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INTRODUCTION

The tetrahedral sheet in phyllosilicate minerals can exhibit 
a variety of compositions depending on the mineral. Examples 
include Al:Si = 1:3 in muscovite, 1:7 in phengite, and 1:1 in 
margarite. In previous work, we have investigated the order-
ing behavior of the tetrahedral sheet in muscovite (Palin et al. 
2001), of the tetrahedral and octahedral sheets in phengite (Palin 
et al. 2003a), and of the octahedral sheet in other phyllosilicate 
minerals such as illites and smectites (Sainz-Díaz et al. 2003a,b; 
Palin et al. 2004). Here, we address the issue of ordering in the 
tetrahedral sheet in a more general fashion than in our previous 
muscovite work. We investigate by Monte Carlo simulation a 
variety of compositions, from very dilute systems up to a 1:1 
ratio of Al:Si, to determine both the degree of order that is pres-
ent and the nature of the ordering scheme, to observe the effect 
of variation in concentration.

A previous computational study (Myers et al. 1998) of Al/Al 
avoidance in aluminosilicate structures, including the feldspar 
and cordierite frameworks, compared the behavior of these sys-
tems with the Bragg-Williams model of cation ordering. Figure 
1 shows schematically the observed behavior as compared with 
the model. The value of x at which Tc falls to zero is called the 
critical concentration, xc. The Bragg-Williams model predicts 
that xc = 0, whereas in real systems it has been found that there 
is a dramatic fall in Tc with decreasing Al content x, such that 
xc can be considerably greater than zero. This is because the 
Bragg-Williams model does not account for short-range order, 
and in reality, Al/Al avoidance can occur without short-range 
order driving the formation of long-range order. This effect was 
termed the “dilution effect,” and has been cited as the reason for 
the low transition temperatures in systems such as leucite (Dove 
et al. 1993), and we have observed further evidence for the effect 
in our studies of phengite (Palin et al. 2003a) and octahedral 
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We have investigated by Monte Carlo simulation the Al/Si ordering behavior of the tetrahedral 
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operate, depending on composition, with relatively Al-poor systems ordering in a muscovite-like 
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tetrahedral cation sites. The pattern corresponding to Al:Si = 1:2 occurs in intermediate compositions, 
but always in conjunction with another ordering pattern, except for one composition close to Al:Si 
= 1:2. Simulations of the same composition but with different ordering schemes can show different 
behavior, and this is evidence for metastability fields. The transition temperature for order-disorder Tc 
is strongly dependent on composition, and the dilution effect can be observed at low Al concentrations, 
with a critical concentration xc between 0.12 and 0.15.

illite/smectite sheets (Sainz-Díaz et al. 2003a,b). 
It is instructive to study many different compositions of the 

tetrahedral sheet due to the very wide compositional variation 
in natural phyllosilicate minerals. In this work, we build on the 
previous work by Myers et al. (1998), who showed that two 
controls on the value of xc are the dimensionality of the system 
and the coordination number of the atoms. The tetrahedral sheet 
is an interesting case with respect to both of these factors; it is 
essentially two-dimensional, and the atoms have a relatively 
low nearest-neighbor coordination number of three. More im-
portantly, the previous study considered only nearest-neighbor 
interactions, thereby allowing investigation of only one order-
ing scheme, whereas in this work we will consider interactions 
between more distant pairs, which allow for the possibility of up 
to three different possible ordering schemes. Thus we are able to 
extend the analysis of Myers et al. (1998) to include the effects 
of competing ordering schemes.

METHOD
The method employed in this work has been discussed in detail in other pa-

pers (Bosenick et al. 2001; Warren et al. 2001). Briefly, we first calculate atomic 
interaction parameters using lattice energy minimization methods and empirical 
interatomic potentials, and then use these atomic interaction parameters in Monte 
Carlo (MC) simulations of ordering. 

 In this work, we use previously calculated values of the atomic interac-
tion parameters that we determined for the tetrahedral sheet in muscovite. The 
full details are given in Palin et al. (2001). The first stage of the calculation of 
the atomic interaction parameters involved building a model of the muscovite 
structure, parameterized using empirical interatomic potentials. The formulae for 
these potentials, and the values used for the various different types of atoms, are 
given in Appendix 1. 

The lattice energy of the model was minimized using the program GULP 
(Gale 1997). Initially, a disordered model was used, employing the virtual crystal 
approximation, whereby all the tetrahedral sites in the muscovite structure are 
occupied with a virtual atom consisting of 0.25Al + 0.75Si to represent disorder. 
The resulting optimized structure showed good agreement when compared with 
an experimentally determined muscovite structure (Catti et al. 1994): the differ-
ences between experimental and model lattice parameters were less than 1.5%, 
and the mean interatomic distances agreed to within 1% (O-H and octahedral 
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Al-O to within 3%).
The parameters from the optimized disordered structure were then used as 

input parameters for a set of model structures in which the Al and Si atoms were 
localized at random tetrahedral sites (with the constraint that charge balance in each 
T-O-T layer was preserved). Fifty configurations of this form were thus generated, 
and each of these was optimized using GULP. 

 The model Hamiltonian we used to determine the atomic interaction param-
eters Jn is given by

E E N Jn
n

n
= + −Σ0 Al Al  (1)

where E is the lattice energy of a configuration, given by GULP, E0 is a constant 
term that does not affect the ordering process, NAl–Al is the number of Al-Al inter-
actions in a particular configuration for a particular distance, and J is the atomic 
interaction parameter between atoms separated by a particular distance. Equation 
1 is a simple linear equation, and as such, we obtain values for E0 and the Js by 
linear regression of the fifty E values from GULP against the fifty sets of NAl–Al 
values, with the latter quantity being calculated for each interaction parameter for 
each configuration using a spreadsheet. 

The distances corresponding to the J parameters are shown in Figure 2; they 
represent nearest-neighbor tetrahedral sites, next-nearest, third-nearest, and fourth-
nearest sites within one tetrahedral sheet. The values calculated using the regression 
method described above are given in Table 1.

We used our own code, Ossia, for the MC simulations. Details are available 
from http://www.esc.cam.ac.uk/ossia. Temperature is incorporated into the MC 
simulations by use of the Metropolis algorithm; one iteration step of the Monte 
Carlo process can be described as follows. Two atoms within the simulation box 
are selected at random and swapped. The energies of the configuration before 
and after the swap are compared. If the swap results in a decrease in energy the 
new configuration is retained and the next iteration step follows. If the energy 
increases as a result of the swap, however, the swap is retained subject only to a 
probability test:

P(E  E + E) = exp(– E/kBT) (2)

and the next iteration step follows. The Boltzmann factor contained in the prob-
ability test will have a different value for each simulation temperature, and hence 
different structures will occur with different probabilities at different temperatures. 
The MC process begins with an initial simulation in which the system relaxes to 
equilibrium. The production experiment follows this, and has the same number 
of iteration steps as the equilibration component, with averages (from which ther-
modynamic quantities are determined) being taken every 500 steps. Typically, the 
production experiment uses up to 108 iteration steps (that is, 2  108 steps including 
the equilibration experiment) to ensure good statistics. In this study we used 200 
million iteration steps in the production component and performed simulations 
at twenty different temperatures for each composition studied. In some cases, 
further simulations were performed over narrower temperature ranges to examine 

behavior near phase transitions.
Usually, we use Ossia to simulate ordering in one of two ways: either a 

“hot start,” starting the system from a random configuration and decreasing the 
temperature to monitor ordering, or a “cold start,” starting the system from an 
ordered state and increasing the temperature to monitor disordering. However, in 
this work we sampled a variety of compositions with respect to three particular 
ordering schemes. The ordering schemes are illustrated in Figure 3; it can be 
seen that they correspond to three specific compositions of the tetrahedral sheet 
(Al:Si = 1:3, hereafter referred to as the “muscovite scheme”; Al:Si = 1:1, hereafter 
referred to as the “margarite scheme”; Al:Si = 1:2, hereafter referred to as the “1:2 
scheme”). This fact means that neither of our usual approaches is viable, because 
the majority of compositions we study are obviously not identical to the ordered 
states corresponding to these order parameters. 

Therefore, in this work, we used a feature of the code that we previously used 
in our phengite work (Palin et al. 2003a); that is, the ability to simulate partial 
ordering, and we call this a “warm start.” The method is similar to that for a cold 
start, except that in the initial ordered state, atoms of one type are swapped at 
random to atoms of the other, until the desired fractions of atoms are obtained. 
Thus we have a mixture of order and disorder simultaneously. The simulation then 
proceeds as would a normal cold start simulation.

It should be stressed that the system is not constrained to remain in the starting 
configuration once the atomic fractions have been changed. On some occasions, 
this will occur, but it is obvious from the energy data for the system if this is 
energetically unfavorable, because the energy will undergo an initial decrease on 
heating before it increases.

We performed simulations on the following compositions (fractions of Al, 
x, are in 64ths for ease of comparison): Al-poor: x = 8/64 (phengite composition) 
– 16/64 (muscovite composition); Intermediate: x = 18/64 – 24/64; Al-rich: x = 
26/64 – 32/64 (margarite composition).

FIGURE 1. Schematic behavior of transition temperature Tc with Al 
concentration x compared with that predicted by the Bragg-Williams 
model (after Myers et al. 1998). The right-hand limit, xord, corresponds 
to the value of x for the fully ordered case (which need not be for a 
1:1 ratio).

FIGURE 2. Distances within the tetrahedral sheet corresponding to 
J parameters (values for which are given in Table 1).
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For Al-poor systems, we used the muscovite ordered scheme as the starting 
configuration, and for the intermediate and Al-rich compositions we performed 
simulations starting with all three schemes. Our justification for using the mar-
garite scheme for the Al-rich systems is that in previous studies of different cation 
systems, we have found that the same pattern exists for A:B = 1:1 (e.g., octahedral 
phyllosilicate sheets containing any of Al:Fe = 1:1, Al:Mg = 1:1, Fe:Mg = 1:1—see 
Sainz-Díaz et al. 2003a,b). We used the 1:2 scheme for interest; it is a possible 
tetrahedral composition in trioctahedral micas such as biotite, but less likely in 
dioctahedral micas.

The order parameters are set up by declaring the expected pattern of atoms at 
sites for each order parameter. Then, the order parameter is measured by consider-
ing how many sites are occupied by the expected atoms. If, for a given site, the 
occupancy of one type of cation at that site averaged over all unit cells is sj, then 
sj,0 is the average occupancy of the ordered structure (i.e., at T = 0) and sj,  is the 
average occupancy as T  . The order parameter per site is then defined as 

Q
s s

s sj
j j

j j

=
−

−
°

°

,

, ,0
  (3)

The disordered occupancies sj,  are calculated as random averages of all the 
cations used in the simulation—for example, for an A:B = 1:3 ratio, the random 
occupancy of a site would be A0.25B0.75. The overall order parameter is simply a 
normalized sum of the site order parameters over all sites in all unit cells in the 
simulation box.

For the muscovite scheme, there are four possible arrangements of the atoms 
with respect to the unit cell (see Fig. 4a), and hence all of these must be declared. 
For the margarite scheme, there are two possible arrangements of the atoms with 

respect to the unit cell (see Fig. 4b). However, only one order parameter needs to 
be declared, because one configuration is simply the anti-ordered version of the 
other, and hence a configuration with order parameter Q is simply the anti-ordered 
version of a configuration with order parameter –Q. 

For the 1:2 scheme, a different unit cell must be used; in this case there are 
six possible arrangements of the atoms with respect to the unit cell (Fig. 4c), each 
of which must again be declared.

Therefore each simulation has either five order parameters, Q1 for the margarite 
scheme, and Q2–5 for the four possible configurations of the muscovite scheme; or 
six order parameters, Q6–11 for the six possible configurations of the 1:2 scheme.

The simulation boxes we used were 8  8  1 multiples of the 16-site and 12-site 
cells shown in Figure 4. Each simulation box therefore contained 1024 tetrahedral 
sites (muscovite and margarite schemes) or 768 tetrahedral sites (1:2 scheme); a 
simulation box of this size is sufficient to avoid the problem of size effects.

To enable comparisons between all systems, some transformations were 
performed on the raw order parameter data. For the margarite scheme, we simply 
took the absolute value of Q1, for the reasons described above. For the muscovite 
scheme, the values of the square root of the sum of squares of the order parameter 
were computed for each temperature. For perfect order, i.e., for x = 16/64, we 
expected the order parameters Q2–5 to be 1, –1/3, –1/3, –1/3 (or some combination 
thereof), and hence the square root of the sum of squares is √4/3. Then, all values 
of the square root of the sum of squares for other systems were normalized by 
this factor, and we called this new normalized order parameter Qmusc. For the 1:2 
scheme, we performed a similar analysis: for perfect order, we expected the order 
parameters Q6–11 to be 1, –1/2, –1/2, –1/2, 1/4, 1/4 (or some combination thereof) 
and hence the normalizing factor is √15/8. The normalized order parameter was 
then called Q1:2.

The energies and order parameters output from the simulations can be used to 
give further useful information in the form of the heat capacity C and susceptibil-
ity , which are calculated from fluctuations in the energy and order parameter 
respectively:

FIGURE 3. The three 
ordering schemes studied: 
(a) Al:Si = 1:3 (“muscovite”), 
(b) Al:Si = 1:1 (“margarite”), 
(c) Al:Si = 1:2. Al atoms are 
shown as filled circles, Si as 
open circles.

FIGURE 4. Different arrangements of each ordering scheme with 
respect to the unit cell used. (a) Muscovite scheme, (b) margarite scheme, 
(c) 1:2 scheme. Al atoms are shown as filled circles, Si as open circles.
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C
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  (4)

χ =
−Q Q

k T

2 2

B

  (5)

RESULTS

We present here a selection of results from the composi-
tions studied. Full data sets are available on the internet at 
http://www.esc.cam.ac.uk/minsci/downloads/AlSiord/.

Al-poor systems
Plots of Qmusc for the Al-poor systems are shown in Figure 5a. 

Three things can be seen from this figure: (1) for compositions 
above approximately x = 12/64, the order parameter at low temper-

ature has a well-constrained value, 
and the point at which it decreases 
to zero is relatively well-defined. 
At compositions below this, the 
behavior of the order parameter 
becomes less clear, and it is harder 
to determine a value for Tc; (2) the 
transition temperatures decrease 
with decreasing Al content; this 
is the dilution effect, as discussed 
above (Dove et al. 1996; Myers et 
al. 1998); (3) the maximum value 
of the order parameter decreases 
with decreasing Al content; this 
behavior is expected, since the 
order parameter is set up site by 
site, and therefore the more “in-
correct” sites there are, the lower 
the theoretical maximum value of 
Q will be. 

Figure 5b shows structure 
snapshots for x = 8/64, 12/64, and 
16/64. In Figure 5b(i), the dis-
persed nature of the Al is evident, 
in that the system only exhibits 
some short range order. In Figure 
5b(ii), the long-range ordering pat-
tern begins to become more obvi-
ous, and by the time the system 
is enriched in Al to the muscovite 
composition [Fig. 5b(iii)], long 
range order occurs.

Al-rich systems
The order parameter results 

(Q1) for the Al-rich systems are 
given in Figure 6a. Once again, 
the effects of dilution are evident 
from the figure in that the systems 
with progressively lower Al con-
tent have progressively lower Tc 
values. Snapshots of x = 26/64 
and 30/64 are shown in Figure 
6b. The pattern of ordering in 
these systems can be viewed in 
two ways, either as the margarite 
scheme with several defects, or 
as a mixture of margarite and 1:
2 ordering schemes—the change 

FIGURE 5. (a) Order parameter data (Qmusc) for Al-poor systems. (b) Structure snapshots for selected 
Al-poor systems: (i) 8/64, (ii) 12/64, (iii) 16/64. Filled circles represent Al and open circles Si. 



PALIN AND DOVE: AL/SI ORDER IN THE TETRAHEDRAL SHEET180 PALIN AND DOVE: AL/SI ORDER IN THE TETRAHEDRAL SHEET 181

from one ordered scheme to the other is continuous, since the 
two schemes are related by exchanging Al for Si at the centers 
of the hexagons formed by six Al-Al J2 linkages.

Intermediate systems
Predicting the behavior of the intermediate systems is dif-

ficult, since it could be possible for them to order in any of the 
three ordering schemes studied. The order parameter behavior 
for intermediate compositions is shown in 
Figures 7a(i) (Q1 for simulations started 
in the margarite scheme) and 7a(ii) (Qmusc 
for simulations started in the muscovite 
scheme). Snapshots of the structures 
for x = 22/64 and 24/64 are shown in 
Figure 7b, for simulations started in each 
of the muscovite and margarite order-
ing schemes. In all cases, the snapshots 
show a complicated mixture of ordering 
schemes. The two simulations started in 
the muscovite scheme contain some re-
gions still ordered in this scheme, and 
some regions ordered in the other two 
schemes. However, the two simulations 
started in the margarite scheme only 
show evidence for the 1:2 and margarite 
schemes (with the 22/64 system started 
in the margarite scheme showing almost 
exclusively 1:2 ordering). This suggests 
that the muscovite scheme exists meta-
stably at these compositions, and we will 
discuss this in more detail below.

Again, the order parameter graphs in 
Figure 7a show the dependence on com-
position of the maximum value of the 
order parameter. Equally, we can see the 
switch from muscovite-like to margarite-
like behavior in the decreasing quality of 
the form of the curves for one ordering 
scheme with respect to the other. 

We also examined the intermediate 
systems with respect to the 1:2 scheme. 
The order parameter behavior (Q1:2) for 
these systems is shown in Figure 8; again 
Tc is composition-dependent, and the 
quality of the form of the curves varies. 
It is difficult to determine the amount of 
1:2 ordering in these systems; the data in 
Figure 8 can show a fairly high degree of 
order, but this is because the 1:2 order-
ing scheme is simply the same as the 
margarite ordering scheme with some 
atoms removed. Hence, the 1:2 order 
parameters will pick up both 1:2 and 
margarite ordering, and the only way to 
determine the proportions of each is by 
visual inspection of the configurations. 
An examination of the evolution of the 
structure as a function of temperature 

shows that in all systems, most regions that are initially ordered 
in the 1:2 pattern are lost in favor of 1:3 and 1:1 regions. An 
example of this behavior is shown for x = 20/64 in Figure 9. The 
energy as output from the MC simulation is shown in Figure 9a. 
At low temperature, the configuration in Figure 9b(i), consisting 
of mostly 1:2 regions, is metastable. With increasing temperature, 
the energy gradually decreases to produce regions of 1:3 and 
mixed 1:1/1:2 character in Figure 9b(ii). Figure 9b(iii) shows 

FIGURE 6. (a) Order parameter data (Q1) for Al-rich systems. (b) Structure snapshots for 
selected Al-rich systems: (i) 26/64, (ii) 30/64. Filled circles represent Al and open circles Si. 



PALIN AND DOVE: AL/SI ORDER IN THE TETRAHEDRAL SHEET180 PALIN AND DOVE: AL/SI ORDER IN THE TETRAHEDRAL SHEET 181

the disordered structure of the system above Tc.
The splitting into 1:1 and 1:3 regions is most pronounced 

for the 18/64 and 20/64 compositions; at these concentrations, 
it is still energetically favorable for the system to split into these 
components, because the energy of the 1:3 configuration is es-
sentially zero (i.e., in the case of perfect order, the only Al-Al 
interactions are J3, and J3  0). As the system becomes richer in 
Al, this becomes less pronounced, until at the 1:2 ratio it becomes 
energetically more preferable for the 1:2 configuration to exist. 

With further Al enrichment, the 1:1 scheme begins to coexist 
with the 1:2 scheme.

DISCUSSION

Transition temperatures
Figure 10 shows a plot of Tc vs. composition for all the sys-

tems studied in this work. We can make some comments with 
regard to dilution; extrapolating the relationship between Tc and 

x for the muscovite curve back to Tc = 0 
(i.e., the point below which no transition 
should be observed) gives a value for xc 
of between 8/64 and 10/64, i.e., around 
0.12–0.15. It is not possible to provide a 
more precise value because the graphs 
of Q at such dilute compositions do not 
show clear transition temperatures. 

In spite of the differences between the 
previous study and this one, there are cer-
tain similarities between the results. Most 
of the Myers et al. (1998) graphs of Tc 
against x, for an x = 0.5 order parameter 
over the range x = 0–0.5, show xc  0.3, 
i.e., xc has a value 60% of the x value 
corresponding to the maximally ordered 
state. Our graph of Tc against x for the x 
= 0.25 (muscovite) order parameter over 
the range x = 0–0.25 shows xc  0.15, 
and hence there appears to be a similar 
relationship between Tc and x in both 
studies, whereas one might expect that 
our value xc would have been closer to 
zero, given the extension to more distant 
neighbors.

Ordering schemes and metastability
In previous studies we have com-

mented on the way in which the J values 
can control ordering in a strict manner. 
For example, in muscovite it is the value 
of J4 that dictates the ordering scheme—
without the inclusion of this parameter, 
more than one ordering scheme is pos-
sible. This is, of course, also true in this 
study, since we are using the muscovite 
J values. In this study, the noteworthy 
point is that with only one set of Js we 
can obtain three different ordered states 
by varying only the composition of the 
system.

It is interesting to note the behavior 
of different order parameters in Figure 
10. The curves for the 1:2 and margarite 
order parameters cross the curve for the 

muscovite order parameter in the vi-
cinity of x = 22/64. This value is very 
close to a 1:2 ratio, which is as one 
might expect, since it indicates that 

FIGURE 7. (a) Order parameter behaviour for intermediate compositions: (i) Qmusc started in 
the muscovite scheme, (ii) Q1 started in the margarite scheme. (b) Structure snapshots for selected 
intermediate systems: (i) 22/64 started in the muscovite scheme, (ii) 22/64 started in the margarite 
scheme, (iii) 24/64 started in the muscovite scheme, (iv) 24/64 started in the margarite scheme. 



PALIN AND DOVE: AL/SI ORDER IN THE TETRAHEDRAL SHEET182 PALIN AND DOVE: AL/SI ORDER IN THE TETRAHEDRAL SHEET 183

FIGURE 9. Example of loss 
of 1:2 ordering in x = 20/64 
simulation (for simplicity, only 
Al–Al linkages are shown, up 
to and including J3). (a) Energy 
of system from MC simulation. 
(b) Structure snapshots 
corresponding to temperatures 
(i–iii) in (a).

FIGURE 10. Plot of transition temperatures Tc against Al content 
x. Each curve is labeled with the initial configuration and the property 
measured, e.g., “Muscovite, Qmusc” indicates the simulation was started 
in the muscovite scheme and the temperature shown is that at which 
Qmusc becomes zero (except for the 1/C curve, where temperature shown 
is the minimum value of 1/C).

the stable configuration switches from the muscovite scheme 
to the margarite scheme at this value. The simulations started in 
the 1:2 ordering scheme are interesting in that the temperature 

at which Q decreases to zero is not always the same as that at 
which the heat capacity diverges (i.e., the point at which 1/C 
reaches a minimum). Figure 10 shows that the Q1:2 order pa-
rameter values increase with increasing x, but the heat capacity 
anomaly temperature decreases with increasing x. The Q1:2 = 0 
curve coincides approximately with the curves for Q1 = 0 over 
a similar range of x, whilst heat capacity anomaly data coincide 
approximately with the data for Qmusc = 0 over a similar range 
of x. This is because at higher x, both Q1 and Q1:2 will record 
margarite-like behavior, since the 1:2 and margarite schemes are 
closely related; whilst at lower x, there will be more muscovite-
like regions whose behavior will be recorded by Qmusc.

Figure 10 also shows evidence for metastability fields. Be-
tween x = 18/64 and 22/64, the muscovite order parameter curves 
occur at higher temperature than those for margarite, indicating 
that muscovite is stable, but margarite is metastable—that is, in 
this compositional range, a simulation started in the margarite 
scheme would persist in that scheme until a certain temperature 
was reached, whereupon the system would be expected to convert 
to the muscovite scheme before disordering. Above x = 22/64, 
the opposite is true. Figure 11 shows order parameter data for 
x = 18/64 (started in margarite scheme) and 24/64 (started in 
muscovite scheme). In both cases, the switch from one scheme 
to another is represented by the increase in the values of one 
order parameter at the expense of the other. In the first case, the 
margarite pattern persists up to approximately 490 K before the 
ordering switches to the muscovite pattern. In the second case, 
the muscovite pattern persists up to 740 K before ordering 
switches to the margarite pattern.

Comparison of simulated behavior with experimental 
behavior

In previous studies (e.g., Palin et al. 2001) we have noted 
that the behavior shown by our simulations does not necessarily 
agree exactly with the ordering behavior shown by experimental 
investigations. In particular, long range order is rarely detected 
experimentally in phyllosilicates. We attribute this to the fact 
that real systems are influenced not only by thermodynamics, 

FIGURE 8. Order parameter data (Q1:2) for intermediate systems. 
The two anomalously low points for 26/64 are due to the existence of 
domain structures.
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but also by kinetics. MC simulations are based only on thermo-
dynamics, without the incorporation of any time component, 
and hence cannot give kinetic information. This means any 
long-range-ordered states shown by our simulations may only 
rarely be attained in nature. Nonetheless, the MC simulations still 
provide insights into the possible behavior of real phyllosilicate 
samples, and as such could be of geological interest, given the 
compositional range we have covered and the wide range of 
naturally occurring phyllosilicate compositions. In spite of the 
lack of a kinetic component in the simulations, the suggested 
regions of metastability we have determined occur at common 
phyllosilicate compositions and at geological temperatures. This 
could be important in geological systems, which are often not at 
thermodynamic equilibrium.
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FIGURE 11. Examples of evidence for metastability in compositions (a) x = 18/64 and (b) x = 24/64. 
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APPENDIX 1. EMPIRICAL INTERATOMIC POTENTIALS

The model interatomic potentials used to parameterize the 
muscovite model are given here. For further discussion of the 
method used, please see Palin et al. (2001). 

In the following formulae, we use the following general sym-
bols: E to represent energy, r to represent an interatomic distance, 
and  to represent an angle between two interatomic vectors. A 
zero subscript indicates an equilibrium value. All ions are mod-
eled using formal charges except the hydroxyl ions, although 
the charges on the hydroxyl group still sum to the formal value 
of –1e.Short-range Si-O, Al-O, K-O, and O-O interactions are 
modeled by Buckingham energy potentials:

E = Aexp(–r/ ) – Cr–6  (A.1)

For Al-O and K-O, C has zero value. O-Si-O tetrahedral and 
O-Al-O tetrahedral and octahedral interactions are modeled by 
three-body potentials:

E k= −( )1
2 0

2
θ θ

 (A.2)
O-H interactions within the hydroxyl groups are modeled 

by a Morse potential:

E D a r r= − − −( )[ ]( ) −[ ]1 10

2
exp   (A.3)

All O atoms except those forming part of the hydroxyl groups 
are modeled by the shell model, where atoms are considered to 
consist of a core comprising the nucleus and tightly bound in-
ner electrons, surrounded by a massless shell of outer electrons. 
The cores are assigned a charge of +0.84819e and the shells a 
charge of –2.84819e, maintaining the formal value for the overall 
charge of –2e. The core and shell are held together by a harmonic 
core-shell interaction:

E Kd=
1
2

2  (A.4)

where d is the core-shell separation.


