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ABSTRACT

A microscopic model for calcite and aragonite has been developed that includes short
range repulsive atom-atom interactions; two-, three-, and four-body potentials; and long-
range Coulomb interactions. The structures and elastic constants of both phases are re-
produced satisfactorily, as are the phonon frequencies for calcite. The observed softening
of a transverse acoustic phonon in the [1,0,4] direction in calcite is reproduced by our
model. Applications of the model include the calculation of reduced fractionation coeffi-
cients for 160/180 of calcite and isotope exchange coefficients of calcite and H20 that are
in reasonably good agreement with experimental data. The lattice parameters of the high-
temperature disordered phase of calcite have been calculated and are in good agreement
with experimental data. It is inferred that the temperature dependence of the spontaneous
strain accompanying the phase transition in calcite is due to short range order of the C03
groups, which also explains the anomalous negative thermal expansion along [100].

INTRODUCTION

The mineral calcite (CaC03, space group R3c, Z = 2)
is important in many areas across the whole field of the
Earth sciences. Examples are the orientational order-dis-
order phase transition at 1260 K (Dove and Powell, 1989)
and the use of the isotope fractionation (12C/13Cand 160/
180) of calcite in geochemistry. The ailTl of the present
study is to develop a microscopic interatomic potential
model for CaC03 that can be used to give thermodynam-
ic information for such applications.

A number of models for calcite have aJlready appeared
in the literature. The majority of these are harmonic force-
constant models aimed at reproducing the observed pho-
non dispersion curves (e.g., Cowley and Pant, 1973).
However, force-constant models are always so specific to
the particular crystal structure that their only application
is for the calculation of the phonon densities of states,
and they cannot be applied to any other polymorphs of
CaC03. More recently Singh et al. (1987) proposed an
interatomic potential model for calcite. Unfortunately,
on close inspection it appears that this ]nodel does not
give reasonable calculated phonon frequencies. More-
over, this model does not allow any flexibility of the car-
bonate molecular ion, which we consider to be important
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for certain applications. We have therefore chosen to de-
velop a new model for CaC03 with the aim of obtaining
reasonable agreement with a wide variety of observed
properties.

We have a number of applications for our new model.
One immediate application is for the interpretation of
recent inelastic coherent neutron-scattering data. It is
thought that the orientational order-disorder phase tran-
sition in calcite and the isomorphic phase NaN03 in-
volves a competing interaction between the actual order-
ing scheme and alternative ordering schemes that occur
with instabilities at different points on the surface of the
Brillouin zone of the high-temperature phase (Lynden-
Bell et aI., 1989; Schmahl and Salje, 1989). Recent single-
crystal inelastic coherent neutron-scattering studies of
calcite (Dove et aI., 1992) have shown the existence of
an incipient acoustic phonon instability at the wavevec-
tor k = [0.5,0,2]

==
[1.5,0,0], described in the hexagonal

setting of the low-temperature unit cell. There is a marked
anisotropy of the phonon frequencies along different wave-
vector directions about this point. This application will
be described in detail elsewhere (Dove et aI., 1992). An-
other application, which is discussed in this paper, is the
calculation of isotope fractionation coefficients for geo-
chemical applications. In the longer term, we plan to use
our model for molecular dynamics simulation studies of
the orientational order-disorder phase transition in cal-
cite, treating the carbonate group as a rigid body.

In developing our model for calcite, we also included
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aragonite in the fitting procedure with the aim that our
model should be fully transferable. As we discuss below,
because the data set we used was biased toward calcite
the model does not work as well for aragonite.

THE MODEL

The microscopic modeling of silicate structures by elec-
trostatic (Coulomb) interactions and short-range few-body
potentials has generally been very successful (Catlow,
1988; Price and Parker, 1988; Dove, 1989; Winkler and
Buehrer, 1990; Winkler et aI., 1991). Our model for CaC03
follows the same general philosophy.

The Coulomb interaction is evaluated using the Ewald
sum. We use a short-range Born-Mayer repulsive poten-
tial of the form

V(r) = A exp(-r/p)

for Ca . . . 0 and 0 . . . 0 interactions, which physically
represents the electronic overlap associated with close
contact distances between these ion pairs. A similar term
was used for the modeling of the internal C . . . 0 force
constant, as will be discussed below. The major differ-
ences in the calcite model with respect to the models used
for aluminosilicates are associated with modeling the
"molecular" CO~- group. A purely ionic approach to the
description of the CO~- group is bound to fail as the
directions of the C-O bond are determined by the spatial
arrangements of the covalent C-O bonds and are not only
due to the minimization of the electrostatic repulsion be-
tween the 0 ions. A pseudocovalent term has been shown
to be very important in the modeling of Si04 tetrahedra
by several workers (Price and Parker, 1988; Catlow, 1988;
Dove, 1989; Winkler et aI., 1991). This pseudocovalent
term takes the form of a bond-bending contribution to
the lattice energy and hence is called three-body or bond-
bending potential. It is of the form

We have used this term for the in-plane distortion of the
CO~- molecular ion, where 0 is the instantaneous O-C-O
bond angle and 00 is taken as 1200 in order to represent
the isolated molecular ion. The bond-bending term pro-
vides only a weak anharmonic force against the move-
ment of the central C atom out of the plane of a molecular
ion and no harmonic component. We therefore used an
additional four-body, or torsional, term to model the pla-
narity of the C03 molecular ion. This torsional term is of
the form

V(<P) = Kt[ 1 - cos(2<P)]

where <Pis the angle between two O-C-O planes in a single
molecular ion. As we have stated above, without this
interaction there is no harmonic restoring force against
the out-of-plane movement of the C atom, and the an-
harmonic restoring forces would not contribute to the
calculated harmonic frequencies. The only constraint
would come from interactions with the Ca ions and other
carbonate groups.

(1)

The initial parameters for the 0 . . . 0 interactions were
taken from the work of Cox et al. (1981) on the modeling
of crystals composed of organic molecules (A = 2384.48
eV). The initial parameters for the Ca . . . 0 interactions
were taken from the MEG calculations of Post and Burn-
ham (1986) (A = 6958.304 eV). In the initial stage of the
model developmlent, values of the parameters for the
short-range Ca . . . 0 and 0 . . . 0 interactions and for
the C and 0 charges were improved by fitting the model
against the structures of calcite and aragonite simulta-
neously, treating the C03 group as a rigid molecular ion.
Aragonite was included to increase the number of con-
straints during fitting, and it is reasonable to assume that
potential parameters from a good model for calcite should
be transferable to aragonite. The values for p in each case
and the formal (::a charge (+ 2.0) were not varied. The
parameter values for the short-range C . . . 0 Born-Mayer
interaction were then obtained by a trial-and-error meth-
od, first by obtaining the gradient of this potential by
fitting against the observed c-o bond length (taken as
1.284 A; Reeder, 1983) and secondly by obtaining the
second derivative of the potential by fitting against the
frequency of the symmetric stretching vibration (VI)of the
C03 group. For this stage of the work we used the pro-
gram WMIN (Busing, 1981). As a subsequent stage, the
value of the parameter Kt in the torsional interaction (Eq.
3) was chosen so that the calculated value of the torsional
vibration of the carbonate ion (v2, the mode in which the
central C atom moves out of the carbonate plane) was
close to the expe:rimental value. The value of the param-
eter in the O-C..O bond-bending interaction Kbb (Eq. 2)
was then optimized by fitting against the remaining two
internal modes of the C03 group (v3 and v4) that involve
the bending of the bonds and asymmetric stretching mo-
tions.

For the final refinement of the potential parameters we
used the prograIn THBFIT. We fitted the model against
the structures and elastic constants of aragonite and cal-
cite simultaneously and also included the internal vibra-
tional frequencies of the C03 group in each structure. In
total, our model has 11 adjustable parameters that were
fitted against 38 observables such as the lattice constants,
elastic constants, and phonon frequencies at the r point.
The values of Al and p for the Ca . . . 0 and 0 . . . 0
potentials were strongly correlated and could not be op-
timized simultaneously. Instead we used an iterative pro-
cedure to improve the values of these parameters. We
did not encounter the same problems with the C . . . 0
intramolecular potentials. The agreement of the calculat-
ed frequencies of the internal modes with experimental
data is reasonably good, although it is not possible to get
exact agreement for all internal modes since our model
does not have enough adjustable parameters. We have
chosen to improve the agreement with the bond-bending
modes at the expense of the stretching mode. Subsequent
trial calculations fitting against the lattice modes of calcite
at the Z point--(O,O,I12) in the hexagonal setting of the
low-temperature unit cell-did not improve the model.

(2)

(3)



0/0

Obs. (A) Calc. (A) difference

Calcite R3c* a 4.9894 4.9822 0.1
c 17.039 17.326 1.5

Calcite R3m** t a 4.9746 4.9401 0.7
c 17.619 17.857 1.3

Aragonite pmcrrf a 4.9598 5.0314 1.0
b 7.9641 8.0383 0.9
c 5.7379 5.7394 0.1

Calculated lattice energy (e V)
Calcite R3c Calcite R3m Aragonite Pmcn

-34.38 - 34.31 -34.25

Atomic fractional coordinates
Obs. Calc.

Calcite R3ell
0 x 0.2568 0.2578

Aragonite Pmen§
Ca x Y4 Y4

Y 0.4150(1 ) 0.4136
z 0.7597(3) 0.7603

C x Y4 Y4
Y 0.7622(4) 0.7614
z - 0.086(1) -0.073

01 x Y4 Y4
Y 0.9225(4) 0.9203
z -0.0962(9) -0.0764

02 x 0.4736(4) 0.4700
Y 0.6810(3) 0.6816
z -0.0862(5) -0.0737

246 DOVE ET AL.: INTERATOMIC POTENTIAL MODEL FOR CALCITE

TABLE1. Potential parameters for the calcitl3model

A (eV)

Ca . . . 0 3943.5977
o . . . 0 2879.1262
C . . . 0 1.7411 309 x 1013
Ca charge = + 1.64203 e

o charge = -0.894293 e
C charge = + 1.04085 e

~ = 3.69441 eV
K. = 0.125125 eV

p (A)

0.251 570
0.252525
0.03873

We also attempted to include an 0 . . . 0 dispersive in-
teraction, but we found this did not improve the model
and was therefore not included in our final model.

We should stress that the C . . . 0 interaction we have
used should be viewed only as an effective potential that
has been designed to give reasonable values for the first
and second differential. This interaction can be written as

J/(r) = V2(~(r - ro)2 (4)

where a = 488.848eV A-2 and ro= 1.3207A. The value
of ro is of course different from the C-OI bond length as
this potential is merely added to the existing Coulomb
interaction and does not exclude the effects of the nearest-
neighbor 0 . . . 0 interactions. Because of these effects,
any other effective potential (such as a 1v1orse potential)
will have no more physical meaning than our effective
Born-Mayer model. The rather extreme values for A and
p for the C . . . 0 interaction follow from the fact that the
C-O bond length is rather shorter than found in many
other systems, reflecting the essentially covalent aspect of
the bonding.

The final set of potential parameters given in Table 1
was used to obtain a relaxed structure of calcite and ara-
gonite at constant pressure, using the program THBREL.
The relaxation of the lattice involves the minimization
of the static lattice energy by relaxing the atom coordi-
nates, so that there is no residual force acting on any atom
and there are no residual bulk strains. 'Neither the cell
parameters nor the symmetry are constrained during the
relaxation as all atomic coordinates are varied indepen-
dently. Harmonic lattice dynamics calculations for calcite
were performed on the relaxed structure using the pro-
gram THBPHON.

RESULTS

The observed and calculated cell paralneters and atom-
ic coordinates of the relaxed calcite and aragonite struc-
tures are given in Table 2, where they are compared with
experimental data. The largest discrepancy is for the val-
ue of the calcite c unit-cell parameter, \vith 1.5% differ-
ence, but this magnitude of error is well within the typical
limits of such calculations. The calculated and measured
elastic constants for calcite and aragonite are given in
Table 3. For calcite, all values show n~asonably good
agreement with experimental data, including the off-di-
agonal elements. The agreement for the aragonite data is
not as good as for calcite, particularly for the small off-

TABLE2. Observed and calculated lattice parameters and atom-
ic coordinates of calcite and aragonite

Lattice constants

*
Experimental data are from Dove and Powell (1989) for 300 K.

** Experimental data are from Dove and Powell (1989) for 1165.5 K; the
extrapolated value at 1260 K is 17.823 A.

t Calculated lattice parameters are for a hypothetical (r) phase that has
all C03 groups in the same orientation, as described in the text.

:j: Experimental data are from Dickens and Bowen (1971) for 300 K.

II Experimental data from Reeder (1983). Note that all other coordinates
are fixed by symmetry.

§ Experimental data from De Villiers (1971) for 300 K. Estimated errors
on the last significant figures are given in brackets.

diagonal components, but we still regard the comparison
as satisfactory. In general, our model tends to give values
that are slightly smaller than the experimentally deter-
mined values. It should be noted that the discrepancies
are all larger than normally might be expected as a result
of the neglect of thermal expansion.

The vibrational frequencies at k == 0 have been thor-
oughly studied for calcite, and a review of infrared and
Raman data has been given by Farmer (1974). Phonon
dispersion curves have been measured by Cowley and
Pant (1973) and Dove et al. (1992). Tables 4 and 5 show
a comparison of calculated and measured phonon fre-
quencies. At the Z point the agreement is very good: the
largest deviation is less than 10% of the observed fre-
quencies. At the r point the agreement is mostly good,
but for the very low-frequency modes and for the high-
frequency external modes only satisfactorily. In part these
discrepancies arise from the failure to calculate the mode
anticrossings at exactly the correct wavevector. It should
be noted that the highest frequency pair of external
branches has not been measured, and these are not shown
in Figure 1.



TABLE 3. Comparison of calculated elastic constants (in Mbar)
of calcite and aragonite with observed data 9

.

Calcite
Calculated

8
Observed* Calculated r phase

C"
1.463 1.295 1.221

C33 0.853 0.734 0.863 7
C44 0.340 0.279 0.241

C'2 0.597 0.478 0.478

C'3 0.508 0.441 0.411
+

C'4 -0.208 - 0.135 -0.127 6

Aragonite
Observed** Calculated N

C"
1.60

3:5
1.46 t

C22 0.87 0.85

C33 0.85 0.70 >-

C44 0.41 0.33
g4

C55 0.26 0.22
.::s

C66 0.43 0.34 c:r

C'2 0.37 0.48 ~3
C'3 0.02 0.23 u..

C23 0.16 0.35

* Experimental data from Dandekar (1968). 2
** Experimental data from Hearmon (1946).

1

r point Z point

Mode Obs.* Calc. Mode Obs.* Calc.

r3' 2.9 3.9 Z2/3 2.9 2.6
r,' 4.0 5.7 Z, 4.3 4.2
r3 4.7 4.1 Z2/3 5.3 5.2
r2 5.2 5.8 Z, 5.6 6.1
r3' 6.6 6.6 Z2/3 8.8 8.3
r3 8.4 8.5 Z, 10.4
r3' 9.1 8.5
r2' 9.3 8.1
r, 8.5
r2 11.3

* Experimental data from Cowley and Pant (1973).
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Figure 1 shows a comparison of the calculated disper-
sion curves for wavevectors along the three-fold axis with
the experimental data of Cowley and Pant (1973). Figure
2 shows a comparison of the calculated and measured
acoustic phonon dispersion curves along [1,0,4]. Our
model clearly reproduces the softening of the transverse
acoustic mode. This mode is important for the behavior
of the order-disorder phase transition observed at 1260
K (Dove and Powell, 1989; Dove et aI., 1992). The actual
kinks in the longitudinal mode dispersion curve arise from
many anticrossing interactions with other modes, which
are indicated by our calculations but which are not shown
in the figure for clarity, and it is quite possible that these
anticrossings are hidden in the experimental data. A more
detailed discussion of the dispersion curves along this
direction will be presented in our report on our recent
inelastic coherent neutron-scattering studies of calcite
(Dove et aI., 1992), where we also use the present model
to provide quantitative information on the energetics of
spontaneous structure fluctuations.

TABLE4. Comparison of the calculated and observed frequen-
cies (in THz) of the external modes of calcite

red. Wave vector

Fig. 1. Comparison of experimentally determined (Cowley
and Pant, 1973) and calculated phonon dispersion curves in cal-
cite along the triad axis. r denotes the wavevector at the center
of the Brillouin zone, and Z denotes the Brillouin zone boundary
wave vector [0,0,1.5]. The filled circles represent double-degen-
erate modes, and the crosses represent single modes.

The results ti)r calcite are better than for aragonite. In
particular we note that the model predicts that aragonite
is unstable against a displacive phase transition at the
wavevector c*/2. This shows itself as an imaginary cal-
culated frequency of a degenerate mode at this wavevec-
tor, which causes the two branches at other wavevectors
in the vicinity of c*/2 also to be imaginary. Given that
we have noted that the phonon frequencies in calcite are
fairly sensitive to the details of the potential model we
believe that this deficiency might have been avoid~d if
we had been able to include phonon frequencies for ara-
gonite in the fitting database. It should be noted that the

TABLE5. Internal modes of calcite (in THz) averaged over the
Davydov splitting

Ob-
Mode served*

Calcu-
lated

C-O symmetric stretching mode
Torsional mode
Bond bending modes

32.6
26.4
43.9
21.4

30.7
26.9
42.6
21.0

*
Experimental data from Farmer (1974).



Temper-
ature (K) Kieffer (1982) Experiment This study

r1103 In f (160/180)
298 98.93* 94.81
500 41.43* 39.35
773 18.38* 17.67

1000 11.38* 10.82
103 In aCalcite-H2O

298 28.1** t 28* 24t
773 0.27** II 1.19 §,

1.76* - 0.4411
998 -0.981** II - 0.10* -1.54111

1000 -0.2** t -0.2* -0.7t
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N
~
I--

red. Wave vector

Fig. 2. Observed (Dove et aI., 1992) and calculated softening
ofa transverse acoustic phonon in calcite along [1,0,4]. r denotes
the wavevector at the center of the Brillouin zone, and F denotes
the Brillouin zone boundary wavevector [0.5,0,2].

reasonable agreement with the elastic constants arises from
the fact that the symmetries of the unstable modes are
not the same as the relevant acoustic modes, so that there
is no interaction between these modes. It would be inter-
esting to investigate the possible existence of an anoma-
lous low-frequency mode at the wavevec:tor c*/2 in ara-
gonite by inelastic coherent neutron scattering.
Accordingly we cannot take the relative lattice energies
of calcite and aragonite given in Table 2 too seriously.

ApPLICATIONS

Fractionation coefficients

One application for lattice dynamics calculations is the
determination of isotope fractionation coefficients. A
summary of the thermodynamics of isotopic fraction-
ation has been given by Kieffer (1982). Following Kieffer
(1982) we quote the result:

F* - F 3r m
lnf=-+-ln-

-kBT 2 m*

where F is the Helmholtz free energy, j'is the reduced
fractionation factor, r is the number of atoms of the ele-
ment being exchanged, m is the respective mass, and

TABLE6. Reduced isotope fractionation coefficient (r1 1000 In f)
for 160/180 calcite and reduced isotope fractionation

factor (103 In lrcalcite-H2o)for calcite-H20 fractionation

·Values from Kieffer model as given by Clayton et al. (1989).
.*Values from Kieffer (1982).

t Using the values for the reduced partition function of H20 as cited by
Kieffer (1982) from Becker (1971): 1000 In fat 298 K = 70.81; 1000 In f
at 1000 K = 11 .55

*
Data from Friedman and O'Neil (1977), extrapolated for T> 773 K.

II Using the values for the reduced partition function of H20 from Bot-
tinga and Javoy (1973): 1000 In fat 773 K = 18.110; 1000 In fat 998 K

= 12.361.
§ Clayton et al. (1989), error is 0.12.

starred symbols refer to the heavy isotope. The Helm-
holtz free energy for any substance can be calculated from
its phonon density of states (Born and Huang, 1954). For
this we used a regular spaced grid with 1000 points
throughout the whole of the Brillouin zones of 160 calcite
and 180 calcite. Our calculated values for fare compared
with the data of Kieffer (1982) in Table 6 (additional data
of Kieffer not given in Kieffer, 1982, are cited in Clayton
et aI., 1989). No experimental data for the reduced par-
tition function of calcite are available. Our calculated val-
ues are consistently 5% smaller than the values of Kieffer
(1982). This is principally because Kieffer used modified
frequency values in order to improve the agreement with
the fractionation coefficients for calcite-H20 (see below).

Experiments provide fractionation factors for isotope
exchanges between different phases. Experimental data
for the 0 isotope exchange between calcite and H20 are
given in Table 6. Fractionation coefficients for H20 have
been calculated by Becker (1971) as cited by Kieffer (1982)
and by Bottinga and Javoy (1973). Using these values for
H20 and values given by our model for calcite, we get a
moderate agreement between experiment and calculated
values (Table 6). The reason for the discrepancies is not
clear. A discussion of possible errors in these calculations
has been given by Clayton et al. (1989), who note the
possibilities of systematic errors in hydrothermal exper-
iments, in the calculated partition functions of the solids,
and in the calculated partition function of H20.

(5)
High-temperature studies

Calcite undergoes an orientational order-disorder phase
transition at 1260 K (Dove and Powell, 1989). The car-
bonate groups in the high-temperature phase (R3m, Z =
1) are disordered with respect to 600 rotations about the
threefold axes, whereas in the low-temperature phase the
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carbonate groups in a single (0001) plane (indexed on the
basis of a hexagonal cell) have identical orientations, but
the groups in neighboring planes are rotated by 600 (called
Z ordering because the ordering instability occurs at the
Z point on the surface of the Brillouin zone of the high-
temperature phase). The data of Dove and Powell (1989)
show that, on heating, lattice parameter a decreases from
4.9894 A at 300 K to 4.9746 A at 1165.6 K, whereas
lattice parameter c increases in the same temperature in-
terval from 17.039 A to 17.619 A.

The application of static lattice energy minimization
and lattice dynamics calculations to phase transitions
where the high-temperature phase is stabilized by dy-
namic effects, such as the jump diffusion of a molecular
group, is of course limited. Nevertheless, neglecting sta-
bilizing dynamical effects and considering average mac-
roscopic effects only, we hoped to calculate the influence
of the short-range correlations by treating, in a zeroth
order approximation, the high-temperature phase as a su-
perposition of the low-temperature phase and a phase in
which the carbonate groups all have the same orientation
(called the r phase, with space group R3m, Z = 1). We
calculated the lattice and elastic constants for this hypo-
thetical r phase, and the results are given in Tables 2 and
3. The model for the hypothetical r phase gives a very
large increase of lattice parameter c and a decrease in
lattice parameter a. In our zeroth order approximation
we can equate the cell parameters of the high temperature
with the averages over the cell parameters for the Z and
r phases. Accordingly we predict the large spontaneous
strain that gives rise to the thermal expansion of the c
lattice constant and the anomalous shrinkage of the a
lattice constant. We can therefore deduce that a large part
of the spontaneous strain that accompanies the transition
is due to the occurrence of short range order in which
carbonate groups of different layers have the same ori-
entation. The calculation of the elastic constants for the
r phase shows that the C33elastic constant increases sig-
nificantly (by 15%), whereas CII and C44decrease (by 6%
and 14%, respectively). These changes are due to the in-
creased 0-0 repulsion between different C03 groups.

CONCLUSION

We believe that the interatomic potential model for
calcite presented in this paper is a substantial improve-
ment on previous models (e.g., Singh et aI., 1987). It is
versatile and gives better unit-cell parameters, elastic
constants, and phonon frequencies than before. It has been
applied in a geochemical context, and it has been shown
that it may be used in the interpretation of new inelastic
coherent neutron-scattering data. The use of the potential
parameters in molecular dynamics simulation calcula-
tions (assuming a rigid C03 group) should be straightfor-
ward, and these calculations are planned for the near fu-
ture. The rigid ion model described here will be adequate
for most applications. We think that any further im-
provement will require inclusion of a shell model for the
description of the 0 ions. It is also clear that better results

for aragonite could be obtainedifwe were able to include
the phonon frequencies for aragonite in the fitting data-
base. However, because of the relative complexity of the
aragonite structure, this is not trivial.
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