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ABSTRACT

Lattice energy minimization and lattice dynamics calculations for the minerals anda-
lusite, sillimanite, kyanite, diopside, cordierite, gehlenite, leucite, orthozoisite, grossular,
and pyrope are compared with experimental data and previous calculations. The potential
models used in this study included bond-bending interactions, short-range Born-Mayer
forces, effective dispersive interactions, long-range Coulomb interactions, and harmonic
core-shell interactions for the 0 ions.. Parameters for the potential models were generally
taken from the literature, but the core-shell force constant was modified to give better
agreement with experimental data for refractive indices. It was necessary to include bond-
bending interactions for AI-O polyhedra with coordination numbers even larger than four.
A method for describing effective potentials with Al-Si disorder and solid-solution is
presented. Modified Morse and Buckingham potentials were used to model O-H bonds.
Relaxed energy-minimum structures were calculated, allowing cell parameters to change
and treating atomic cores and shells as independent entities within the adiabatic approx-
imation. Calculated phonon frequencies for the relaxed structures were used to construct
thermodynamic functions. Elastic and dielectric constants were also calculated. Compar-
isons between calculated structures and other properties with experimental data have shown
that the model is genuinely transferable and gives reasonable predictions of crystallograph-
ic, physical, and thermodynamic properties. Detailed analysis gives a measure of the re-
liability of the model.

INTRODUCTION

The recent interest in static lattice energy calculations
(SLEC) and harmonic lattice dynamics calculations
(HLDC) for alumino silicate minerals is partly motivated
by the insights such calculations give about interatomic
forces. An immediate application of reliable SLEC~ and
HLDC is for equilibrium thermodynamics, where such
models could provide data, e.g., on solid solutions, 'which
are tedious to obtain experimentally. It is hoped that these
calculations can provide information about thermody-
namic and physical properties of minerals under extreme
conditions of pressure or temperature that are not readily
attainable in the laboratory. Reliable HLDC models will
also permit the interpretation of complex spectroscopic
data (e.g., Raman, infrared, or inelastic neutron scattering
data). Furthermore, thermodynamic properties can be
calculated from SLEC and HLDC, and these relations can
be used to provide valuable insights into phase transition
behavior. Other applications include studies of defect en-
ergies and transport mechanisms. Finally, as molecular
dynamics simulations are used increasingly to study phase
transitions in minerals, the need for tested reliable poten-
tials becomes more urgent.
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The first aim of this study is to assess the transferability
of previously published potentials for modeling the struc-
tures of complex minerals using SLEC. We have selected
a number of structures that we consider to have features
that provide balanced tests. The Al2SiOs polymorphs, an~
dalusite, sillimanite, and kyanite, each have one six-co-
ordinated Al and one four-coordinated Si, but differ in
the coordination number of the second AI, which is four
in sillimanite, five in andalusite, and six in kyanite. Di-
opside (CaMgSi206) has a complex chain structure with
irregular Ca coordination. Gehlenite (Ca2AI2Si07) has a
layer structure with AI-Si disorder and significantly dif-
ferent bond lengths within the Ca coordination polyhe-
dron. Cordierite (Mg2SisAI40Is) is by some definitions a
framework structure with an AI-Si order-disorder phase
transition that is accompanied by a small spontaneous
strain. Leucite (KAlSi206) has a true framework structure.
Experiments suggest that there is no long-range AI-Si or-
der at all temperatures. Leucite also undergoes a struc-
tural phase transition that is accompanied by a sponta-
neous strain. The garnets pyrope (Mg3AI2Si3012) and
grossular (Ca3AI2Si3012) are orthosilicates in which all the
corners of the Si04 tetrahedra and the AI06 octahedra are
shared, leading to nearly regular triangular dodecahedra
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containing the Ca or Mg cations. The complex structure
of zoisite [CazAI3Si3(OH)Olz] contains Siz07 and Si04
groups as well as chains of AI06 octahedra that are partly
linked by H bonds. Such a wide range of structures pro-
vides a stringent test for a single set of transferable po-
tential parameters.

The second aim of this study is to demonstrate that
these same transferable potential parameters can also re-
produce vibrational properties using HLDC. The third
aim is to show that reliable thermodynamic functions for
complex minerals can be obtained from HLDC. This em-
phasizes the link between microscopic interactions and
macroscopic properties.

The development of transferable model potentials for
minerals is vital if computer modeling techniques are to
be used as predictive methods. As Dove (1989) has point-
ed out, there is no overall consensus on the forms of the
potentials to be used and on how numerical values of
parameters in the respective models should be obtained.
The potentials that are currently available have been de-
rived by a number of different methods, e.g., ab initio
quantum mechanical calculations (Lasaga and Gibbs,
1987), modified electron gas (MEG) calculations (Post
and Burnham, 1986), and empirical fitting procedures
(Abbott et aI., 1989a, 1989b; Collins and Catlow, 1990).
A promising empirical approach has been suggested by
the very successful modeling of quartz (Sanders et aI.,
1984), forsterite (Price and Parker, 1988), diopside (Dove,
1989), micas (Collins and Catlow, 1990), and zeolites
(Jackson and Catlow, 1988) using a model that includes
three-body bond-bending interactions and core-shell
forces. We have therefore chosen to work exclusively with
this model in this study, employing previously published
potential parameters where appropriate.

The outline of this paper is as follows. In the next sec-
tion we summarize the thermodynamic relations used in
this paper. Then we discuss the potential models in detail.
Following that, we present the results of our SLEC and
HLDC for each material studied. Our aim is to present a
brief comparison between the calculated and observed
structures for each example and to give a more detailed
analysis of some of the more interesting features of each
calculation. This reflects the fact that the best tests of any
model are the predictions of subtle effects (such as may
be associated with phase transitions). These are a greater
challenge for the modeler than simply the predictions of
structures. Finally we present a general analysis of the
results common to all systems, highlighting the transfer-
able aspects of the potential model.

THE THERMODYNAMIC BASIS

In the quasi-harmonic approximation, a crystal's in-
ternal energy, E, can be described as a sum of the static
lattice energy, </>,and the vibrational energy, Evib:

E = cP+ E vib.

The static lattice energy, CP,is the sum over all inter-

atomic interactions. The vibrational energy, Evib, is given
by

EVib = ~ hWj(k)
[~ + n(w, 1)]

(2)
},k

where Wj(k) denotes the frequency of the jth mode at
wavevector k. The term, n(w, 1), is the Bose-Einstein
distribution:

n(w, 1) = {exp[~;] - 1r1,

Since n (w, 1) is independent of wavevector and mode
number, the sum in Equation 2 can be replaced by an
integral over the density of states, g(w):

EVib = f hi ~ + n (w, 1) } (w)dw. (4)

(3)

Note that we are assuming infinite perfect crystals
throughout this study. The only quantity in Equation 4
that is dependent on the actual structure is g(w). The
density of states is a rather demanding quantity to cal-
culate from a computational viewpoint. Calculations in-
volving a fine grid over the Brillouin zone are impracti-
cal; however, calculations using only a single point (e.g.,
the r or k = 0 point) are prone to errors caused by the
neglect of phonon dispersion. This point is discussed in
more detail by Price and Parker (1988). The use ofrep-
resentative points for cubic lattices has been suggested
(Baldereschi, 1973), but such points are also prone to
errors in the calculated g(w), particularly at low frequen-
cies. We used the Baldereschi point (1~, %, ~) for the
I-centered cubic garnets. For all other systems we have
made the pragmatic choice of constructing g(w) from
HLDC performed at the r point and at points on the faces
of the Brillouin zone. By doing this, we hope that the
effects of frequency dispersions are adequately taken into
account, albeit in a coarse way. However, since most of
the modes only show weak dispersion, the only significant
source of error will arise from the contribution of the
acoustic models to g(w). This is only a problem for the
calculation of thermodynamic properties at low temper-
ature (T < 50 K), which is lower than the range of interest
of most mineral scientists.

The heat capacity at constant volume, Cv, can be cal-
culated readily from the internal energy:

cv=(~t

f[ ]
z

( )hwn(w,1) hw
= kn knT

exp
knT

g(w)dw. (5)

(1)

The heat capacity at constant pressure, Cp, is the exper-
imentally determined quality. It can be derived from Cv
using the isotropic thermal expansion coefficient, a, and
the isotropic compressibility modulus, {3:

(6)
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where Vo is the molar volume at 298 K and 1 bar. In our
calculations of the heat capacities, we used experimental
values for the coefficients exand {3.They could in fact have
been calculated from a lattice dynamics calculation (Price
and Parker, 1988) within the quasi-harmonic approxi-
mation using the Gruneisen approach. However, such
calculations are rather lengthy, and, for the purposes of
this paper, the effort expended on these calculations would
not be justified. Instead, when we compared calculated
and measured heat capacities, it should be considered
that we really compared Cv rather than Cpo In any case,
the differences between these quantities are never large
at the temperatures we considered. It should be stressed
that we used thermodynamic quantities in this paper, not
to test the basic model, but to show that our model is
capable of giving thermodynamic information for many
cases of interest.

The Helmholtz free energy, F, for a vibrating crystal
has been given by Born and Huang (1954):

The entropy, S, is then

S =
_aF

aT

= kB J{In[n(W,1)] + h;[n(w, 1) + lJ}

.g(w) dw. (8)

Phase boundaries can be determined by the Clausius-Cla-
peyron equation. We neglect the pressure dependence of
the entropy term and write

dP _ dS(1)
dT - ~V(P, 1).

Implicit in the applications of these equations is the as-
sumption that g(w) is independent of T and P. This im-
plies the neglect of phonon frequency renormalization due
to anharmonic effects. Although experimentally it is
known that the individual phonon frequencies do vary
significantly with T and P, the overall effect on g(w) is
much smaller. Moreover, for calculations of phase
boundaries, the important aspects are the differences be-
tween g(w) of different phases, and these are expected to
be even less sensi ti ve to changes in T and P.

THE INTERATOMIC POTENTIAL MODEL

The basic interatomic potential model has been de-
scribed by Catlow (1988).0 ions are modeled using the
core-shell model, where a massless shell is linked to the
core by ideal harmonic interactions of the form

1
f/J(d) = - Kd22

-
---

-
~-
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where d is the separation between centers of core and
shell. Polarization effects are therefore taken into ac-
count, enabling the high frequency dielectric constant to
be correctly evaluated.

Pair interactions between neighboring 0 shells are
modeled using a Buckingham potential:

CP(r) = -~ + B exp(-:') (11)
r6 p

where r is the interionic distance. The same potential is
used for Si-O interactions, where the interaction involves
the 0 shell and a rigid Si ion.

AI-O pair interactions are modeled using a Born-Mayer
potential:

<P(r) = B exp( -~) (12)

where the interaction is between a rigid Al ion and the 0
shell. The same potential was used for Al in all coordi-
nations. All other cation-O pair interactions are modeled
similarly. Electrostatic Coulomb interactions are evalu-
ated using formal charges. Covalent effects are simulated
using three-body bond-bending interactions. They have
the form

(13)

(9)

where (Jis the O-Si-O or O-Al-O bond angle, (Jobeing the
respective angle in an undistorted polyhedron.

The values for the parameters in Equations 10-13 are
given in Table 1. The values for Si-O and 0-0 interac-
tions have been taken from the work of Sanders et al.
(1984) on quartz. Following Jackson and Catlow (1988),
we have taken the values for AI-O interactions from Cat-
low et al. (1982) and have used these values for all co-
ordinations. The value for k in Equation 13 was consid-
ered to be the same for all Al coordinations and equal to
the value for O-Si-O interactions. Only the value of (Jo
was modified for different coordinations. We have mod-
ified the value of K in Equation 10. Parameters for Ca-O
and K-O interactions have been taken from the MEG
calculations of Post and Burnham (1986). The parame-
ters for the Mg-O interaction could have been taken from
the same source; instead, we used the same values used
by Price and Parker (1988) and Dove (1989). Dove (1989)
has pointed out that these potentials give similar results.

O-H potentials were adapted by us from the work of
Collins and Catlow (1990), who used a modified Morse
potential of the form

f/J(r) = E{I.0 - exp[-ex(r - ~)]}2 - E - f/JCoulomb. (14)

The parameters for Equation 14 are also given in Ta-
ble 1.

The SLEC and HLDC were performed using the pro-
grams THB-REL and THB-PHON, respectively, which
explicitly include the interactions described above. These
programs evaluate the Coulomb contribution to the lat-
tice energy using the Ewald method. THB_REL uses a

(10)
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TABLE1. Potential parameters used in this work1

Short-range interactions: Born-Mayer or Buckingham type between
cation cores and 0 shells2

A p C
reV] [A] reV A-6] Ref 3,4

Si4+-02- 1283.9073 0.3205 10.6616 [1]
Si4+-01.426- 999.98 0.3012 0.0 [2]
AP+ - 02- 1460.3 0.29912 0.0 [3]
K+ - 02- 65269.71 0.2130 0.0 [4]
Ca2+ - 02- 6958.3 0.2516 0.0 [4]
Mg2+ -

02~ 1428.5 0.2945 0.0 [5]
02~

- 02- 22764.0 0.149 27.88 [1]
H+ - 0-2 311.97 0.25 0.0 [6]

Short-range interactions: modified Morse type between coresS
E a ~

[eV] [1\-1] [A]

HO.426+-01.426- 7.0525 2.1986 0.9485 [2]
Shell-core interaction between 0 shell and 0 core6

K
reV A-2]

o C~:6902 - 0 ~.~~~02 60.00
Three-body bond-bending interactions 7

k 80
[eVrad-2] [0]

02-
-

Si4+
-

02-

02-
- AP+ - 02-

2.09724 109.47
2.09724 90, 95, 109.478

1eV units are quoted as these are the units used by THB_REL. 1 eV

= 96.484 kJ mol-1.
2 Defined by Equations 11-12.
3 The charges used are given in the ion description, in units of the electron

charge.
4 The references cited are: [1] Sanders et al. (1984), [2] Collins and

Catlow (1990), [3] Catlow et aI., (1982), [4] Post and Burnham (1986), [5]

Price and Parker (1988), [6] Abbott et aI., (1989a, 1989b).
S Defined by Equation 14.
6 Defined by Equation 10.
7 Defined by Equation 11.
8 The three values given for the three-body O-AI-O bond-bending inter-

actions refer to octahedral, irregular five-, and tetrahedral coordination,

respectively.

standard Newton minimization technique for the lattice
relaxation. THB_REL does not use symmetry, and the
minimizations are performed assuming triclinic (PI)
symmetry. Thus, if the relaxed structure contains a higher
symmetry (e.g., equal cell lengths or atoms in a special
position) the symmetric structure represents a global
minimum and not a minimum under any constraints.
The only condition imposed is the number of atoms in
the unit cell and, in practice, the topology of the structure.
In all cases where a structure with a symmetry higher
than PI was obtained, we report only the symmetrically
independent parameter values rather than duplicate
equivalent quantities. We found that, in these cases, cell
lengths were calculated to be equal with precision far
greater than that given in the tables, and that deviations
from special angles, 900 or 120°, did not appear in the
first ten digits. Degenerate phonon frequencies deviated
by less than 10-5%.
THB_REL automatically calculates the complete elas-

tic constant tensor. The components are evaluated in the
program from the strain derivatives of a series expansion
of the lattice energy in terms of lattice and internal strains.
The terms in which the lattice strains and the internal

[1]

strains are coupled automatically give the relaxation of
the structure under strain, ensuring that all the contri-
butions to the elastic constants are correctly evaluated.

SOME GENERAL OBSERVATIONS

We found that some complex structures containing Al
coordinated by more than four 0 atoms could not be
successfully relaxed without taking the covalent bond-
bending effects into account. We found that our best model
for six-coordinated Al includes O-AI-O three-body bond-
bending interactions for all 0-0 distances less than 3 A
with 00 = 900in Equation 13, whereas the parameter k in
Equation 13 is the same as for tetrahedrally coordinated
Al and Si (Table 1). We found that, in the case of five-
coordinated Al in andalusite, the best model included the
bond-bending term with 00 = 950. We should remind the
reader that identical Born-Mayer AI-O pair interactions
were used for all coordinations.

When using a force constant, K = 74 eV A-z, for the
core-shell interaction in Equation 10 (Sanders et aI., 1984),
we found that our calculations of the high-frequency di-
electric constant gave values that were generally approx-
imately 20% too low when compared with experimental
data. For example, the average observed values for an-
dalusite and kyanite are 2.7 and 3.0, respectively (values
have been taken as the squares of the average refractive
indices given by Deer et a!., 1966), and the corresponding
calculated values are 2.2 and 2.5. A decrease of the value
of this force constant to 60 eV A-z gave improved results,
not only for the high-frequency dielectric constants (new
values for andalusite and kyanite are 2.54 and 2.88), but
also for most of the basic structures and the elastic con-
stants, although for some structures the changes were
small. We note that the introduction of a further value
for a. potential parameter might be confusing, but we be-
lieve that our results justify this. However, our new value
is not an optimized value and, therefore, should be im-
proved upon in any future attempt to develop the poten-
tial model.

A MODEL FOR AI-Si DISORDER AND
SOLID SOLUTIONS

In some of the systems we have studied there is site
occupancy disorder, such as in disordered AI-Si arrange-
ments or as in a solid solution. In order to model these
cases, we have devised a simple recipe to construct effec-
tive interactions from the pure interactions as given in
Table 1. In our formulation, the fraction of atom type 1
on a site is x, so that the fraction of type 2 is (1 - x).
The effective charge is thus

(15)

The effective A parameter for the r-6 interaction in the
Buckingham potential of Equation 11 is similarly given by

Aeff = xAl + (1 - x)Az. (16)

The effective Born-Mayer coefficients Band r for ~qua-
tions 11 and 12 were determined by setting the first and
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second derivatives of the effective interaction equal to the 10
weighted averages of the derivatives of the component
interactions for the observedbond length r = ro:

(acp eff) (acp
I) ( 1 )(acp

2)-a;::-
r=ro

= X a;:
r=ro

+ - x a;:
r=ro

(a2CP eff ) = x (a2CP I) + (1
_

x) (a2CP
2)ar2 r=rO ar2 r=ro ar2 r=ro.

This gives the following relations for Peff and Beff:

xPI1B1exp(-roIPI) + (1 - X)piIB2exp(-rolp2)
Peff =

xPl2BIexp( -rol PI) + (1 - x)Pi2B2exP( -rol P2)

B =
xPIIBIexp(-roIPI) + (1 - X)piIB2exp(-rolp2)

eff
p;ffIexp( - rol Peff)

.

This formalism can be readily extended for cases involv-
ing more than two atom types. It should be noted that
although this method should give reliable differentials of
the effective potential, and hence for equilibrium struc-
tures, it is not expected to give accurate values for the
effective energy, since the energy has not been incorpo-
rated into the method. However, we will find that this
method still gives good results for the energy of mixing
in a solid solution.

THE AI2SiOs POLYMORPHS

There are three Al2SiOspolymorphs: andalusite (Pnnm),
sillimanite (Pbnm), and kyanite (pI). In all three struc-
tures there are Z = 4 formula units per unit cell; for our
purposes, the significant difference among the three struc-
tures is in the coordination of one of the A 1 atoms, as
described earlier. The structures of the Al2SiOs poly-
morphs are therefore a good test of transferable AI-O
potentials. Moreover, the calculation of the Al2SiOs phase
diagram was seen as a test of whether our model could
reproduce the relatively small differences in the thermo-
dynamic properties of the polymorphs. This is important
for the application of SLEC and HLDC in equilibrium
thermodynamics as needed in petrology.

Because of the use of the Al2SiOs polymorphs as pet-
rogenetic indicators, a number of experimental studies
have been performed to determine the positions of the
univariant reaction boundaries and the triple point of this
system. Robie and Hemingway (1984) summarized pre-
viously published work and determined the thermody-
namic properties of all the polymorphs. Furthermore, they
redetermined the Al2SiOs phase diagram (Fig. 1 and Ta-
ble 2). There are difficulties in determining the reaction
boundaries accurately, due to small differences in the re-
spective Gibbs free energies, kinetic problems, and influ-
ence of defects and fibrolitization, as discussed by Salje
and Wemeke (1982a, 1982b) and Salje (1986). To over-
come these problems, Salje and Wemeke (1982a, 1982b)
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Fig. 1. The phase diagram of AI2SiOs. The experimental data

(thin lines) are from Robie and Hemingway (1984). The results
from our calculations (model 1 and model 2, see text) are given
as thick lines. The boxes and connected circles indicate the range
of experimental data, as given by Robie and Hemingway (1984).

used infrared (IR) and Raman spectroscopic data in a
calculation of the phase boundary between sillimanite and
andalusite, and they estimated that the triple point occurs
around 643-663 K and 3.0-3.2 kbar, excluding all effects
due to lattice faults and AI-Si disorder. Salje (1986) mea-
sured heat capacities of samples of andalusite and silli-
manite of different origins. He determined the influence
offibrolitization on the P, T dependence of the univariant
reaction curve between andalusite and sillimanite. Using
the previously published standard entropy of andalusite
(Robie and Hemingway, 1984) and a standard entropy
for sillimanite calculated from Raman and IR spectro-
scopic data, Salje (1986) determined the triple point in a
system containing ideal sillimanite to be at 715 K and
3.2 kbar, whereas the measured triple point of bulky sil-
limanite was determined to be at 795 :t 15 K and 4.2 :t
0.2 kbar. The possibility of AI-Si disorder in sillimanite
has been a controversial subject (Ribbe, 1982), but Hol-
land and Carpenter (1984) concluded that "stoichiomet-
ric sillimanite is ordered at all geological temperatures."
We therefore did not include any AI-Si disorder in our
model.

-_.~._~-~
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Andalusite Sillimanite Kyanite

exp calc exp calc exp calc

a (A) 7.7980 7.755 7.4883 7.271 7.1262 6.976
b(A) 7.9031 7.808 7.6808 7.514 7.8520 7.829
c(A) 5.5566 5.556 5.7774 5.862 5.5724 5.589
a (0) 90.0 90.0 90.0 90.0 89.99 90.55

~e> 90.0 90.0 90.0 90.0 101.11 101.37

l'
e) 90.0 90.0 90.0 90.0 106.03 106.16

V (cm3 mol-1) 51.58 50.67 50.049 48.23 44.22 43.16
exp calc exp calc exp calc

C11 2.33 2.64 2.87 2.85 3.79
C22 2.89 2.54 2.32 2.77 4.39
C33 3.80 4.38 3.88 5.39 5.03
C44 1.00 0.85 1.22 1.30 2.11
C55 0.88 0.81 0.81 0.89 1.05
C66 1.12 1.20 0.89 0.85 1.02
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TABLE2. Comparison of the experimentally determined and the calculated phase diagram of the AI2Si05 polymorphs

Thermal expansion coefficients, ex,and compressibilities, {J
Andalusite Sillimanite

a (105 K-1)

P (kbar-1)

790 :t 25 K
693 - 713 K
715 K
800 K
750 K

Kyanite

2.596
0.70

2.394 1.386
0.67 0.65

Measured and calculated values for the triple point
4.0 :t 0.5 kbar (Robie and Hemingway, 1984, exp)
3.0 - 3.2 kbar (Salje and Werneke, 1982a, 1982b, calc)
3.2 kbar (Salje, 1986, ideal sillimanite)
4.2 kbar (this work, model 1)
4.0 kbar (this work, model 2)

Slope of univariant reaction boundaries
Experimental Model1 Model 2

And-Sill (790 < T < 850 K)
(T > 850 K)

And-Ky
Sill-Ky

-19.5 bar/K
-13.5 bar/K

11.8 bar/K
20.1 barIK

-19.2 bar/K
17.6 bar/K
26.3 bar/K

-13.3 bar/K
17.0 bar/K
45 barIK

Note: The thermal expansion coefficients, a, were calculated from the molar volume data at 298 and 873 K from Winter and Ghose (1979); the
compressibilities, (3, were taken from Brace et al. (1969); the stapes of the experimental1y determined reaction boundaries are those given by Robie
and Hemingway (1984).

We found that, in order to model the different struc-
tures of the polymorphs successfully, it is necessary to
include a bond-bending term for all Al polyhedra. The
calculated lattice parameters deviate only in one case by
more than 2°1o(Table 3) from the experimentally deter-
mined data, and we note that the cell angles for triclinic
kyanite are calculated to within 0.6°.The calculated atomic
coordinates are compared with experimental data in Ta-
bles 4-6. The agreement is generally good. The major
discrepancy is that the model underestimates the length
of the anomalously short 0(3)-0(3) distance. The cal-
culated value of 2.06 A is considerably less than the ex-
perimental value of 2.26 A. This contact occurs within
the five-coordinated Al polyhedron and points to inade-
quacies in the model at this point. Further investigation
showed that the value for ()oused in the calculations is
close to the optimum value, suggesting that improve-
ments to the model will lie in finding a better value for
the strength of the bond-bending force constant for this

coordination. The calculated elastic constants of anda-
lusite and sillimanite are compared in Table 3 to mea-
sured values (Vaughan and Weidner, 1978); no experi-
mental values are available for kyanite. The agreement is
reasonably good, taking into account the fact that only
the off-diagonal elements of the elastic constant tensor
deviate by more than 15°/0from measured values in an-
dalusite. The only major discrepancy is for C33in silli-
manite; there are, however, no two independent experi-
mental studies available. As we are confident in the
predictive value of our calculations, we also give our cal-
culated values for the diagonal elements of the elastic
constant tensor for kyanite (Table 3).

The calculated vibrational frequencies can be com-
pared with spectroscopic data. The experimentally deter..
mined frequency range for optic modes at the r point is
87-1113 cm-1 for andalusite and 70-1170 cm-1 for sil-
limanite (Salje and Wemeke, 1982a, 1982b). The calcu-
lated frequencies range from 87 to 1012 cm-1 for anda-

TABLE3. Comparison of experimental and calculated lattice parameters, molar volumes (V), and main-diagonal components of the
elastic tensor (CIi' units of Mbar) for the three AI2Si05 polymorphs

Note: Experimentally determined lattice parameters were taken from Winter and Ghose (1979). Measured elastic constants are from Vaugh.in and
Weidner (1978).



TABLE 4. Observed and calculated fractional atomic coordinates of andalusite

Xobs Yobs Zobs Xcalc Ycalc ZcaJC

AJ(1) 0.0 0.0 0.2419 0.0 0.0 0.2459
AJ(2) 0.3705 0.1391 0.5 0.3680 0.1395 0.5
Si(1) 0.2460 0.2520 0.0 0.2356 0.2544 0.0
0(1) 0.4233 0.3629 0.5 0.4417 0.3555 0.5
0(2) 0.4246 0.3629 0.0 0.4209 0.3639 0.0
0(3) 0.1030 0.4003 0.0 0.0975 0.4104 0.0
0(4) 0.2305 0.1339 0.2394 0.2210 0.1438 0.2315

XpbS YobS ZobS Xcalc Ycalc Zcalc

AI(1) 0.3254 0.7040 0.4582 0.3348 0.7061 0.4607
AI(2) 0.2974 0.6989 0.9505 0.3033 0.7006 0.9518
AI(3) 0.0998 0.3862 0.6403 0.1004 0.3825 0.6367
AI(4) 0.1120 0.9175 0.1649 0.1174 0.9230 0.1689
Si(1 ) 0.2962 0.0649 0.7066 0.2947 0.0583 0.7091
Si(2) 0.2910 0.3317 0.1892 0.2871 0.3365 0.1828
0(1) 0.1095 0.1468 0.1288 0.0964 0.1482 0.1237
0(2) 0.1230 0.6856 0.1812 0.1234 0.6845 0.1825
0(3) 0.2747 0.4545 0.9547 0.2838 0.4584 0.9451
0(4) 0.2831 0.9354 0.9353 0.2961 0.9375 0.9491
0(5) 0.1219 0.6307 0.6389 0.1235 0.6325 0.6409
0(6) 0.2822 0.4453 0.4288 0.2911 0.4476 0.4346
0(7) 0.2915 0.9467 0.4659 0.3068 0.9495 0.4646
0(8) 0.5008 0.2749 0.2440 0.4924 0.2620 0.2376
0(9) 0.1084 0.1520 0.6669 0.0967 0.1435 0.6563
0(10) 0.5015 0.2312 0.7553 0.4937 0.2417 0.7585

Note: Observed values were taken from Winter and Ghose (1979).
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Note: Observed values were taken from Winter and Ghose (1979).

lusite and from 52 to 1053 cm~l for sillimanite; in general,
we have found that the calculations give frequencies that
are slightly lower than experimental data, as in this case.
Detailed comparisons of the r point frequencies with
spectroscopic data and of the low-frequency dispersion
curves with new inelastic neutron scattering data for an-
dalusite are given in Winkler and Buehrer (1990). The
overall comparison shows that the model gives a reason-
able representation of the phonon frequencies for all
wavevectors.

The HLDC results were used to calculate the thermo-
dynamic properties of andalusite and sillimanite. A com-
parison of experimental data for the heat capacities, as
published by Salje and Werneke (1982a, 1982b), is given
in Figures 2 and 3. The agreement between calculation
and experiment is very good if the sampling is performed
over more than one point in the Brillouin zone; for the
Al2SiOj polymorphs, we used the r point and seven points
on the faces of the Brillouin zone, (0 0 112,0 112112,112112112,
etc.). Deviations from the expected behavior at T < 50
K are due to the coarse sampling of the Brillouin zone
(see above).

We calculated the phase diagram of the system using
two models. Model 1 was based on the molar volumes
taken from Robie and Hemingway (1984), whereas mod-
el 2 was based on the molar volumes from our SLEC.
The respective values are given in Table 3. In both mod-
els, the same thermal expansion coefficients for the poly-
morphs and the same compressibilities were employed.

The former were calculated from the molar volumes of
the polymorphs at 298 and 873 K as given by Winter and
Ghose (1979), and the small temperature dependencies
of the thermal expansion coefficients were neglected. The
compressibilities were taken from Brace et al. (1969). The
respective values are given in Table 2. Equilibrium points
were taken to lie on the andalusite-silliinanite boundary
at 1048 K and 1 bar and on the andalusite-kyanite
boundary at 666 K and 2.4 kbar. The 118(1) was taken
from our HLDC. The calculated phase diagrams are com-
pared to the one given by Robie and Hemingway (1984)
in Figure 1 and Table 2. The sillimanite-kyanite curve
did not cross the triple point as determined by the kya-
nite-andalusite and andalusite-sillimanite reaction curves
in either of the models when we used any of the equilib-
rium points given by Robie and Hemingway (1984). The
triple points using the kyanite-sillimanite and andalusite-
sillimanite reaction curves would be at approximately 890
K and 4 kbar in model 1 and at 890 K and 2 kbar in
model 2. In general, model 1 shows a satisfactory agree-
ment for all three univariant reaction boundaries, where-
as model 2, although giving reasonable kyanite-andalu-
site and andalusite-sillimanite reaction curves, yields a
kyanite-sillimanite reaction curve with far too steep a
slope.

We conclude that the model used in the present study
may be used in equilibrium thermodynamic studies, pro-
vided that additional experimental data for thermal ex-
pansions, compressibilities, and molar volumes are avail-

TABLE5. Observed and calculated fractional atomic coordinates of kyanite



TABLE 6. Observed and calculated fractional atomic coordinates of sillimanite

XObS YobS ZObS Xca1c Ycalc ZcalC

AI(1) 0.0 0.0 0.0 0.0 0.0 0.0
AI(2) 0.1417 0.3449 0.25 0.1372 0.3441 0.25
Si 0.1533 0.3402 0.75 0.1530 0.3330 0.75
0(1) 0.3605 0.4094 0.75 0.3663 0.4012 0.75
0(2) 0.3569 0.4341 0.25 0.3574 0.4367 0.25
0(3) 0.4763 0.0015 0.75 0.4726 0.9998 0.75
0(4) 0.1252 0.2230 0.5145 0.1246 0.2176 0.5129
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Note: Observed values were taken from Winter and Ghose (1979).

able. As discussed above, it should, in principle, be
possible to determine these quantities from free energy
minimization calculations (Parker and Price, 1989; Col-
lins and Catlow, 1990). One difficulty in the present case
is that we expect different energies for four-, five-, and
six-coordinated Al because of covalent effects that the
model does not attempt to handle-the model is really
only designed to get the first and second differentials cor-
rect. We therefore cannot expect to be able to compare
the energies of the three phases and have had to include
experimental state points in our calculation of the phase
boundaries. Price and Parker (1988) did not face this
problem in their determination of the olivine-spinel phase
diagram.
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Fig. 2. Comparison of the experimentally determined heat
capacity (Cp) of andalusite (points, Salje and Werneke, 1982a,
1982b) with calculated values (line). The deviation from the ex-
pected behavior at T < 50 K is due to the coarse sampling of
the Brillouin zone (see text).

500

DIOPSIDE

Diopside, CaMgSi206, is a good example of a chain
silicate (C2/c, Z = 4). SLEC, using models almost iden-
tical to those used in this study, have recently been dis-
cussed in some detail (Dove, 1989). The bond-bending
potentials are essential in order to reproduce accurately
the details of the structure, particularly with regard to the
bond angles within the silicate chains, the Mg and Ca
coordination, and the relative Si-O bond lengths for
bridging and dangling bonds. Diopside has proven to be
a demanding challenge for modelers (e.g., Post and Burn-
ham, 1986).

We have performed additional calculations for diop-
side using our new value for the parameter K in Equation
10, and have also included diopside in this paper because
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Fig. 3. Comparison of the experimentally determined heat

capacity (Cp) of sillimanite (points, Salje and Werneke, 1982a,
1982b) with calculated values (line). The deviation from the ex-
pected behavior at T < 50 K is due to the coarse sampling of
the Brillouin zone (see text).



Unit-cell parameters
obs calc

a (A) 9.746 9.5197
b(A) 8.899 8.7096
c(A) 5.251 5.1496
(3 (0) 105.63 1 04.47

Atomic fractional coordinates
Xobs YObS ZObS XcalC Ycalc Zcalc

Si 0.2862 0.0933 0.2293 0.2850 0.0970 0.2304
Mg 0.0 0.9082 0.25 0.0 0.9055 0.25
Ca 0.0 0.3015 0.25 0.0 0.3057 0.25
0(1) 0.1156 0.0873 0.1422 0.1105 0.0936 0.1442
0(2) 0.3611 0.2500 0.3180 0.3585 0.2571 0.3288
0(3) 0.3505 0.0176 0.9953 0.3615 0.0213 0.9950

Elastic constants (Mbar)
obs calc obs calc

C11 2.23 2.68 C12 0.77 1.20

C22 1.71 1.99 C13 0.81 1.06

C33 2.35 2.72 C23 0.57 0.85

C44 0.74 0.65 C15 0.17 0.20

C55 0.67 0.80 C25 0.07 0.04

C66 0.66 0.98 C35 0.43 0.62
C46 0.07 0.04

Unit-cell parameters
obs calc

a (A) 9.7683 9.8548
c(A) 9.3408 9.1134

Atomic fractional coordinates
XobS YobS ZObS XcalC Ycalc Zcalc

Mg Y3 2fJ Y4 Y3 2fJ Y4
T(1) Y2 Y2 Y4 Y2 Y2 Y4
T(2) 0.3724 0.2662 0 0.3693 0.2628 0
0(1) 0.4853 0.3492 0.1439 0.4846 0.3461 0.1479
0(2) 0.2304 0.3081 0 0.2315 0.3080 0
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TABLE7. Comparison of observed and calculated structure and elastic constants of diopside

Note: Observed structural data were taken from Clark et a!. (1969); elastic constant data are from Levien et a!. (1979).

we wanted to include diopside, as a chain structure, in
the data base for more detailed analysis. The results for
the calculated equilibrium structure are given in Table 7,
where they are compared with the results of the structure
refinement of Clark et ai. (1969). The differences from
the results of previous calculations (Dove, 1989) are only
slight, but nevertheless represent a modest improvement
on the agreement with experimental data. We recall that
the conclusion reached from the previous calculations
(Dove, 1989) was that the chain structure, differences in
the Si-O bond lengths, and the Mg and Ca coordinations
can all be reproduced by the model; this conclusion holds
with the modified core-shell interaction parameter.

CORDIERITE

Cordierite (Mg2SisAI40Is) is of interest because it exists
as either of two polymorphs, an ordered orthorhombic
phase (Cccm, Z = 4) or a hexagonal phase with AI-Si site
disorder (P6/mcc, Z = 2). We have modeled both phases.

Hexagonal cordierite contains two nonequivalent tet-
rahedral sites: site 1 [denoted T(I)] with 1/3Al and 2/3Si,

TABLE8. Crystal structure of hexagonal cordierite

and site 2 [denoted T(2)] with 2/3Al and 1f3Si (Dove et aI.,
in preparation). Effective interactions were constructed
using Equations 15-20 for both sites. The calculated
equilibrium crystal structure for this model is compared
with the experimental structure (Dove et aI., in prepara-
tion; Armbruster, 1985) in Table 8. The agreement is
satisfactory. It should be noted that the energy minimi-
zation was performed starting from an orthorhombic
structure with only two types of tetrahedral sites. That
the energy minimization yielded the hexagonal structure
shows that the observed phase transition to the ortho-
rhombic phase is triggered only by AI-Si ordering. This
is consistent with kinetic observations but is different from
the case of leucite (see below).

Coordinates and other data for the relaxed structure of
the fully ordered orthorhombic form are compared with
those of the experimental structure (Dove et aI., in prep-
aration; Gibbs, 1966; Cohen et at, 1977) in Table 9. There
is again satisfactory agreement. But of greater significance
than the comparison of the absolute structures is the cal-
culation of the distortion of the structure of the ordered

Note: Observed values are from Dove et at (in preparation), which are consistent with Armbruster (1985). T denotes a tetrahedral site.
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TABLE 9. Data for the crystal structure of orthorhombic cordierite

Unit-cell parameters
obs calc

a (A) 17.0448 17.1674
b(A) 9.7127 9.7517
c(A) 9.3318 9.0661
es 0.00655 0.00813

Atomic fractional coordinates
XObs YObS ZObs Xcale Ycalc Zcalc

Mg 0.3372 0.0 0.25 0.3367 0.0 0.25
AI(1) 0.25 0.25 0.2541 0.25 0.25 0.2537
AI(2) 0.0511 0.3080 0.0 0.0503 0.3031 0.0
Si(1) 0.0 0.5 0.25 0.0 0.5 0.25
Si(2) 0.1927 0.0789 0.0 0.1913 0.0766 0.0
Si(3) 0.1349 -0.2363 0.0 0.1319 -0.2355 0.0
0(1) 0.2461 -0.1029 0.3572 0.2466 -0.1001 0.3539
0(2) 0.0630 -0.4152 0.3494 0.0637 -0.4144 0.3483
0(3) -0.1730 -0.3100 0.3585 -0.1700 -0.3110 0.3538
0(4) 0.0439 -0.2515 0.0 0.0405 -0.2351 0.0
0(5) 0.1216 0.1863 0.0 0.1218 0.1829 0.0
0(6) 0.1636 -0.0800 0.0 0.1713 -0.0844 0.0

Unit-cell parameters
obs calc

a (A) 7.6850 7.5915
c(A) 5.0636 4.8964

Atomic fractional coordinates
Xobs YObs ZOb& xcale Yeale Zcale

Ca 0.3389 0.1611 0.5104 0.3407 0.1593 0.5172
T(1) 0.1434 0.3566 0.9540 0.1426 0.3574 0.9572
T(2) 0.0 0.0 0.0 0.0 0.0 0.0
0(1) 0.5 0.0 0.1765 0.5 0.0 0.1963
0(2) 0.1428 0.3572 0.2835 0.1406 0.3594 0.2997
0(3) 0.0876 0.1676 0.8077 0.0928 0.1649 0.7953

--~-~~-~ ~-
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Note: Observed data are from Dove et at (in preparation), which are consistent with Gibbs (1966) and Cohen et at (1977); es is the spontaneous
strain defined by Equation 21.

phase from the hexagonal structure of the disordered form.
This is quantified by the spontaneous strain, es, defined as

a - V3b
es =

a + V3b
(21)

where a and b are the orthorhombic unit-cell parameters
(a = yljb in the hexagonal phase). The calculated and

observed values of es are, respectively, 0.0081 and 0.0066
(Dove et aI., in preparation). The size of this strain is
slightly smaller than the differences between the calculat-
ed and observed cell lengths and thereby provides a sub-
tle test of the predictive ability of these models. The
agreement between the calculated and observed values of
es is encouraging.

GEHLENITE

The crystal structure of gehlenite, Ca2AI2Si07, is te-
tragonal (P421m, Z = 4). The main feature of the struc-
ture is that it is composed of layers of five-membered
rings of tetrahedra, with Ca in the large gaps between the
layers. These features make gehlenite a useful system for

TABLE10. Crystal structure data for gehlenite

testing transferable potential models. There are two dis-
tinct tetrahedral sites in the structure. The first site, T(l),
is at the origin of the unit cell and has 4 symmetry. Crys-
tal structure analysis has shown that this site contains Al
(Kimata and Ii, 1982; Swainson et aI., in preparation).
The second site, T(2), is disordered, containing 112Al and
112Si. The effective potential for this site was again cal-
culated from Equations 15-20. The results of the SLEC
are given in Table 10, where they are compared with
those of the observed structure (Swainson et aI., in prep-
aration; Kimata and Ii, 1982). The agreement is reason-
able, and the model correctly reproduces the different
T(2)-O bond lengths. The model also reproduces the Ca
coordination satisfactorily.

LEUCITE

Leucite, KAISi206, is a framework structure (I4/a, Z

= 8), which is an ideal system for testing model potentials
because the tetragonal structure is a slight distortion from
a high-temperature cubic structure (Im3m, Z = 8). A
good model, therefore, should be able to reproduce this

Note: Observed data are from Swainson et at (in preparation), which are consistent with Kimata and Ii (1982). T(1) is occupied by AIand T(2) is
occupied by Alo.sSio.s,as described in the text.
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a) b)
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Fig. 4. Projection down [1 I 1] of the structure of leucite: (a) observed tetragonal structure at room temperature, (b) calculated
tetragonal structure, (c) observed cubic structure. The comparison of a and b shows that our model has reproduced the tetragonal
distortion from c. Observed structure data are from Dove and Palmer (in preparation).

small distortion. In the cubic phase (which is stable above
940 K), there is only one symmetrically distinct tetrahe-
dral site, so this phase must have no long-range AI-Si site
order. There are no other sites (e.g., octahedral) in either
phase for Al or Si atoms. The cubic-to-tetragonal phase
transition occurs much faster than would be expected for
a transition due to AI-Si ordering (Palmer et aI., 1989;
Palmer et aI., 1990; Heaney and Veblen, 1990). There-
fore, we would expect the tetragonal phase to remain dis-
ordered. This has been confirmed by diffraction experi-
ments (Mazzi et at, 1976; Grogel et aI., 1984; Dove and
Palmer, in preparation), which are sensitive to long-range
order, although there is evidence (albeit contradictory)
for the existence of short-range order from nuclear mag-
netic resonance experiments (Brown et aI., 1987; Mur-
doch et aI., 1988; Phillips et aI., 1989).

Effective interactions for the tetrahedral sites were con-
structed assuming complete AI-Si disorder [i.e., each site
contains (AI + 2Si)/3] and using one mean bond length
obtained from the three sites in the tetragonal structure.
It should be noted that leucite is our only example that
tests the K-O potential parameters.

The tetragonal structure could be relaxed easily, since
it is the stable leucite structure. A straightforward energy
minimization allowing for changes in the cell volume was
not possible because the cubic structure is unstable with
respect to the tetragonal distortion and the program
THB_REL does not incorporate the use of constraints
on the symmetry of the structure or on the shape of the
unit cell. We therefore carried out a number of constant-
volume energy minimizations of the cubic structure, us-
ing different unit-cell edge lengths. We then fitted the
minimum energies to a fourth-order polynomial in the
cubic unit-cell edge length. The strain-free unit-cell edge
length was obtained from the minimum of this polyno-
mial, and another structure relaxation was carried out

using this value for the unit-cell edge length. The results
of this energy minimization confirmed that the relaxed
structure was actually free of all residual stresses.

The results of SLEC for both the tetragonal and cubic
phases are given in Table 11, where they are compared
with observed results (Dove and Palmer, in preparation;
Mazzi et aI., 1976; Grogel et aI., 1984). The details are
best discussed with reference to Figure 4, which shows
the [1I 1]projection of the tetragonal phase as determined
by experiment and as given by SLEC, together with the
same projection of the cubic phase as determined by dif-
fraction data. This projection highlights the loss of the
three-fold axis on transformation from the cubic to the
tetragonal form. The key features to note are the distor-
tion of the six-membered ring of tetrahedra surrounding
the [1I 1] axis and the off-centering of the K ions. Both
of these features are reproduced remarkably well in our
calculations.

The transition also involves a change in volume and a
spontaneous strain (Palmer et aI., 1989). Palmer et al.
(1989) define the two strain parameters eaand e3:

(22)

c - iio
e=-3 -ao

(23)

where a and c are the tetragonal unit-cell lengths, ao is
the actual cubic unit-cell length, and iio is given by

_ c + 2a
ao=~. (24)

The iio would be equal to ao if the transition were purely
ferroelastic, but experimentally it is found that these two
quantities have very different values. Hence e3 gives a
measure of the pure ferroelastic strain, and ea gives a



TABLE 11. Crystal structure and spontaneous strain parameters of leucite

Unit-cell parameters and spontaneous strain parameters
obs calc

a (A) 13.0897 12.9884
c(A) 13.7530 13.8000
ao (A)* 14.38** 13.6444t
ao (A)* 13.3108 13.2589
e3* 0.0332 0.0408
ea* 0.013 0.0291

Fractional atomic coordinates for the tetragonal phase
XobS YObs ZObs Xca1c Ycalc Zcalc

K 0.3663 0.3654 0.1171 0.3659 0.3631 0.1073
T(1):t: 0.0582 0.3967 0.1654 0.0563 0.3971 0.1671
T(2):t: 0.1685 0.6124 0.1279 0.1668 0.6115 0.1269
T(3):t: 0.3933 0.6406 0.0863 0.3929 0.6407 0.0848
0(1) 0.1308 0.3136 0.1111 0.1327 0.3162 0.1097
0(2) 0.0927 0.5105 0.1310 0.0881 0.5135 0.1329
0(3) 0.1455 0.6790 0.2269 0.1459 0.6819 0.2257
0(4) 0.1342 0.6839 0.0358 0.1325 0.6857 0.0359
0(5) 0.2892 0.5773 0.1212 0.2894 0.5733 0.1183
0(6) 0.4841 0.6175 0.1665 0.4839 0.6161 0.1658

Mean T-0 bond lengths (in A) for the tetragonal phase§
obs calc cubic phase

T(1)-0 1.642(17) 1.646(6) 1.622(2)
T(2)-0 1.648(10) 1.654(15)
T(3)-0 1.658(12) 1.663(4)

Atomic coordinates for the cubic phase
XobS YobS ZObS Xca1c Ycalc Zcalc

K 0.375 0.375 0.125 0.375 0.375 0.125
T:t: 0.0878 0.375 0.1622 0.0877 0.375 0.1623
0 0.1329 0.2806 0.1034 0.1354 0.2813 0.1035
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Note: Observed data are from Palmer et al. (1989) and Dove and Palmer (in preparation). The observed structure data are consistent with Mazzi et
al. (1976) and Gregel et at (1984).

* Quantities defined in the text by Equations 22-24.
** Value obtained by extrapolation from high temperature data.
t Value obtained from energy minimization of cubic structure.
:t:T denotes disordered tetrahedral site containing A11/3Si2/3.
§ Quantities in brackets give standard deviations over four bond lengths.

measure of the nonferroelastic strain. Most of the volume
change associated with the phase transition is due to the
nonferroelastic strain ea.

The observed and calculated values for these strain
quantities are given in Table 11. Although the calculated
value of the ferroelastic strain e3 agrees well with the ex-
perimental value, there is a difference of a factor of 2
between the calculated and observed values of the non-
ferroelastic strain ea. This is principally due to the fact
that the calculated cubic unit-cell edge length, ao, differs
from the experimentally determined value by more than
the differences between any of the other calculated and
observed lengths. That said, the discrepancy is as small
as 1.2%, so we are really talking of small errors that are
greatly magnified when subtracting two similar large
numbers. It should be noted that the experimental value
of ao was obtained by extrapolation over a range of 650
K away from the actual experimental data, but the dis-
crepancy between the calculated and observed values
cannot be fully accounted for by postulating the existence
of undetected errors in the extrapolation procedure. The
discrepancies that we have pointed out should not detract
from the fact that the model has given the essential qual-
itative details of the strain distortions, which means that
the model correctly reproduces the couplings between the

order parameters associated with the symmetry changes
and the spontaneous strains.

We can therefore conclude that the basic model is able
to reproduce the phase transition behavior in leucite, with
the correct couplings between the framework distortions,
K ion displacements, and volume and strain distortions.

One other feature of the tetragonal structure that is of
interest is the range of tetrahedral bond lengths. In the
tetragonal phase there are three nonequivalent tetrahe-
dral sites, so in principle there could be some AI-Si or-
dering. An analysis of the experimental bond lengths has
suggested that the degree of any ordering will be small,
but it has been noted that the bond lengths for the differ-
ent sites are not equal. Our model has used identical po-
tentials for each of the sites (the assumption of complete
disorder). The calculated structure gives unequal bond
lengths similar to those calculated from the observed
structure parameters (Table 11). We can therefore con-
clude that the experimental structures are consistent with
the complete lack of any long-range AI-Si order. We can
also conclude that the observed strain distortions are not
caused by AI-Si ordering. This has been confirmed by a
calculation for a hypothetical ordered structure, with Al
on the T(2) site and Si on the other two tetrahedral sites.
The strain distortions given by this structure were barely



obs Model 1 Model 2

a (A) 16.193(2) 15.927 15.725
b(A) 5.549(1 ) 5.534 5.608
c (A) 10.036(2) 9.731 10.003
O-H (A) 1.2(2) 1.126 0.983
<OH,[001 ] 00 0.06° 0.02°
OH-O (A) 2.75(2) 2.44 2.66
VOH(cm-1) --3160 -- 2325 -- 4029
Other optic

phonons <1160 cm-1 50-1069* cm-1 50-1072 cm-1
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different from the strain distortions given by our disor-
dered model. A more detailed study elucidating the role
of AI-Si ordering will be presented elsewhere (Dove et aI.,
in preparation).

ZoISITE

Zoisite, Ca2AI3[O/OH/Si02/Si207]' is an Fe-free ortho-
rhombic (Pnma, Z = 4) end-member of the epidote group.
The structure, as determined by Dollase (1968), contains
Si04 and Si207 groups, as well as chains of edge-sharing
Al octahedra running parallel to [010]. H bonds are lo-
cated between these chains. The Ca atoms are situated in
irregular polyhedra. If a cutoff value of 2.85 A for bond
lengths is used, both independent Ca atoms are seven
coordinated (Dollase, 1968).

Not only is the complexity of this structure a challenge
for modeling, but it is also a good test case for O-H po-
tentials. Because of the relatively small numbers of H
atoms, one can neglect direct non-Coulombic H-H inter-
actions in a first approach. The modeling of OH groups
is not straightforward. Different potentials have been pro-
posed (Saul et aI., 1985; Abbott et aI., 1989a, 1989b;
Collins and Catlow, 1990). The potentials suggested by
Abbott et al. (1989a, 1989b) were derived from energy-
minimum search calculations for brucite OH and mica
OH in a number of structures (e.g., chlorite, clintonite,
lizardite, tremolite). Abbott et al. (1989a, 1989b) sug-
gested a value of p = 2.5 A in Equation 12. They con-
cluded that the O-H distances and orientations are mod-
eled best with BOH= 30000 kJ/mol for trioctahedral mica
layers and tremolite, and BOH= 24250 kJ/mol for brucite
sheets in chlorite. 0 atoms were modeled as rigid ions
with a formal charge of - 2e, and H atoms were given
the charge + 1e. Collins and Catlow (1990) successfully
modeled micas using a model similar to the one described
in the present paper. They modeled the O-H interaction
with the modified Morse function of Equation 14, the
parameters for which are given in Table 1. The 0 in the
O-H group was modeled as a rigid ion with a charge of
- 1.426e, whereas the H atom was assigned a charge of
+0.426e. The O-H bond distance in the model was cal-
culated to be about 6% larger than the experimentally
determined one (Collins and Catlow, 1990). All other 0
atoms were modeled with a core and a shell. Neither
model has been tested by HLDC, which we regard as the
most stringent test of any O-H potential.

Dollase (1968) determined the O-H distance to be 1.2(2)
A and the length of the OR . . . R H bridge to be 2.76(2)
A. Linke (1970) confirmed by single-crystal polarized light
IR spectroscopy that the O-H dipole is parallel to [001].
We tested the potential parameters of Abbott et al. (1989a,
1989b) and Collins and Catlow (1990) in our model of
the zoisite structure. The potential parameters of Collins
and Catlow (1990) did not work initially, because of the
large attractive electrostatic forces on the H atoms from
o atoms not belonging to the OH group. The inclusion
of short-range repulsive interactions. using .the potential
parameters of Abbott et al. (1989a, 1989b) led to a sat-
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TABLE12. Comparison of observed data and results of SLEC
and HDLCfor zoisite

Note: Observed data were taken from Langer and Lattard (1980); model
1 uses the parameters of Abbott et a!. (1989a, 1989b), and model 2 uses
those of Collins and Catlow (1990) as described in the text.

* Excluding the modes related to the bending vibration of the H bond at
--1420 cm-1.

isfactory relaxation of the structure. The calculated lattice
parameters for both models are given in Table 12. As
may be seen from Table 12, both models reproduced the
orientation of the OH group with respect to the c axis
very well. Both models gave an O-H bond distance that
was too short, the modified Collins and Catlow model
giving an even shorter bond than the Abbott et al. (1989a,
1989b) model. There are two different Ca polyhedra in
zoisite structure. The O-Ca-O bond angles are modeled
to better than 80 for polyhedra, whereas the bond lengths
are all about 0.1 A too short.

HLDC were performed to elucidate the reliability of
the OH potential further. We calculated the phonons at
the r point. IR studies in the frequency range above 400
cm-I were performed by several authors, e.g., Linke
(1970), Langer and Raith (1974), Langer and Lattard
(1980), and Winkler et al. (1989). The IR spectrum of
zoisite in the region above 400 cm-I may be subdivided
into three regions: the OR stretching vibrations occur at
around 3160 cm-I, there is a distinct band at about 2160
cm-J, and the normal lattice modes have wavenumbers

< 1160 cm-I. The normal lattice modes below approxi-
mately 1160 cm-I are correctly calculated using both
models; the calculated frequency range is 50-1070 cm-I.
Langer and Lattard (1980) assigned the 2160 cm-I band
to an unusually strong, second H bridge. On deuteration
this band shifts to lower frequencies (Langer and Lattard,
1980) and shifts to higher frequencies with increasing
pressure (Winkler et aI., 1989). Because of these shifts
and the unlikelihood of the existence of such a strong H
bridge in silicates [the stretching frequency is expected to
shift from approximately 3700 cm-I to 2160 cm-I when
the OH-O distance is approximately 2.5 A (Nakamoto et
aI., 1955), Winkler et aI., (1989) concluded that the pre-
vious assignment of Langer and Lattard (1980) was in-
correct and suggested that, instead, the band was caused
by a mode-mode coupling of the bending vibration of the
H bond and a lattice mode. In general, the OH stretching
frequency is a function of the OH-O distance and the
.O-H .distance (Nakamoto et at, 1955; Novak, 1974). Both
models gave O-H distances that were too short, and this

~ ' ~-
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Fig. 5. Comparison of experimentally determined excess

volume of pyrope-grossular garnets (points, Haselton and New-
ton, 1980) and calculated values (line). Note that there is no
consensus on the best value for the lattice parameter of pyrope
(see text).

would increase the stretching frequency. On the other
hand, both models also gave short OH-O distances, which
would decrease the stretching frequency. The HLDC that
we carried out using the model of Collins and Catlow
(1990) did not give any modes with frequencies between
1073 cm-1 and the high OH stretching mode frequencies
at 4032 cm-1. The model with the potential parameters
of Abbott et al. (1989a, 1989b) gave high-frequency modes
at 1420 cm-1 and 2325 cm-1. An analysis of the respec-
tive eigenvectors showed that the modes around 1420
cm-1 are caused by the bending vibration of the OH-O
H bridge, whereas the modes around 2325 cm-1 were due
to the OH stretching motion. As we are convinced that
our HLDC are sufficiently reliable, we conclude that the
experimentally determined vibration at approximately
2160 cm -1 is due to anharmonic effects. This supports
the suggestion of Winkler et al. (1989) that this band is
due to a coupling process.

GARNETS

Aluminosilicate garnets have the general formula
A3AI2Si3012. They are cubic (I a 3d) with Z = 8 formula
units per unit cell. We modeled grossular (gr) with A =
Ca and pyrope (py) with A = Mg. To demonstrate that
the potentials used are realistic enough to model small
effects, like the excess volume of mixing and the excess
enthalpy of mixing, we carried out calculations for solid
solutions between the end-members. These are denoted
by either pyXgr(10 - X) or grXpy (10 - X). The molo/o
of the respective corn.ponent divided by 10 is given as X.
The end-member which is given first indicates the struc-
ture which was used at the beginning of the relaxation.
The effective A-O potentials were constructed from
Equations 19 and 20.

In general, excess properties deviate by less than 1°/0
from the value which the respective property would have

20 40 60 80 100

mol % Pyrope
Fig. 6. Comparison of experimentally determined excess en-

thalpy of pyrope-grossular garnets (points, Haselton and New-
ton, 1980) and calculated values (line).

if ideal mixing took place. This ideal behavior can be
obtained by linear interpolation between the end-mem-
bers. Although the values of the excess properties are
small, they are important for the P, T dependence of the
thermodynamic functions. For this reason the mixing be-
havior of a large number of silicates and nonsilicates have
been studied (e.g., Newton et aI., 1977; Newton and Wood,
1980; Haselton and Newton, 1980). Haselton and New-
ton (1980) published a summary of the excess properties
of py-gr solid solutions. Their results for the excess vol-
ume and excess enthalphy of mixing are given in Figures
5 and 6, respectively. We note that there seems to be no
consensus as to the best value for the lattice constant of
dry synthetic pyrope. Geiger et al. (in preparation) com-
pared several observed cell parameters. For similar syn-
thesis conditions (30-40 kbar, 1673-1723 K), the mea-
sured values ranged from 11.4540(5) to 11.459(1). If the
value of 11.454 is taken, there is no region of negative
excess volume.

The structures of the end-member garnets were mod-
eled satisfactorily (Table 13). The calculated elastic con-
stants are too large by approximately 20°/0. The excess
volumes and enthalpies are given in Table 14 and Figures
5 and 6. We have assumed that the excess enthalpies are
primarily due to excess lattice potential energy. The ex-
cess properties are calculated to within the correct order
of magnitude. The experimentally determined excess vol-
ume deviates by only approximately 0.3°/0 from the ideal
behavior (Haselton and Newton, 1980) at py5gr5 com-
position. Our calculated value of 0.5°/0 is therefore judged
as satisfactory. Furthermore, Haselton and Newton (1980)
point out that the excess volume is asymmetric. The mag-
nitude of this asymmetry cannot be determined until more
accurate data on the lattice parameters for this solid so-
lution series, especially for the pyrope-rich members, be-
come available. The model gives a slight asymmetry of
the excess volume. The agreement between the calculated
and observed values of the excess enthalpy is not as good



Pyrope Grossular

obs calc obs calc

a (A) 11.454 11.302 11.846 11.565
x 0.0328 0.0311 0.0380 0.0356
Y 0.0502 0.0549 0.0450 0.0515
z 0.6534 0.6526 0.6518 0.6506
C11 2.87 3.39 3.22 3.97
C12 1.05 1.32 0.91 0.98
C44 0.92 1.15 1.05 0.94

Obs (cm-1) Calc (cm-1)

339 331
386 387
420 420
463 450
482 480
539 508
877 836
907 868
967 969

\
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TABLE 13. Crystal structures and elastic constants (units of Mbar)
of pyrope and grossular

Note: x, y, z are the fractional coordinates for the 0 atom; all other
coordinates are defined for special positions of the space group. Observed
data for the crystal structures were taken from Hazen and Finger (1978);
elastic constants for pyrope are from Isaak and Graham (1976), and elastic
constants for grossular are from Bass (1989).

as for the excess volume, although it should be noted that
the size of the effect is as small as 0.02% of the calculated
lattice energy.

Table 15 shows a comparison of some of the calculated
k = 0 optic mode frequencies for pyrope with corre-
sponding experimental values determined by IR spec-
troscopy. The agreement is reasonably good. We have
also calculated the specific heat and the entropy for py-
rope. The density of states was calculated by using the
mean point of the Brillouin zone of an I-centered cubic
lattice at (%, %, ~) (Baldereschi, 1973). The calculated
values are compared with the data published by Haselton
and Westrum (1980) in Table 16. The agreement with
the experimental data is not as good as for other systems.
We attribute this to the neglect of Mg anharmonicity or
site disorder in the model, which will cause the entropy
to be underestimated.

GENERAL ANALYSIS

The previous sections have shown that the basic po-
tential model used in this paper is able to reproduce a
wide range of alumino silicate structures. A general quan-
titative assessment of the accuracy of the model is there-
fore possible. We need to define two standard deviations
for this:

[

IN

]

1/2

UD = N~ (PjbS - P~C)2

tJ' = [
l.

N

(PjbS - pjale

)
2

]

112

WD N ~ pC?bs]
=1

]

where ]Jobsand pealeare observed and calculated quantities
(such as cell edges, bond lengths), respectively. N is the
number of quantities used in the calculation of these stan-
dard deviations. The weighted deviation, tJ'WD,gives a
measure of the agreement as a proportion and will be
used for quantities such as the unit-cell edges, which have
a wide range of values. On the other hand, the quantity,
UD, gives a measure of the absolute agreement and is use-
ful for quantities such as bond lengths, which do not
change much from one structure to another. It is instruc-
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TABLE14. Calculated mixing properites of pyrope-grossular sol-
id solutions

pyrope
py9gr1
py7gr3
py6gr4
py5gr5
gr5py3
gr9py1
grossular

Molar
volume

(cm3/mol)

108.68
109.68
111.48
112.30
113.08
114.51
115.82
116.43

0.22
0.47
0.52
0.53
0.40
0.17

Excess
volume

(cm3/mol)

Lattice
energy

(eV/mol)

338.03
337.80
337.36
337.16
336.95
336.95
336.56
336.20

Excess
energy

(eV/mol)

0.03
0.07
0.07
0.08
0.08
0.07

tive to compare calculated values of UD with the regular
standard deviation for the experimental data, tJ', given as

tJ'= [ ~ ~ (Pjbs _ P)2
]

l/2

(N 1) j=1

where P is the mean of the observations. We expect that

iTD will be less than tJ' if the model has given satisfactory
results.

It should be noted that, in the analysis presented below,
we have included the results from both models of zoisite.
We have excluded the results for the cubic phase of leu-
cite, since the experimental data are necessarily for high
temperatures.

(27)

Unit-cell edge length

Averaging over all the cell edge lengths, we obtain

mean observed cell edge length = 9.3313 A
mean calculated cell edge length = 9.2211 A

tJ'WD = 0.0184
N = 36.

The model, in general, reproduces the cell edge lengths
to within 2%, which gives on average a slight underesti-
mate of 1%.

(25)

Bond lengths

Averaging over all the Si-O bond lengths, we obtain

mean observed bond length = 1.628 A (iT= 0.029 A)
mean calculated bond length = 1.641 A (u = 0.041 A)

(26)
TABLE15. Calculated and observed T1Uk = 0 optic phonon

frequencies in pyrope

Note: Observed data were taken from Geiger et al. (1989).



obs calc

Cp, 150 K 171.5 157.75
Cp,298 K 325.3 323.04
5 ~- 58, 150 K 95.56 74.45
5~ - 58, 298 K 266.3 237.32

--- ------
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TABLE16. Heat capacities, Cp in (J mol-1 K-1), and third law
entropies, s~ - sg in (J mol-1K-1),of pyrope gros-
sular garnets

Note: Observed data were taken from Haselton and Westrum (1980);
the Cv to Cpconversion factors were taken from Holland and Powell (1989).

0"0 = 0.021 A
O"wo = 0.013

N = 30.

The model gives, in general, a slight overestimate, but
nevertheless the bond lengths are reproduced to within
1%.

For AI-O bond lengths we need to consider both tet-
rahedral and octahedral bond lengths. From the averag-
ing we obtain

mean observed tetrahedral bond length = 1.740 A
(0" = 0.033 A)

mean calculated tetrahedral bond length = 1.740 A
(0"= 0.041 A)

0"0= 0.017 A
O"wo= 0.010

N=9
mean observed octahedral bond length = 1.907 A

(0"= 0.073 A)
mean calculated octahedral bond length = 1.896 A

(0"= 0.073 A)

0"0= 0.037 A
O"wo= 0.019

N = 54.

The agreement is comparable with the agreement for the
Si-O bond lengths. It may seem remarkable that the use
of a single AI-O interaction for both types of coordination
polyhedra can give similar accuracy for both types of bond
lengths.

The statistical analysis of all bond lengths shows that
the model can give individual bond lengths to an accu-
racy of better than 2%. The mean calculated bond lengths
are within 1% of the observed mean values. There is a
distribution of actual bond length values in the different
crystals, and our model reproduces this distribution.

Bond angles

We now perform a similar analysis for the tetrahedral
and octahedral bond angles, including Si-O, AI-O and
disordered bonds in the data set

mean observed tetrahedral angle = 109.490

mean calculated tetrahedral angle = 109.440

0"0 = 1.380

noean absolute difference = 2.180

N= 72
mean observed octahedral angle = 89.960
mean calculated octahedral angle = 89.890

0"0= 1.230

mean absolute difference = 1.850
N = 54.

This analysis, and the previous bond length analysis,
enables us to conclude that the size and shape of the Al-
Si tetrahedra and octahedra can be accurately reproduced
by the model for the whole range of different aluminosili-
cate structures studied. We are confident that other struc-
tures can be modeled with similar accuracy.

Cation coordination

The potentials we have used for Mg-O, Ca-O, and K-O
interactions have been obtained independently of the AI-O
and Si-O potentials described above. The averages over
all the systems give

mean observed Mg-O distance = 2.136 A (0"= 0.088 A)
mean calculated Mg-O distance = 2.096 A (0"= 0.078 A)

0"0 = 0.047 A
O"wo = 0.022

N=8
mean observed Ca-O distance = 2.575 A (0"= 0.229 A)

mean calculated Ca-O distance = 2.495 A (0"= 0.246 A)

O"D=0.112A

O"wo= 0.042
N= 35

mean observed K-O distance = 3.028 A (0"= 0.072 A)
mean calculated K-O distance = 2.956 A (0"= 0.065 A)

0"0= 0.090 A

O"wo= 0.030
N= 6.

We conclude from these figures that the model is also
capable of reproducing the general cation-O bond lengths
to within 4% in all cases, and the average bond lengths
are in even better agreement.

Bond orientations

The structure is characterized by the size and shape of
the coordination polyhedra, which we have shown are
accurately reproduced by the model, and also by the ori-
entations of the polyhedra. These orientations can be an-
alyzed by considering the orientations of the individual
bond vectors. We have calculated the root-mean-square
angle between the observed and calculated bond vectors
for the structures we have modeled:

tetrahedral (Si,AI)-O rms angle = 2.490

octahedral AI-O rms angle = 2.240

Mg-O rms angle = 1.880

Ca-O rms angle = 2.510

K-O rms angle = 2.130.
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The rms angle, in all cases, was found to be larger than
the mean of the angle moduli. It is clear from this analysis
that both the shapes and the orientations of the polyhedra
are correctly given to within 2-30 on average. In the full
analysis, the maximum difference was 60.

There is an interesting interplay between short-range
and long-range interactions in alumino silicate structures.
For any alumino silicate structure, there will be a group
of normal mode type distortions in which the basic rigid
units (tetrahedra or octahedra) remain undistorted and
only the connecting frameworks is distorted. These are
called rigid-unit modes, and they form a small subset of
the full set of allowed vibrational normal modes. The
number of rigid-unit modes will depend on the structure,
and the existence of any rigid-unit modes will also de-
pend on the wavevector. This idea was first pointed out
in connection with the phase transitions in quartz (Grimm
and Domer, 1975; Berge et aI., 1986), and a general
method for the evaluation of the set of rigid-unit modes
in any crystal structure has been described by Giddy et
al. (in preparation). From the point of view of structure
modeling, the existence of rigid-unit modes presents an
additional challenge since it is then possible to get the
short-range aspects of the structure exactly correct (for
example, the Si-O bond lengths) without consequently
getting the framework structure correct to the same ac-
curacy. The latter aspect is determined by the longer-
range forces, namely the electrostatic interactions and the
o . . . 0 dispersive interaction.

SUMMARY

We have reported lattice energy minimization studies
for a wide variety of alumino silicate minerals, and we
have augmented some of these with harmonic lattice dy-
namics calculations. Our primary aim has been to test
one specific model, and we have been able to conclude
that the basic model works rather well. We have made
some minor modifications that we believe have im-
proved the performance of the model. We have also in-
troduced a method that can handle site occupancy dis-
order (either due to order-disorder phase transitions or
solid solution formation), and we have shown that this
method works well as far as the structures and energetics
are concerned.

Our criteria for testing the potential model have gone
beyond the reproduction of structures only; we are more
interested in using the potentials in the study of more
subtle effects, such as the properties associated with phase
transitions. We have therefore used the model to predict
a phase diagram (AI2SiOs)and to calculate the following:
the coupling between an order-disorder phase transition
and spontaneous strain distortions (cordierite), the simi-
lar couplings between a displacive phase transition and
spontaneous strain distortions (leucite), departures from
ideal solid solution behavior (pyrope-grossular solid so-
lution), and thermodynamic quantities. We have found
that the model always gives the correct qualitative be-
havior, and in many cases, we have found that the quan-
titative agreement between calculation and experiment is
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far better than one might have expected for such a simple
model. The reader should note that these tests are push-
ing the model to limits beyond those for which it was
designed. Although the discrepancies between calculated
and observed properties point to inadequacies of the
model, the essential result is that the model is nearly able
to account correctly for such subtle effects.

If we combine our results with the results from the
applications of this basic model to Mg2Si04 (Price and
Parker, 1988), Si02 (Sanders et aI., 1984), and zeolites
(Jackson- and Catlow, 1988), we can conclude that the
basic model described in this paper is a genuine transfer-
able model that can be applied to a wide range of struc-
ture topologies (ortho-, chain-, layer-, and framework-
aluminosilicates). It can model both structural and lattice
dynamics aspects reasonably well. We have also tested
the model on a number of other systems that have not
been reported here (due to space limitations) and have
found results that support our conclusion of the accuracy
and transferability of the model.

However, we believe that the model can, and should,
be improved, particularly with regard to the AI-O poten-
tials. Although such an enterprise may seem daunting,
the way ahead is clear. The potential parameters of the
basic model can be refined by fitting calculated structures,
elastic and dielectric constants, and vibrational frequen-
cies to available observed data for a wide range of sys-
tems. This point was discussed by Dove (1989). Our own
preliminary investigations of the model for andalusite
have shown that minor modification of the value of the
O-AI-O bond-bending force constant for the five-coor-
dinated Al does lead to significant improvements in the
resultant calculated structure. However, it is our opinion,
supported by the experience of similar enterprises for
modeling organic materials (Dove, 1989), that focusing
on only a single system invariably leads to a potential
model that is no more transferable than the starting point;
instead, a wide number of structures is required for the
development of a transferable model.

In the meantime, we believe that reliable results can
still be obtained from studies using the model as it stands.
One of the features we wish to highlight is the success of
the potentials for Mg-O, Ca-O, and K-O interactions ob-
tained from MEG calculations (Post and Burnham, 1986).
We have also shown, in unreported work, that some of
the other potentials given by Post and Burnham are
equally useful. Additional potentials obtained by this
method (e.g., for Rb-O and Cs-O interactions) would be
extremely helpful.

We hope also that we have been able to demonstrate
the predictive benefits of the model. This point has been
exemplified by our discovery that the mechanism of the
ferrodistortive phase transition in leucite is virtually in-
dependent of any AI-Si ordering. Our successful calcula-
tions of phase diagrams and excess properties of solid
solutions also point to future applications of the model.
It is our hope that the general analysis we have performed
will now enable the model to be used with some confi-
dence, given the knowledge of the limits of its reliability.
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