflect the
influence of both RUM- and non-RUM-type phonon
modes.

To quantify these contributions, a real-space analysis
of RUM fluctuations based on the technique of geo-
metric algebra (GA) has recently been developed (Wells
et al., 2002) and has been implemented by the program
gasp (Wells et al., 2004; Wells, 2004). It allows us to
determine the extent to which atomistic configurations
can be described in terms of RUM displacements, by
decomposing the atomic displacements into rigid-unit
translations, rotations and distortions.

The approach compares the polyhedral geometries
within a given structure, before and after introduction of
the defect. Let A denote any one polyhedron in the
initial configuration and A V the corresponding polyhe-
dron in the defective structure. If A and A V are super-
posed such that their centres coincide, there will be a
mismatch between each vertex Q of A and the

Fig. 1. Illustration of a rigid unit mode in the perovskite structure. The mode involves counter-rotation of successive coordination octahedra about

an axis perpendicular to the page, and preserves the integrity of all coordination polyhedral geometries.
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corresponding vertex Q V of A V given by the vector
dr=r(Q)!r(Q V). The sum of the squares of the mis-
matches over all vertices (

P

Q|dr|
2) is a measure of the

difference between A and A V. If we now allow A to
rotate freely, we can minimise this sum-of-squares mis-
match score until the orientation of A matches that of
A V. The residual mismatch score after this operation
measures the distortion of A V relative to A.

The residual mismatch for each vertex can be re-
solved into components parallel and perpendicular to
the (reoriented) bond vector, corresponding to stretch-
ing of the Si–O bond and bending of the intra-polyhe-
dral O–Si–O angles, respectively. Consequently, for
each polyhedron, we can quote both RMS bending
and RMS stretching distortions, which together quan-
tify the total alteration to the polyhedral geometry. A
convenient property of the geometric analysis is that
both stretching and bending distortions are measured in
Ångstroms and so can be compared directly.

The rotation of the polyhedron A to most closely
match the orientation of A V is given by a rotor object B
with three Cartesian components Bx, By, Bz, such that
the axis of the rotation is parallel to the vector [Bx, By,
Bz] and has magnitude h =2 arcsin

! jBj
2

"

. To first order,
the three components measure the rotation of the poly-
hedron about the Cartesian axes.

2.1. Mott–Littleton configurations

One method of generating appropriate atomistic con-
figurations of substituted silica frameworks is that of
Mott and Littleton—as coded into the general modelling
program gulp (Gale, 1997). This approach uses empi-
rical interatomic potentials, and relaxes the structure
around a defect site up to a pre-defined cut-off. The re-
maining region is approximated as a polarizable medium.

An Al centre was introduced into configurations of
both SiO2-cordierite and h-quartz. Each configuration
was relaxed to a cut-off radius of 15 Å, and the output
analysed using gasp. The results, illustrated in Fig. 2,
indicate two effects: firstly, a significant degree of atomic
motion is required to accommodate the defect—particu-
larly in the case ofh-quartz—and, secondly, that the bulk
of this motion is attributable to rigid-unit rotations and
translations.

2.2. Rigid-ion configurations

The large cut-off radius required and the fact that a
number of rigid units necessarily span both the relaxed
(inner) and polarizable (outer) regions are both compu-
tational problems for the Mott–Littleton approach. Con-

sequently, we chose to balance our analysis by
considering configurations generated using a standard
rigid-ion model. In this instance, it was necessary to
counter the negative charge of the Al-substituted frame-
works with a monovalent cation (Li+). We used the
potential of Calleja et al. (2001) to relax a configuration
representing a 6"6"6 supercell of h-quartz. Conve-
niently this particular potential, which is based on the
silica model of Kramer et al. (1991) with an added Li–
O term from LiAlSi2O6, had been designed specifically
for use with Li/Al-substituted quartz configurations.

The incorporation of a Li+ ion within the general
structure imparts an electrostatic effect to the overall
framework response. This effect is particularly notice-
able in the geometry of the [SiO4] coordination tetra-
hedron immediately adjacent to the Li+ site. Indeed, the
Li/Al defect effectively takes the form of an Al–[O2]–
Li–[O2]–Si moiety, in which the Si–O coordination
geometries are highly distorted. In analysing these con-
figurations, it is possible then to observe how the
silicate framework responds to both the incorporation
of the Al centre and the Li+-induced distortion of the
proximal [SiO4] unit.

Fig. 2. Distortion in the (a) SiO2-cordierite and (b) h-quartz frame-

works induced by an Al-substitution event. The dashed lines represent

total distortion values based on atomic displacements; the solid lines

give the residual deformation after taking account of the RUM com-

ponent of the atomic displacements, as determined by GA analysis of

our Mott–Littleton atomistic simulation. Such motion clearly accounts

for a large fraction of the structural response of the framework to the

substitutional defect. (Top panel adapted from (Wells et al., 2002))
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Our results (illustrated in Fig. 3) show that the
rigid unit distortions are localised to the few neigh-
bouring polyhedra of both the substitution site and the
proximal [SiO4] unit. Again, it was possible to inter-
pret the remainder of the framework response largely
in terms of rotations and translations of rigid units.
The extent of both rigid-unit motion and distortion
decayed rapidly with increasing displacement from the
Li+ site. Indeed, this behaviour mirrors that observed
in the configurations generated using the Mott–Little-
ton approach.

2.3. Cation exchange energies

In a series of papers, summarised by Bosenick et al.
(2001), our group has studied the energetics of Al/Si
cation ordering in framework silicates. It is generally
found that the energy of a configuration can be expressed
in the form

E ¼
X

hi;ji
JijSiSj ð1Þ

where Si is a variable with value 1 if the site i contains an
Al cation, or 0 otherwise. The coefficients Jij are the

exchange energies. Bosenick et al. (2001) compare
values of J for nearest neighbour distances for a range
of aluminosilicates, and find more variability than would
be expected if the interaction were to arise purely from
electrostatic effects. This variability is attributed to the
role of strain.

Values of J for more distant neighbours appear to
have no trends, and indeed can have positive or nega-
tive values. Typical values are much smaller than the
value of J for nearest-neighbour interactions. Bosenick
et al. (2001) compare values for second and third
neighbour interactions around 6-membered rings of
tetrahedra in several different systems. We make two
observations from Fig. 2. First, strain screening clearly
operates over the length scale of second-neighbour
distances and beyond, which explains why values of
J for these interactions are much lower than for the
nearest-neighbour interaction. However, the analysis in
this section ignores effects such as the energy associ-
ated with flexing of the Si–O–Si bond, and we propose
that it is these interactions, rather than strain propagat-
ing through the tetrahedra, that determines the magni-
tude of the higher-neighbour exchange energies.

3. Breathing RUM analysis

Real-space analyses of framework flexibility, such as
those presented above, are useful in visualising the
ability of frameworks to accommodate substitutional
centres. However, they necessarily involve the use of
a handful of individual configurations and so lose in
generality what they gain in clarity. We describe here a
complementary approach in which the general nature of
framework flexibility is elucidated in terms of a recip-
rocal-space view of framework structures.

3.1. Split-atom approach

For a given framework structure, the number and
nature of the RUMs that it is capable of supporting
depend in a non-trivial manner on its topology. Indeed,
their determination is generally too difficult a task to be
performed by inspection alone. Rather, the method of
choice is a dynamical matrix approach, automated by
the freely available program crush (Giddy et al.,
1993; Hammonds et al., 1994).

The approach used by this program reduces a given
framework structure to its constituent coordination
polyhedra (the rigid units). Each unit j is assigned six
degrees of freedom: three translational (assembled into
a translation vector uj) and three rotational (which
characterise the 3"3 rotation matrix Rj). The points

Fig. 3. Rigid-unit response to Li/Al substitution in the h-quartz
framework as determined by GA analysis of our rigid-ion atomistic

simulation. The extent of rigid-unit distortion (a) [separated into

bending (solid line) and stretching (broken line) components] and

rotation (b) decays rapidly for successively distant rigid unit neigh-

bours of the Li+ site.
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at which the rigid units are connected correspond to
bridging oxygen atoms in the original (atomistic) struc-
ture. These atoms are then split between the two units
they bridge, and the resulting pair is connected by a
fictitious spring of zero equilibrium length (Fig. 4).

The energy term u associated with this spring then
depends on the separation r of the two split atoms:

u rð Þ ¼ 1

2
Kjrj2 ð2Þ

where

r ¼ u1 ! u2 þ R1d e1 ! e1 ! R2d e2 þ e2 ð3Þ

Here, the ei are the vectors joining the split atoms to
the centre of their respective rigid units.

In this way, the geometry of the rigid units is pre-
served as a strict constraint, whilst the connectivity of
the framework is treated as a slack constraint. The force
constant K is the only variable in the model and would
have infinite value if we were to impose a strict con-
nectivity constraint. It represents—to a first-order ap-
proximation—the force required to deform the rigid
units, and can be tuned to correlate with appropriate

experimental values. The interaction energies u defined
in this way can be assembled in the usual manner into a
dynamical matrix, whose eigenvalues are related to the
mode frequencies (Dove, 1993). A mode will be cal-
culated to have zero frequency if and only if it does not
involve any separation in the split atoms; i.e., it is a
RUM. Moreover, the eigenvectors of these modes will
describe the motion of the various rigid units associated
with the mode.

3.2. The breathing RUM model

In order to extend this model to one with which we
might study the effects of cation substitution, we assign
to each rigid unit one additional degree of freedom: a
breathing factor q, which corresponds to a scaling of
the rigid unit size. In physical terms, the scaling of a
[SiO4] tetrahedron by an appropriate factor could rep-
resent its replacement by the larger [AlO4] species. The
appropriate formalism corresponding to Eq. (3) is then
given by:

r ¼ u1 ! u2 þ 1þ q1ð ÞR1d e1 ! e1 1þ q2ð ÞR2d e2þ e2

ð4Þ

The construction and analysis of the corresponding
dynamical matrix differs from the standard split-atom
approach predominantly in the order of the constituent
blocks (having increased from 6 to 7) and the inter-
pretation of the eigenvectors (one component of which
will correspond to the breathing factor q). The set of
modes with zero-valued frequencies will contain the
family of RUMs obtainable through the standard split-
atom approach, together with a collection of breathing
RUMs (BRUMs)—modes that involve changes in the
polyhedral sizes (an example of which is given in
Fig. 5).

Fig. 4. Representation of the split-atom model used to construct the

dynamical matrix. Each rigid unit possesses six degrees of freedom:

three translational (the elements of the translation vector u) and three

rotational (the elements of the rotation matrix R). The energy term u
of the model depends on the separation r between split atoms and is

zero if and only if the polyhedral connectivity is preserved.

Fig. 5. Illustration of a BRUM in the perovskite structure. The coordination octahedra are alternately magnified and reduced by the same factor. As

for the RUM shown in Fig. 1, the mode preserves the integrity of all coordination polyhedral geometries.
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As an illustration of the physical meaning of this
extension to the model, we consider initially the perov-
skite structure. In this instance, the unit cell contains a
single rigid unit, and so the dynamics are described in
terms of seven phonon modes, at least one of which
will involve the breathing motion described above. The
wave vector dependence of the frequency of this mode
along the high symmetry directions is shown in Fig. 6.
As the mode itself is hypothetical, the absolute energy
values determined by the program are arbitrary and
have no physical significance. What is important, how-
ever, is the relative behaviour of the dispersion curve.
In particular, the breathing mode frequency falls to zero
at the R point, illustrating the presence of a BRUM at
this wave vector (in addition to the triply-degenerate
rotational RUM at the same wave vector). Inspection of
the associated eigenvector indicates that the mode
represents alternate magnification and reduction of the
coordination octahedra throughout the structure; this is
essentially the three-dimensional analogue of the sub-
stitution pattern illustrated in Fig. 5 (inset to Fig. 6).

The perovskite structure is a particularly simple
system; for more complex structures, one often
observes significant mixing between the standard
RUMs and any BRUMs that might occur such that all
zero-frequency modes appear to possess some breath-
ing component. Consequently, it can prove difficult to
interpret the mode eigenvectors in a physically sensible
manner. Importantly, the total number of zero-frequen-
cy modes nBRUM+RUM can be easily determined and is
unaltered by any mixing between the two types of zero-
frequency modes. By using both the original split-atom
and breathing approaches separately, we can confident-

ly arrive at the additional number of breathing rums
nBRUM at any given wave vector:

nBRUM ¼ nBRUMþRUM ! nRUM ð5Þ

where nRUM is the number of RUMs determined using
the original split-atom approach. As we explore further
below, the ratio of the quantity nBRUM to the number of
rigid units themselves can be related directly to the
flexibility of the framework with respect to cation
substitution.

3.3. Practical implementation

A modified version of the original crush program,
referred to here as b-crush, is used to calculate the
breathing mode frequencies and eigenvectors (in addi-
tion, of course, to those of the standard translational and
rotational modes) according to the theoretical frame-
work given above. The use of a single breathing pa-
rameter carries with it an inherent isotropy that can
result in slight yet persistent errors when polyhedra
with non-ideal geometries are used. Consequently,
these geometries for a given structure are initially mod-
ified using the program idealiser (Hammonds and
Dove, 1998) prior to analysis by b-crush. idealiser
attempts to regularise all coordination polyhedra in the
given structure; i.e., to give tetrahedral O–Si–O angles
of 109.58 and equal Si–O bond lengths. To do so, one
allows the program a certain degree of flexibility in
parameters such as the unit cell lengths and Si–O–Si
angles. The framework topology remains unaltered
throughout this process, and so the b-crush output
is equally applicable to the original non-ideal structure
as it is to the newly generated idealised structure.

3.4. Analysis of framework silicates

The number of BRUMs across the entire Brillouin
zone (BZ) was determined at a resolution of k/20 in the
relative wave vector for h-quartz, cordierite and leucite.
The results are summarised in Table 1. In contrast to the
perovskite structure, which we have already seen to be
incapable of supporting BRUMs at wave vectors other

Fig. 6. Wave vector dependence of the nominal breathing mode

frequency in the perovskite structure. The mode frequency falls to

zero at the R point, where it corresponds to a BRUM. The physical

interpretation of this BRUM is a substitution pattern in which the

coordination octahedra alternate in size throughout the structure

(inset).

Table 1

Number of breathing RUMs at any wave vector for some framework

materials

Material Number of rigid units per unit cell nBRUM

h-quartz 3 3

Cordierite 36 36

Leucite 48 48

Perovskite 1 0
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than the R point, the value of nBRUM for each frame-
work silicate was found to equal the number of rigid
units in the unit cell at all values of the wave vector.
This somewhat unexpected result has immediate impli-
cations regarding the ability of these frameworks to
accommodate substitutional centres.

The breathing motion for each rigid unit in our
model is described completely by one degree of free-
dom; consequently, we find that the number of BRUMs
in the silicate frameworks is precisely equal to the
number of breathing degrees of freedom. It follows
that the breathing motion of any one polyhedron in
the structure can be decoupled from that of all other
polyhedra. It is convenient to consider this occurring
with an appropriate wave packet—a superposition of
the BRUMs at appropriate wave vectors. Upon varia-
tion of the size of any given polyhedron (corresponding
to a single substitution deventT), the entire set of rigid
units within the framework can be rotated and/or trans-
lated such that (i) the geometric integrity of all rigid
units is retained and (ii) the connectivity of the frame-
work structure is preserved.

Disappointingly, our analysis does not easily yield
the explicit nature of these rigid-unit rotations and
translations. To see why this is the case, we consider
the breathing dmotionT associated with a given wave
packet. The breathing dmotionT qj(r) of the rigid unit j
at position r can be expressed as a sum of contributions
from the BRUMs m of the wave packet across the BZ:

qj rð Þ ¼
X

kaBZ;m

k k; mð Þqj k; mð Þexp ikd r½ ( ð6Þ

Here, the qj(k,m) are the breathing components of
the relevant mode eigenvectors (calculated by b-
crush), and the k(k,m) their weightings. The mode
eigenvectors are independent of the chosen wave pack-
et, but the mode weightings are not: it is their values
that we must calculate to characterise the rigid-unit
motions involved. Once their value is known, the
k(k,m) yield the translation vectors and rotation matri-
ces for each rigid unit:

uj rð Þ ¼
X

kaBZ;m

k k; mð Þuj k; mð Þexp ikd r½ ( ð7Þ

Rj rð Þ ¼
X

kaBZ;m

k k; mð ÞRj k; mð Þexp ikd r½ ( ð8Þ

For all rigid units { j,r}, we have qj(r)=0 except for
the one particular rigid unit {jV,rV}, whose size is
allowed to change: in its case, qj V(rV)=1. Using this
information, it is possible—in principle—to evaluate

the k(k,m). From a simple variable-counting perspec-
tive, we have as many unknowns—the k(k,m)—as we
have relations given by the general Eq. (5). This is the
case only because there is a one-to-one relationship
between BRUMs at arbitrary wave vector and rigid
units in the unit cell. However, the calculation suffers
from a need to place a limit on the number of unit cells
that we consider in our model. Termination at some

Fig. 7. Accommodation of cation substitution within the leucite

structure as determined by idealiser. The top panel shows the

positions of rigid units within the native unit cell. The geometries

of the units have been regularised so that all O–Si–O angles are

109.58 and all Si–O bond lengths are equal. One tetrahedron

(coloured black) in the structure is enlarged to reflect the substitution

of a Si atom by an Al atom. The configuration is again regularised;

however the Al–O and Si–O bond lengths are constrained to differ by

0.1 Å. The configuration determined by idealiser (bottom panel)

illustrates how the coordination polyhedra within the structure can be

seen to rotate and translate to accommodate the geometric stress

associated with the cation substitution.
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arbitrarily large value of |r| carries with it the inherent
assumption that no associated RUM-type motion
occurs at distances greater than this value. This is
difficult to assess a priori.

To some extent, the results obtained from the breath-
ing RUM approach are non-constructive: they predict
that the framework silicates studied are geometrically
capable of accommodating substitutional centres with-
out significant distortion to their constituent rigid units
but do not explicitly illustrate how they manage to do
so. Nonetheless, they do provide an unambiguous in-
dication that these structures are incredibly flexible and
that this flexibility does not only have the potential to
influence their dynamical properties, but also their abil-
ity to incorporate cation substitution.

The motivation for the BRUM model arises from the
expectation, as shown in the previous section, that
strain associated with ordering within the aluminosili-
cate network would be accommodated through RUM
deformations of the network. By incorporating a vari-
able associated with cation size, which translates to
tetrahedron size, it is possible to develop a dynamical
model in which variations in cation size are coupled
with RUM motions. For example, Al/Si ordering in a
material such as cordierite could be correlated with
rotations of the tetrahedra. It was anticipated, with
overdue optimism as it now turns out, that a subset of
zero frequency solutions to the new model would con-
tain the ordering patterns observed experimentally.

4. Discussion

The inherent flexibility of framework silicates is
now widely appreciated and is indeed manifest in
many other properties of these materials. For example,
an investigation into the mechanism of ion conduction
within framework silicates (Sartbaeva et al., 2004)
illustrates that the cross-channel widths in the h-quartz
structure can be varied by distances as large as 0.5 Å
with a concomitant energy cost of less than 0.5 eV.
Again, the movement is shown to be accommodated
by collective motion of the polyhedra within the
framework.

It is also possible to use the program idealiser to
examine (in real-space) the geometric effects of cation
substitution. As discussed above, the program attempts
to regularise all the coordination polyhedra in a given
structure. Of relevance to the present study is the ability
to constrain the bond lengths within different tetrahedra
in different ways. In particular, it is possible to force
one tetrahedron within a framework silicate structure to
be larger than all others (each of which are constrained

to have the same size). The resulting configuration—if
one can be found by the program—corresponds directly
to the wave packet considered in our reciprocal space
analysis above.

For example, idealiser successfully finds a solu-
tion when given the atomic coordinates of leucite and
the Si–O bond lengths within a single [SiO4] tetrahe-
dron are constrained to be 0.1 Å longer than those in the
rest of the structure (as indeed it does for supercells of
h-quartz and cordierite). The resulting configuration is
illustrated in Fig. 7 and reveals the method by which
the ensemble of coordination tetrahedra are capable of
absorbing the substitutional centre through rigid-unit
translations and rotations.

In summary, we have shown that a number of
framework silicates are capable of accommodating sub-
stitutional centres with minimal distortion to the coor-
dination polyhedra that constitute the framework
geometry. The energy associated with action substitu-
tion is generally determined by a mixture of electrostat-
ic interactions and the energies associated with flexing
of (Al/Si)–O–(Al/Si) bonds or equivalent, rather than
by deformation of the structural polyhedra. The only
case where polyhedral distortion will play a role is in
the nearest-neighbour interaction. Strain screening low-
ers the energy cost of substitutions or disordering pro-
cesses, and dampens the length scales over which strain
associated with cation substitution will propagate.

Acknowledgments

A.L.G. acknowledges financial support from Trinity
College, Cambridge, U.K. [LW]

References

Bosenick, A., Dove, M.T., Myers, E.R., Palin, E.J., Sainz-Diaz, C.I.,

Guiton, B.S., Warren, M.C., Craig, M.S., Redfern, S.A.T., 2001.

Computational methods for the study of energies of cation dis-

tributions: applications to cation-ordering phase transitions and

solid solutions. Mineral. Mag. 65 (2), 193–219.

Calleja, M., Dove, M.T., Salje, E.K.H., 2001. Anisotropic ionic

transport in quartz: the effect of twin boundaries. J. Phys. Con-

dens. Matter 13 (42), 9445–9454.

Dove, M.T., 1993. Introduction to Lattice Dynamics. Cambridge

University Press, Cambridge.

Gale, J.D., 1997. GULP: A computer program for the symmetry-

adapted simulation of solids. J. Chem. Soc., Faraday Trans 93 (4),

629–637.

Giddy, A.P., Dove, M.T., Pawley, G.S., Heine, V., 1993. The deter-

mination of rigid-unit modes as potential soft modes for displacive

phase transitions in framework crystal structures. Acta Crystal-

logr., Sect. A 49 (5), 697–703.

Hammonds, K.D., Dove, M.T., 1998. IDEALISER. http://www.esc.

cam.ac.uk/mineral sciences/crush/.

A.L. Goodwin et al. / Chemical Geology 225 (2006) 213–221220

http://www.esc.cam.ac.uk/mineral%20sciences/crush/


Hammonds, K.D., Dove, M.T., Giddy, A.P., Heine, V., 1994. Crush:

A FORTRAN program for the analysis of the rigid unit mode

spectrum of a framework structure. Am. Mineral. 79 (11-12),

1207–1209.

Hammonds, K.D., Dove, M.T., Giddy, A.P., Heine, V., Winkler,

B., 1996. Rigid-unit phonon modes and structural phase

transitions in framework silicates. Am. Mineral 81 (9-10),

1057–1079.

Heine, V., Welche, P.R.L., Dove, M.T., 1999. Geometrical origin and

theory of negative thermal expansion in framework structures.

J. Am. Ceram. Soc. 82 (7), 1793–1802.

Kramer, G.J., Farragher, N.P., van Beest, B.W.H., van Santen, R.A.,

1991. Interatomic force fields for silicas, aluminophosphates, and

zeolites: derivation based on ab initio calculations. Phys. Rev., B

43 (6), 5068–5080.

Sartbaeva, A., Wells, S.A., Redfern, S.A.T., 2004. Li+ ion motion

in quartz and h-eucryptite studied by dielectric spectroscopy

and atomistic simulations. J. Phys., Condens. Matter 16 (46),

8173–8189.

Welche, P.R.L., Heine, V., Dove, M.T., 1998. Negative thermal

expansion in beta-quartz. Phys. Chem. Miner. 26 (1), 63–77.

Wells, S.A., 2004. GASP: Geometric Analysis of Structural Polyhe-

dra. http:// exweb.la.asu.edu/gasp/gasp index.html.

Wells, S.A., Dove, M.T., Tucker, M.G., Trachenko, K., 2002. Real-

space rigid-unit-mode analysis of dynamic disorder in quartz,

cristobalite and amorphous silica. J. Phys., Condens. Matter 14

(18), 4645–4657.

Wells, S.A., Dove, M.T., Tucker, M.G., 2004. Reverse Monte Carlo

with geometric analysis—RMC+GA. J. Appl. Cryst. 37 (4),

536–544.

A.L. Goodwin et al. / Chemical Geology 225 (2006) 213–221 221

http://%20exweb.la.asu.edu/gasp/gasp%20index.html

