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ABSTRACT 

We compared diffraction-line profiles obtained at the X3Bl NSLS powder-diffraction 
beamline and with a standard CuKa,,, sealed source. An NIST SRM LaB, was used as the standard 
material to study the effects of different instrumental parameters. We show that the equatorial-slit 
width has a major influence not only on vertical (equatorial) divergence but also on the character of 
diffraction-line profiles at high angles. A theoretical expression for peak width based on the Gauss 
approximation for transmission functions of all optical elements fails at high angles probably because 
of the inadequacy of the Gauss approximation for the shape of the monochromator Bragg reflection. 
The minimum number of parameters that have to be refined in a Rietveld code for a standard 
specimen is discussed. 

INTRODUCTION 

Precise knowledge of diffraction line-profile shape is of utmost importance in x-ray powder 
diffraction, especially in line-broadening analysis, Rietveld refinement, and other whole-powder- 
pattern-fitting programs. In this regard, laboratory x-ray sources were researched extensively in the 
past, but synchrotron radiation remains inadequately characterized, despite its increasingly frequent 
recent use. Most of the line-profile models rely on a milestone study of Caglioti, Paoletti, and Ricci’ 
that was developed for neutron diffraction and later adapted in the synchrotron case.2 Basic studies 
of synchrotron powder diffraction were undertaken by Cox et aZ.3, who also gave a comprehensive 
review4 of the field. 

Synchrotron radiation is inherently advantageous to laboratory sources for line-broadening 
studies for many reasons: naturally high beam collimation provides a superior resolution, the 
wavelength of a monochromatic beam can be easily tuned, and line shape is generally simpler and 
controlled to our preference. Most important, however, is the high resolution, that is, the narrow 
instrumental line profile implies a high sensitivity to the small physical broadening. 
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Copyright (C) JCPDS-International Centre for Diffraction Data 1997



For the laboratory measurements, we used a horizontal goniometer in divergent Bragg- 
Brentano flat-plate geometry with both incident and diffracted Soller slits to minimize axial beam 
divergence, 2 mm divergent and 0.2 mm receiving slits. Cu Kq, radiation was scanned with a cooled 
germanium solid-state detector. Synchrotron-radiation measurements were performed on the X3B 1 

beamline at the National Synchrotron Light Source (NSLS), Brookhaven National Laboratory. The 
triple-axis parallel geometry included Si channel- 111 -cut monochromator, flat specimen, Ge 111 -cut 
analyzer crystal, and proportional detector (Figure 1). Typical NIST SRM LaB, diffraction line- 
profiles are presented in Figure 2. At this diEaction angle, synchrotron radiation gives four times 
smaller line width and 2.5 times larger peak-to-background ratio, despite twice as large a background 
count. Both line profiles are closely approximated with the Voigt function or its pseudo-Voigt and 
Pearson VII approximations.4 However, it is still a matter of debate5 why the line profiles tend to be 
almost pure Lorentz functions at high angles, the same effect that is observed for laboratory sources. 
Therefore, it is desirable to study the overall effect of geometrical aberrations on the difiaction-line 

shape. 
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Figure 1 Schematic view of X3Bl NSLS beamline in the (vertical) equatorial plane. M: 
monochromator crystal; ES: equatorial slit; S: specimen; A: analyzer crystal; D: detector. 
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Figure 2 Diffraction-line profiles of MST SRM LaE16 obtained at laboratory and synchrotron 
(NSLS) x-ray sources. P/B denotes the peak-to-background ratio. 
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SYNCHROTRON DIFFRACTION-LINE SHAPE 

The main equatorial instrumental factors affecting the diffraction-line profile and/or position 
are the following: 
(i) Source height (vertical angular distribution of the polychromatic beam) is approximated with the 
Gauss function at the bending magnet. It depends on the storage-ring electron (positron) relativistic 
factor y, the photon energy c, and the critical photon energy ec (5.04 keV at NSLS): 

gs(z) = exp(-41n2z2/FWHM~), 

where the vertical (equatorial, for it is in the scattering plane) divergence is 

FWHM$ = 
1.331 

y( EC,/ @u5 
; y = [l - (v@-1’2 = E&z&2). 

(1) 

(2) 

Here, v, E, and m, are the electron (positron) speed, energy, and rest mass, respectively, and c is the 
speed of light. 
(ii) Equatorial slit width 

&@ = 
1 Izj I al2 

0 Iz] > a/2 (3 

(iii) Normalized Darwin Bragg-reflection shape6 of the monochromator and analyzer (perfect) crystals 
(rocking curve): 

gM,*(z) = s 2 / [z f (z” -s2)l’2]2 (4) 

Here, s defines the region for a perfect reflection (without absorption) from a crystal. 
(iv) Specimen effects that cause important aberrations in laboratory divergent geometry, such as 
transparency, flat surface, and its missetting, are negligible in synchrotron parallel geometry with the 
analyzer crystal. 

The most important axial aberration is a divergence, which sometimes causes severe 
asymmetry at low angles. The effect on powder lime shapes was considered by van Laar and Yelon7 
and recently applied to high-resolution synchrotron diffractometers by Finger, Cox, and Jephcoat.’ 

The total diiaction-line profile results from a convolution of all the contributions, which has 
to be accomplished numerically. However, for most purposes, a simple estimation of line widths as 
a fimction of diffraction angle may suffice. Wavelength dispersion follows from the Bragg law: 

A/l//l = (w;l, + 0; + FWHM;)ln cot8. (5) 

Here, the shape of perfect Bragg reflection is approximated with the Gauss function. % and oA 
designate monochromator and analyzer-crystal Darwin widths. They depend on the structure factor, 
polarization, absorption, and temperature (see for instance Warrer?). 

To recognize the relative importance of various contributions, we estimate the angular 
resolution at the X3B 1 NSLS beamline with 8 keV photon energy, that is, the approximate Cu Ka 
wavelength: 
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FWHh$ (2.5 GeV,S kev) = 0.0190” ; 

~(111 Si, 8 kev) = 0.0021’ ; oA(l 11 Ge, 8 kev) = 0.0045”. (6) 

It seems that the Darwin widths of both analyzer and monochromator crystals make a minor 
contribution and can be neglected in the first approximation. However, this large a divergence would 
yield very poor resolution (see Figure 3) and it must be controlled by the narrow equatorial slit in 
fi-ont of the specimen. The FWHM# yields the height of the beam at the slit position of about 4.5 mm 
for the X3Bl beamline (ring-slit distance is 13.7 m). Usually, at least three times narrower slit has to 
be used to improve the resolution. For instance, we collected the LaB, data at 1.30049(3) A with 
0.75 mm equatorial-slit width (Figure 3). Line profiles were fitted with a split-Pearson VII function 
to model the peak asymmetry effects. The main peak-width contributions are now 

@v = 0.0031”; 

o,(lll Si, 9.54 kev) = 0.0015” ; ~~(111 Ge, 9.54 kev) = 0.0032”. (7) 
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Figure 4 Voigt-function fit (full line) to the 3 11 ILaB6 profile (crosses). The difference pattern is 
given below. 

Here, the vertical divergence & is defined by the equatorial slit. Certainly, the monochromator and 
analyzer Darwin widths become significant. To calculate the FWHM, we use the expression of 
Sabine:2 

P = &2tanBltanB, - tanO,ltanO, - 1)2 

+ 6.&(2tanO/tanO, - tanB,ltanOJ2 + 0: 

+ (Iv& + 4&(12I&). 

(8) 

Here, we add the influence of specimen size (which approximately equals the equatorial-slit width 
IV& and receiving-slit width IV,, where DsR is the distance from specimen to receiving slit. This term 
can be neglected when the analyzer crystal is used. Note that the slit-width contribution to the 
variance Wis weighted by the factor l/12 (compare to Wilsong): 
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Figure 5 Parameters of Voigt-function fits to LaB6 peaks using synchrotron (upper) and laboratory 
(bottom) source. Linear regression curves not fitted through the first two lines because of 
asymmetry. 
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Figure 6 The parameters of Voigt-function fits to line profiles of LaB, using 
narrower entrance slit. 
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figure 7 LaB, line profile recorded with the 1.5 mm wide equatorial slit. 
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The peak centroid is not tiected by slits (<2~> = 0). Here, we neglect a possible variation of intensity 
across the slit width. 

InFigure 3 we plot three curves: the equatorial divergence term given by FWIIM, the first 
term of (S), and the first three terms of (8). The monochromator-related wavelength (energy) 
dispersion has a major intluence at high diffraction angles, but the analyzer as well as slit contributions 
are quite small, except at low angles. The fit is satisfactory up to about 80” in 28. There are two 
possible reasons why (8) is not a good approximation at high angles: residual physical broadening of 
LaB, and/or the inadequacy of(g), because it assumes that the transmission fimctions of all optical 
elements that contribute to broadening follow a Gauss distribution. That may be a fair approximation 
in the neutron-diffraction case, but certainly not for synchrotron-radiation diffraction, where profiles 
have a significant Lorentz contribution. To further examine this matter, we fit the same peaks with 
an exact Voigt function so the Lorentz and Gauss parts are separated. The typical fit is presented in 
Figure 4. Figure 5 compares measurements of an NIST SRM LaB,, obtained both with synchrotron 
and laboratory sources. Very different behavior of the Gauss part suggests that potential physical 
broadening ofNIST SRM LaB, cannot be significant and that the different behavior stems from the 
instrumental parameters. For laboratory sources, the Gauss part is given mainly by the source and 
receiving-slit size and is approximately constant in 28, and the Lorentz part is dominated by 
wavelength dispersion 

&, = 2 A2/l tme, (10) 
as pointed out by Klug and Alexander” and COX.~ 

Figure 3 shows that the major influence on peak width comes from the equatorial divergence 
of the beam and from wavelength dispersion at the monochromator. Although the equatorial-beam 
distribution (1) may have a substantial Lorentz contribution, which would cause discrepancy at high 
angles, the latter effect is dominant at higher angles for this monochromator (channel-cut) 
configuration. It is likely that long tails of the shape of monochromator Bragg reflection (see (4)) 
contribute substantially to the peak width and are visible as a Lorentz part of fitting a Voigt or a like 
function. This is confirmed by the measurements with narrower equatorial slit (0.25 mm), presented 
in Figure 6. The striking difference from measurements with 0.75 mm slit (Figure 5) is a dominant 
Lorentz character of the profiles at high angles. Therefore, a wider equatorial slit has an effect of 
cutting off the long tails characteristic of the reflection from the monochromator. This effect may be 
more significant in constant-wavelength neutron diffraction, where wider slits must be used because 
of generally poor beam intensities, which results in predominantly Gaussian peaks. 

How slits can affect the line profiles is illustrated in Figure 7. The measurement of the LaB, 
reflection was made with 1.5 mm wide equatorial slit. The peak has the appearance of a “super- 
Gaussian” because the source height (1) is modulated by the slit function (3). The resulting profile 
is a convolution: 
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a/2 

&! *t&S q s exp [ -21 2(~-z)2] dz 

-al2 

= g [erf(bt - bx) + er@t +bx)] 

(11) 

where 

b2 = 41n2 

FWHM; ’ (12) 

Figure 8 presents peak profiles obtained for different ratios of slit width to vertical divergence 
(l?WElM#), compared with the unmodif!ed Gauss timction. If slit width a is smaller than the FWHM@ 
the profile stays approximately Gaussian, but there is a loss of intensity. If slit width is increased 
substantially over the FWHM, the “super-Gaussian” shape is obtained. However, there is an 
advantage in substantial increase of integrated intensity that may outweigh the drawbacks. Moreover, 
if the specimen shows even a small amount of physical line broadening, the “super-Gaussian” line 
shape will not be obvious because the physically broadened line profile will smear it out. 
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Figure 8 Convolutions of slit function of width a and Gauss function of 
width measure FWHM for different ratios of aIFWHM. 
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MODELING OF LINE BROADENING IN RIETVELD REFINEMENT 

Most major Rietveld-refinement programs adopt a modified Thompson-Cox-Hastings” 
pseudo-Voigt function to model the symmetrical part of line widths: 

rr, = x/case + YtanB + 2; (13) 

PO = wcos2e + Utan2f? + Ytd? + w. (14) 

Figure 5 indicates that, in the case of standard specimen, it is sufficient to vary Y and Wcoefficients 
for laboratory sources, but Y, W, 2, and Ufor synchrotron radiation. The parameter Vseems to have 
no physical merit in either case if I?, is being refined. 

CONCLUSIONS 

Synchrotron radiation is undoubtedly superior to laboratory x-ray sources for diffraction 
purposes. However, generally a larger number of optical elements is involved in diffraction, which 
gives more flexibility but also possesses a challenge to the user. Some of the important things to 
consider are the following: 
(i) For usual operating conditions, the contribution of monochromator Darwin width should not be 
neglected, especially at high angles. 
(ii) The total instrumental function (assumed to be represented closely with the measured LaB, line 
profiles) contains the significant Lorentz contribution, which is incompatible with the presumption 
that all transmission functions are approximately Gaussian. 
(iii) The most likely reason why (8) does not describe line broadening at high angles satisfactorily is 
because the monochromator perfect-Bragg reflection cannot be approximated with a Gauss function. 
(iv) Rietveld refinement of a standard specimen requires twice as many profile parameters to vary in 
the case of synchrotron-radiation data over the laboratory-source measurements. 
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