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Abstract

Recent years have seen to appear some new developments in adapting whole powder pattern profile fitting techniques to severe cases of ill-crystallized materials, including nanocrystalline ones. 

The Rietveld method is intrinsically unable to consider diffuse scattering since it concentrates on the Bragg scattering. Nevertheless, some defects can be described reasonably as leading to a mean statistical effect inside the average cell (small and uncorrelated atomic displacements). Only those "periodical" defects can be seriously considered in a whole profile approach depending on a hkl-based description of the diffracted intensity. If assimilation to a periodical effect is normal in the case of size line-broadening, this is much less evident for all the possible effects due to all kinds of  dislocations. Indeed, dislocations are building locally some arrangements completely different from the mean unit cell, but they certainly do have statistical effects on the neighboring cells by displacing atoms trying ro resorb the faults. 

Anisotropic broadening is now undertaken by spherical harmonic expansions rather than by ellipsoid second rank tensors models. The approach is phenomenological, but efforts are made in order to add some physical meaning.

Many brilliant demonstrations starting from the well established Fourier coefficients description of diffraction profile are ending almost invariably into a pseudo-Voigt profile shape, certainly losing a bit of the original general sense by successive approximations. A review will be given of the new developments during the last five years, with a special emphasize on the meaning of some oversimplifications.

1. Introduction

More and more samples show microstructure effects on line profile shape, width and position. Reasons are obviously the powder diffractometer resolution improvements at leading synchrotron sources, and the increasing number of users. When the minimal full width at half maximum is as low as 0.01° (2() (synchrotron data), sample effects are no longer occulted by instrumental effects. Finer microstructure details are revealed, needing adapted Rietveld software. A review will be given of the new developments during the last five years, with a special emphasize on the meaning of some oversimplifications.

2. Theory and peak-shape models

Summarizing, the well known Rietveld method [1-2] is a crystal structure refinement method, from powder diffraction data. A pattern is calculated from a series of structural parameters (cell, atomic coordinates, thermal motion, etc) and peak shape and width parameters (plus background, Lorentz-polarisation correction, etc), and compared to the observed data. Parameters are adjusted by a least-square process. An example : two samples of NiF2 were undertaken by the Rietveld method (fig. 1). One is well crystallized and the other was submitted to ball milling.
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Profile shapes and widths of the well crystallized sample are due to the instrumental effects (noted g). Those of the ball-milled sample show additional broadening effects. The experimental pattern (noted h) being the convolution of an effect due to the sample (noted f) by the instrumental effect (g) : 

h = f * g



(1)
Do not confuse deconvolution with desummation (like K(2 stripping) :
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        (2)

To deconvolute is obtaining f from equation (2) knowing h and g. This can be done by a simple division in the Fourier space : 

F(n) = H(n)/G(n).



(3)
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The Rietveld method is intrinsically unable to consider diffuse scattering since it concentrates on the Bragg scattering (hkl-based). Nevertheless, some defects can be described reasonably as leading to a mean statistical effect inside the average cell (if small and uncorrelated atomic displacements). Only those "periodical" defects can be seriously considered in a whole profile approach depending on a hkl-based description of the diffracted intensity. If assimilation to a "periodical effect" is acceptable in the case of size line-broadening, this is much less evident for all the possible effects due to all kinds of  dislocations or grain boundaries (see figs. 2 and 3). Indeed, dislocations and grain boundaries are building locally some arrangements completely different from the mean unit cell, but they certainly do have statistical effects on the neighboring cells by displacing atoms trying to resorb the faults These examples are simple metallic compounds. What about similar effects in more complex compounds ? For instance, in KAlF4, a relatively simple compound, it has been shown [5] that it may contain inclusions with another structure (fig. 4). A single crystal Laue shows large diffusion effects (fig. 5). Extra spots are explained by two structures imbricated (fig. 6). What is the effect on a powder pattern ? All is now at a one-dimensional scale (fig. 7), the sample is very sensitive to crushing, and the pre-martensitic inclusions are undetectable. Can the Rietveld method fit such effects with parameters having physical meaning ? Not [image: image6.png]


always really ! Each case is a special case, almost ! Many brilliant demonstrations starting from the well established Fourier coefficients description of diffraction profiles are ending almost invariably into a pseudo-Voigt profile shape, certainly losing a bit of the original general sense by successive approximations. You may understand why. The Rietveld method needs a peak shape to apply to each hkl reflection.
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Old theories are still valid. No progress in basic powder diffraction theories on imperfect materials has really emerged since 1950. The mother of the powder diffraction formulae is still the Debye scattering equation :
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(4)

It involves only the magnitude of the distances rmn of each atom from every other atom 
(k = 4(sin(/(). This equation is valid for any form of matter in which there is a random orientation, including gases, liquids, amorphous solids and crystalline powders. From that formula, you can calculate the powder diffraction pattern of any model, homogeneous or inhomogeneous, ordered or disordered. Unfortunately, its is not applicable inside the Rietveld method. However, it may be used to calculate the interference functions of nanocrystalline compounds, like Fe below (figs. 8 and 9), with two models of the boundary cores [3]:
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How would such nanocystalline Fe data be treated by using the Rietveld method ? Probably considering either one crystalline phase (with "diffusive" effects included in the background), or two phases or more, each of them described from a crystalline model (the main phase and some boundary models, separated). The Rietveld method may cope with multiphase samples but every phase is supposed to be described by one crystal structure. The only way to introduce defects inside the Rietveld method would be to make use of a formula describing defects by a hkl-based approach : for instance the Warren [6] equation for Size/Microstrain effects. That equation remains undisputed, it is expressed as a Fourier series, providing the sample profile f (or P'(2() in the Warren formalism) for a reflection family :
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(5)




(6)

where h3 = 2|a3|sin ( / ( (see equation 13.24 in [6]). This formula requires that the sample is homogeneous in structure (it can be described at least statistically by a mean structure with mean cell parameters). Unfortunately, it does not seem applicable as such to the Rietveld method for one main reason : it supposes too much unknown parameters, with 20-100 values of Nn and Zn for each reflection family. The need for few parameters explains why poor restrictive  representations of Size/Microstrain effects were chosen for f  (and h) in the Rietveld method, as Gaussian, Lorentzian, Pearson VII, Voigtian, pseudo-Voigtian shapes.
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From the above "exact" formulae ("exact" if there are not too much defects, and the limit of "too much" is already hard to define) to the peak shapes used in the Rietveld method, what approximations are introduced and how. Let us see first the meaning of some analytical profile shapes regarding size and microstrain effects as defined by Warren, in the hypothesis of symmetrical f profile shapes. You should note that assuming a symmetrical profile shape is already an oversimplification of equation (5), since it excludes arbitrarily any possibility for the microstrain to lead to asymmetrical profile shapes :




(7)











(8)















(9)



The size distribution function P(j), fraction of columns of length M = ja3, is directly related to the size Fourier coefficients. We can calculate some examples of profile shapes (always symmetrical without any approximation) as corresponding to selected size distribution functions (figs 10 and 11), and conclude that any arbitrarily selected profile shape will only be able to represent one particular size distribution function (at least the profile shape should correspond to a physically realistic size distribution, with P(j) ( 0). About the microstrain : a Gaussian peak shape is expected if the distortion is Gaussian, and if the mean squared distortion varies as the square of the distance : 

<Z2n> = n2 <Z21>



(10)

A Lorentzian peak shape is expected if the distortion is Gaussian, and if the mean squared distortion varies as the distance : 

<Z2n> = n <Z21>



(11)
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Any hypothesis about size or microstrain has chances to distort the truth. The best would be to have parameters sufficiently flexible. This appears feasible in the case of microstrain by introducing for instance a variation law such as :

<Z2n> = nk <Z21>, 


(12).

where k would be an adjustable parameter [3]. But flexibility is harder to conceive in the case of the size effect. Now, remember that those equations are corresponding to one series of harmonics in one reflection family (00l for instance). If the broadening effects are different in each hkl reflection family (anisotropy), then a huge number of Fourier coefficients will have to be managed, a problem reputed impossible to solve because of reflection overlapping. Alternative is to try to describe the possible anisotropy by global expressions depending on the hkl indices.

But let us scrutinize first a typical very recent paper explaining how approximations may be introduced to deal with size and microstrain inside the Rietveld method. You may consider that the following discussion is a violent criticism, it is only calling a cat a cat. And users should be informed of what they are doing. The title of that paper is "Fourier modelling of the anisotropic line broadening of XRD profiles due to line and plane lattice defects" [7]. In the paper abstract is said that "detailed information on the defect structure can be produced : dislocation density and cut-off radius, stacking- and twin-fault probabilities can be refined together with the structural parameters". Owing to that claim, it is certainly interesting to look accurately at the way the microstructure parameters were introduced. Reading the paper, one can note that the method was applied to two similar cases (fcc materials) but no evidence was given about the reliability and accuracy of the estimated physical parameters (size, dislocation density, stacking fault and twinning probabilities...) which could be expected from this technique. No standard material was studied, no alternative method was used for comparison. No theoretical pattern was simulated by using the "true" (Warren) equations (or better, the Debye scattering equation) which then could have been treated by the approximate equations developed in the manuscript so that the effect of those approximations could have been estimated. The title itself is misleading. "Fourier modelling" is hardly applicable here since pseudo-Voigt functions are used : so that the profile shapes are not at all produced by inverting size and strain non-[image: image27.png]vmwf[u yexp(= ") 5 ‘ ]
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analytical Fourier series. The pseudo-Voigt function retained is : 




(13)

Note that, by doing this, the authors have already decided arbitrarily that the final profiles will be pseudo-Voigtian, without any justification. And it is said : "The two components (Gaussian and Cauchy) have been assumed to have the same half width at half maximum (HWHM)". Why assuming that ? This is a clear limitation which cannot allow the authors to claim the proposal of a general method. Moreover, what about the distribution of size effect in the Cauchy and Gaussian parts, and what about of the distortion effect repartition in the Cauchy and Gaussian parts ? It will be shown later in these comments that the assumption made here is the dubious key allowing to establish the final equations. This assumption should be clearly justified on the point of view of size and strain effects, but it is not. Now, the Fourier transform of the pseudo-Voigt is defined as :
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And the size-strain model has to be introduced inside it. The limit for L tending toward 0 of the first derivative of the size-strain Fourier coefficient is :
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     (15)


[image: image30.png]Polyethylene terephtalate

g DBWS-9006PC Program
s,
o
0o
7S - ] Py
: Sanitz;r’quVare g
( RIETQUAN program
' %2 i WMMLAMM

\!ivﬂl:j\\“q AP mTj




which is the negative inverse mean size Me (corresponding to N3 in the original Warren notation) of the coherently diffracting domains. So that the authors assimilate the first derivative limit of the pseudo-Voigt Fourier transform to the same value. This seems logical after having arbitrarily decided that the shapes will be pseudo-Voigtian :





         (16)


This allows to relate the width parameter of both the Gaussian and Lorentzian parts to the mean size Me, so that the Fourier transform of the pseudo-Voigt becomes :
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  (17)


We have now only size effect (no microstrain) in both the Gaussian and the Lorentzian parts of the pseudo-Voigt . And this is possible exclusively because the HWHMs were assumed to be equal in the Gaussian and Cauchy parts. The authors will use another approximation in order to introduce the lattice-distortion terms :
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       (18)

And they will assume that this expression is even true for L = Me/2, meaning that the size Fourier coefficients correspond to a Cauchy function up to half the mean size, so that the size distribution corresponds also to a Cauchy function up to half the mean size. As a consequence, the size-strain Fourier coefficient for L = Me/2 becomes approximated by:
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This equation is now made equal to the pseudo-Voigt Fourier transform for L = Me/2 and the final expression is obtained :




  (20)


What is done here is to make equal an expression (17) containing only the mean size Me and an expression (19) containing both the size and strain effects, for a particular value of L = Me/2. Both expressions being previously highly arranged and approximated. That final expression connects the mean size Me and the mean square distortion <(2L> , at L = Me/2, with the HWHM and the mixing parameter of a pseudo-Voigt function. Note that this equation established for L = Me/2 is now implicitly declared as valid for any L value.

Is that serious ? We have seen a lot of equation manipulations, hard to justify which produce a final equation where the size and microstrain attribution to some Lorentzian or Gaussian part of the pseudo-Voigtian is not clear. Well, it is published... Alternative is sometimes more explicit but dubious as well, for onstance if the size effect is declared to be of Lorentzian character and the microstrain is defined according to equation (12). So, you will have to make your own opinion about the credibility of such a demonstration, and the meaning of the Me and <(2Me/2> values that you will extract from your data when applying all those approximations. One has always in the extracted physical parameters the consequence of the approximations retained. Those approximations remain highly disputable in this paper and in fact in any manuscript dealing with the introduction of microstructure effects in the Rietveld method. No consensus exists.

3. Software

The list of Rietveld programs able to model size and microstrain effects by more or less empirical profile shapes is quite long : ARIT, ARITVE, BGMN, DBW, DEBVIN, FULLPROF, GSAS, KOALARIET, LHPM, LS1, MAUD, RIETAN, RIETQUAN, SAPS, WINMPROF, WYRIET (probably not exhaustive). Even if some of them model the instrumental g profile by the so-called Fundamental Parameters Approach (FPA), none of them models the true-sample f profile by an equivalent fundamental approach. Nevertheless, implementation of microstructure approaches in Rietveld programs is improving continuously. More details on these programs can be found in another recent conference online at : http://sdpd.univ-lemans.fr/microstruct/denver/index.html as well as at the CCP14 Web site : http://www.ccp14.ac.uk/ or at their own respective Web sites.
4. Review of applications

Selected applications (1995-1997). As long as microstructure effects are isotropic, they can be accounted for easily in Rietveld refinements. Recent examples are the particle size characterization of magnesium and titanium oxides prepared by the sol-gel technique with different hydrolysis, by using DBW and WYRIET (fig. 12) [8-11]. The Thompson-Cox-Hasting function allows the consideration of isotropic Lorentzian effect. Most of the times, anisotropic broadening is observed but not really treated.
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For instance, the Rietveld refinement of nanostructured hollandite powders could not converged well, due to such anisotropic effects associated with a fiber axis in the b direction. An improved fit was obtained from a powder pattern realized with a highly packed sample, inducing preferred orientation, and reducing the contribution of the narrowest reflections (fig. 13). Dislocations were disclosed, but, not a word about microstrain can be found in this recent paper [12].

More amazing is the ab initio structure determination of two polymorphs of cyclopentadienylrubidium in a single synchrotron powder pattern [13]. Failing to index the pattern with a single lattice led to inspection of the peak width, that essentially fell into two populations, with Full Width at Half Maximum of 0.015° and 0.07°2( . With the hypothesis of the presence of two polymorphs, the two data sets were indexed and the structures were solved by direct methods applied to structure factors extracted by the Le Bail technique with FULLPROF. The program package GSAS was used for the final Rietveld refinements, but the paper did not concluded about microstructure of polymorph II, although the peak profiles were modelled by the Thompson-Cox-Hastings [14] function (fig. 14). It was very probably an isotropic size and/or microstrain effect.
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The ability of powder diffraction to reveal microstructures has been frequently questioned. A very interesting recent study of a Tantalum-Rhenium-Selenium material [15], that is an excellent lubricant, is exemplary. The Rietveld analysis with the help of the program RIETAN led to a superb fit (fig. 15). High Resolution Electron Microscopy image analysis revealed the coexistence of rotation twins, a high density of two-dimensional-defects in the (001) plane and prismatic cluster defects. So what ? The high density of two-dimensional defect seen by Electronic Microscopy is not enough for being seen by powder diffraction, possibly affected by a weak isotropic broadening, accounted for by a classical Rietveld refinement. In fact, the paper was not clearly explicit about a possible annealing difference between samples studied by microscopy and X-ray diffraction. Another hypothesis is that the sample preparation induced the defects seen in the electron micrographies.

The Rietveld method was adapted (in DBWS) for the determination of the degree of crystallinity in semicrystalline materials [16]. The crystalline peak profiles were modelled isotropically by pseudo-Voigt for a sample of polyethylene terephtalate (fig. 16). Background contributions were simultaneously optimized. In this study, the amorphous part comes from a measurement of a fully amorphous material. A different approach is possible for amorphous compounds that were modelled recently by the Rietveld technique, using a mean model, highly microstrained. An example is the quantitative analysis of silicate glass in ceramic materials (fig. 16) that was realized by the Rietveld method (RIETQUAN) [17], reusing the cristobalite-like model produced for silica glass by the ARITVE program [18].

We were up to now in isotropic microstrain and size approximations. Let us now examine a case with anisotropic line broadening, LaNi5Hx, well and long studied by powder diffraction, including the Rietveld method (ARIT, FULLPROF, etc) [19, 20-21]. Conclusions about microstructures were quite poor, although taking them into account greatly improved the fit and the accuracy of the structural parameters. More recently, The theory of dislocation-induced X-ray or neutron diffraction line broadening developed by Krivoglaz et al. and Wilkens has been adapted for Rietveld refinement (LHPM) of the powder diffraction profile by fitting a Voigt function to each peak. This approach was applied to the Rietveld refinement of the neutron powder diffraction profiles of deuterium-cycled LaNi5 and (-PdD0.66 [22-23]. The defects induced by hydrogen absorption and desorption in LaNi5 were recently observed by TEM [24], allowing to suggest what exactly is behind those mysterious root mean square strain and mean apparent size values estimated from powder data. The TEM study evidenced dislocations (ripple-like, fence-like, misfits, and loops), anti-phase boundaries, fracture of slip band structure, structural disorder and micro-twins (fig. 17). All these defects have effects on the powder pattern that are gathered in those meaningless size and microstrain values. Progress and innovations in microstructure analysis by the Rietveld method will never overcome this fact : the powder pattern reveals the whole problem at a one-dimensional scale, as a mean. Most hydrides show line broadening induced by hydrogen sorption/desorption. Another recent example is Mg3IrH~5 [25] with hkl reflections about twice as broad as the hk0 and 00l ones. Profiles were modelled on the assumption of (00l) twin planes.



The trend to deal qualitatively with microstructure effects is illustrated with the case of Norbornane. Fitting with isotropic line broadening was a kind of disaster. The synchrotron powder pattern was then fitted with the MPROF Rietveld program, using empirical simulation of anisotropic line broadening (fig. 18). In this approach, each usual U, V, and W parameters which describe the peak width and also the peak shape angular variation, was made hkl-dependent through second-rank tensors, leading to thirty-six variables maximum in the triclinic case [26]. The RP value was lowered by almost a factor 2.

Let us now examine some complex cases by using one of the most recent Rietveld programs. BGMN is a commercial package [27], that is able to behave as an expert system in a few predefined cases, including stacking faults in disordered layer silicates. It works by using a Fundamental Parameter Approach for the instrumental profile. About size-microstrain effects, BGMN uses Lorentzian broadening (for crystallite size) and squared Lorentzian broadening (for microstrain). BGMN has default dependence values for size/strain. But you may select arbitrary other dependencies using the built in formula interpreter. This is what was done for kaolinite by introducing a model of disordering : essentially the pattern is decomposed in 3 sub-phases with different broadening laws. Yes the fit is improved (fig. 19), but I have not found any size or microstrain or probability of stacking fault values in the published paper [28].



I asked Thomas Taut for some tests on my two favourite ill-crystallized samples with BGMN. One is lead oxalate [26] of which the synchrotron pattern is hard to fit due to stacking faults. BGMN uses ellipsoids as a possibility for anisotropic effects, but this allowed to decrease the RP value only by 2 %. Assuming that there were two slightly different real structures of the same phase, with nearly the same lattice constants, but different peak broadening, considerably improved the fit by BGMN with RP = 6.5 %. The approach is only qualitative but shows the ease of use of BGMN. In fact the fit was without the structure constraint, using the Le Bail method I guess, and could not be realized with the simultaneous refinement of the atomic coordinates (fig. 20).

Another highly problematic powder pattern of a hydrogen niobium oxide [29] was treated with BGMN in a similar way, using two subphases with different peak broadening, but with less success, the reliability RP value decreasing from thirty-five to eighteen percent, which is rather still high. Moreover, because the individual intensities are arbitrary distributed over the two "phases", introducing the structure constraint on intensities may alter considerably the fit quality. Both samples and patterns are challenges for the proposition of a physically sound model that would allow a satisfying fit by the Rietveld method, including the structure refinement. The perovskite-type niobium compound is very probably affected by anti-phase domains extending in the three dimensions as suggested by figure 21.

Most recent developments (1998-2000). The two last years appear quite rich in new developments, and/or improvements of procedures involving material analysis by the Rietveld method. This is just a list of selected works, essentially from the Journal of Applied Crystallography, and more or less classified. But, remember that you may have to use your own judgement about their meaning. First of all, Rietveld refinement guidelines were formulated by the International Union of Crystallography Commission on Powder Diffraction [30]. Having in mind the advices given inside will help in succeeding in extracting structural as well as microstructural details from powder diffraction data. For instance, the list of characteristic effects as can be deduced from difference plots was given. Well, this is not really new, but it is useful. A book has been published (Microstructure Analysis by Diffraction, IUCr/Oxford University Press, edited by Bunge, Fiala & Snyder, 1999), built mainly from contributions to the Size-Strain'95 congress in Slovaquia. In this book, a few chapters are devoted to microstructure analysis by using the Rietveld method [31-32]. A review paper was also published at the 47th Denver X-ray Conference [33]. However, the microstructure landscape, as seen from the Rietveld method, has already changed considerably.


Concerning the instrumental profile contribution, a recent advance is the more effective correction of peak asymmetry due to axial divergence, since that a paper by Finger, Cox & Jephcoat (1994) [34] proved that this effect can be treated with parameters related to the diffractometer optic. A series of strongly asymmetry-affected powder patterns, including some taken on the world's highest resolution diffractometer (at BM16, ESRF), was studied and produced excellent fits [35] (fig. 22). Equations characterizing axial divergence in a conventional X-ray powder diffractometer were established by Cheary and Coelho [36] and incorporated into a fundamental-parameters convolution synthesis and fitting program for analysing powder diffraction line profiles. Rietveld refinement with asymmetry parameters having physical meaning is now possible (fig. 23) [37].



A new peak shape appeared : a Gaussian-Hermite polynomial function for X-ray diffraction profile fitting which can be employed in the cases where there are peak asymmetries [38] (fig. 24).

After a comparison of different geometries with special attention to the usage of the Cu K( doublet, Oetzel and Heger [39] recommend the use of monochromated K( radiation. It is not always easy to follow that recommendation when studying 3d elements, unless disposing of a system eliminating fluorescence.

Many sophisticated methods for quantitative analysis are applied within the Rietveld analysis. New approach permits solution of the problem due to the presence of an amorphous phase when its chemical composition is known [40, 16] (fig. 25).

More general models than simple ellipsoids were presented for the (hkl) dependence of diffraction-line broadening caused by strain and size for all Laue groups by Popa [41]. Indeed, it was proven that a quadratic form in h, k, l is too restrictive and inadequate for representing either a mean crystallite or the strain dispersion.  In principle, concerning size effect, the Popa models for all Laue groups hold even if there is a contribution to the peak broadening from the stacking fault. The paper suggested that it would be possible to separate the two size effects by using a refinable faulting probability, however, equations were not provided for any symmetry. This would be quite interesting for obtaining meaningful results, and not only a phenomenological approach. Indeed, Stephens [42] pointed out that, if optimal line-shape fits can be achieved in presence of anisotropic broadening, by using a model (spherical harmonic expansion) of the multidimensional distribution of lattice metrics, then microstrain parameter values cannot be predicted. The Stephens formulation of anisotropic strain broadening has been adapted into the widely-used GSAS Rietveld method package [43]. Stephens equations are more restrictive than Popa's ones, as justified by exact overlapping of reflections for some Laue class which would not allow to extract distinct parameters from powder data. The ab initio structure solution of sodium para-hydroxybenzoate revealed that the sample showed peak width which are not a smooth fraction of diffraction angle (fig. 26). The use of the Stephens phenomenological approach led to a considerable fit improvement, allowing previously inaccessible structural details to be revealed : estimation of the strain distribution (fig. 27), and unambiguous determination of the position of a hydrogen atom [44].



Trying to add some physically sound bases to those phenomenological models, Ungár, Leoni and Scardi [45] applied the dislocation-based model of strain anisotropy in the Fourier formalism of profile fitting. A perfect profile fitting to the powder pattern of a Li-Mn spinel was enable from a few physically sound parameters, namely the average dislocation density, the average coherent domain size, the dislocation arrangement parameter and the dislocation contrast factor. Anisotropic line broadening of X-ray diffraction profiles due to line and plane lattice defects was also said to be Fourier modelled [7]. Applications to face-centred cubic structure materials (fig. 28) provided detailed information on the defect structure : dislocation density and cut-off radius, stacking- and twin-fault probabilities were refined together with the structural parameters (that publication was studied more in detail in the previous paragraph for explaining how pseudo-Voigtian profile shapes are introduced and justified).

A simple procedure for the experimental determination of the average contrast factor of dislocations has been established [46]. The character of the dislocations can be determined in terms of a simple parameter q which can be used in Rietveld structure refinement procedures.

Size-effect only is much easier to consider than both size-microstrain. How being sure that only a size effect occurs ? This could be shown by transmission electron micrograph of the powder. Then, the size distribution of single-crystal nanoparticles can be estimated by different approaches. One approach consists in Monte Carlo fitting of wide-angle X-ray scattering peak shape [47]. Another method applies maximum entropy for determining the column-length distributions from size-broadened diffraction profiles [48] as well as for removing instrument broadening.

Dislocations are at the hearth of microstrain effects. Many studies are undertaken in order to describe dislocations scattering effects. If dislocations are described by statistical effects in powder diffraction, such an approach may prove soon to be oversimplified. More accurate description of dislocations may be required in order to access to more accuracy in the diffraction pattern. Synchrotron topography technique, simulation of micropipe-related superscrew dislocations in silicon carbide crystals, allowed to build a model capable of revealing the detailed diffraction behavior of the highly distorted region around the dislocation core [49]. Considering that the distorted regions consist of small misoriented crystallites which diffract X-rays kinematically according to their local lattice orientation, the authors have developed a simplified numerical model for simulating the direct images of superscrew dislocations in synchrotron topographs.

The theory of dislocation-induced X-ray or neutron diffraction line broadening has been adapted for Rietveld refinement by fitting a Voigt function to each peak [50]. Information on both the type of slip system and the density of dislocations in the crystallites may then be found by evaluating the shape parameter and the index-dependent breadth of the Voigt function. Precise description of the dislocation model seems to be possible by using this method. Applications were on deuterium-cycled LaNi5 and (-PdD0.66 neutron powder diffraction data [23]. 

X-ray scattering by crystals with local lattice rotation fields was examined by Barabash and Klimanek [51]. The peculiarities of the intensity distribution is dependent on the dislocation arrangements.

What to do when a material is highly disordered and a space group cannot be defined so that the Rietveld method cannot be utilized directly ? An answer was given by Schilling and Dahn [52] who fitted complex patterns of disordered manganese dioxides. In their paper, the 
(-MnO2 structure is defined as an intergrowth of ramsdellitic and pyrolusitic domains. They proposed an analytic expression for the scattered intensity calculated from a stochastic stacking of four different types of layers (fig. 29).

Convoluting or deconvoluting is a choice to be made at the beginning of a study of microstructures. Either the instrumental contribution is convoluted with the sample effect in order to regenerate the raw powder pattern, or a deconvolution could be performed for extracting the sample contribution. The latter option is still not in use due to non preservation of intensity positivity and presence of spurious oscillations in the deconvoluted profile [53]. One can note also that the separation of the K(1 component from K(2 is not at all recommended for analogous reasons. However, deconvolution has to be done and the Fourier coefficients of the individual profile are needed if one wants to realize a Warren and Averbach analysis [54]. When possible, this is the best to do as was done in the study of dislocations and grain size in electrodeposited nanocrystalline Ni, by Ungár, Révéz and Borbély [55], applying too the Williamson and Hall plot [56]. The Scherrer particle size continues to be estimated nowadays, with assumption of spherical particles (Klug & Alexander, 1974 [57]), for instance in the investigation of germanium nanoclusters [58]. A recent tool (AXES software) for estimation of crystallite size and shape by Williamson-Hall analysis was proposed by Mändar et al. (1999) [59] and is available via the World Wide Web.

Recent applications include the microstructural investigation [60] of plastically deformed Pb(1-x)Snx alloys through a profile fitting approach within the framework of the Warren-Averbach and the Williamson-Hall methods.

When even more disorder is detected, using variants of the Rietveld method has proved to be useful. Application to the characterization of disordered and small crystals  as found in semicrystalline polymers was recently published [61]. The possible tilt angle of chain axes versus the large faces of the lamellar crystals were introduced in the model of PEEK [poly(ether-ether-ketone)] [62]. However, models with or without chain tilt give similar goodness-of-fit parameters, indicating that results coming from other techniques than X-ray diffractometry are required in order to characterize the dimensions and shape of crystals in isotropic polymer samples.

Studying 10 and 8.4 Å hydrates of kaolinite proves to be still difficult, if one looks at the best fits obtained by Jemai et al. [63].

The effect of sample transparency in powder diffractometry is generally treated in the Rietveld method by a simple peak displacing law. Ida and Kimura [64] treat this effect for Bragg-Brentano geometry as a convolution with an asymmetric aberration function. Also, they show that the flat-specimen effect on the peak profile can quantitatively be treated as a convolution with an asymmetric window function [65].

5. Conclusion

The Rietveld method broadens continuously its application domain, but, up to now, the microstructure approach remains highly disputable. Improving the accuracy of structure parameters is yet a sufficient target and justifies empirical approaches. Obtaining microstructure parameters having more recognized physical meaning is now desirable. For anisotropic effects, ellipsoids are progressively replaced by more general descriptions, in terms of spherical harmonics and distributions of cell parameters, allowing more complex cases to be accounted for. Unfortunately, the user's dream, which is to solve easily any problem through a friendly Graphical User Interface, is far from being realized. The problem (or possibly multiple problems) needs first to be identified. And the best adapted method has to be selected then, among an increasing (and confusing) number of possibilities. The task is certainly not easy !

Note : Slides of this conference are on the Web at http://sdpd.univ-lemans.fr/egypte/conf2/
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Fig 1.- Rietveld fit on two samples of NiF2, well crystallized (g) and ball milled (h) by using the ARIT1 program [3].





Fig 2.- Edge dislocation. [4].

















Fig 3.- Atomic structure in the core of grain boundary between two crystals,


deduced from high-resolution electron micrography [4].
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Fig 4.- How the parent KAlF4 phase can accomodate the premartensitic KAlF4 phase.





Fig. 5.- Three-dimensional view of an X-ray mono-Laue photograph of KalF4.





Fig 6.- Schematic representations of the KAlF4 structures in the parent (a, b) and martensitic phase (c, d).





Fig. 7.- Three powder patterns of KAlF4 : with finest peaks, crystals crushed by hand and annealed ; with medium line broadening, simply crushed by hand, but some reflexions vanish already ; ball milling, strong line broadening effect.





Fig 8.- Comparison of measured (-+-) and computed ((() interference function. The model system is a boundary structure consisting of four atomic layers in which atoms are displaced in random directions.





Fig 9.- Another model built from a mixture of 6 nm (75 vol %) and 4 nm (25 vol %) crystals in which the boundary atoms are displaced in random direction.





Fig 10.- A Lorentzian profile shape f corresponds to a Lorentzian size distribution function P.





Fig 11.- If the size distribution function P is Gaussian, a bump appears on the f profile shape which can hardly be modelled by a Voigt function.





Fig 13.- A mean size of 148 Å is estimated for the thickness of these needles.





Fig 12.- Examples of Rietveld fits by using the Thompson-Cox-Hasting function on TiO2 nanocrystalline samples.





Fig 14.- Fit by using GSAS for a mixture of 2 phases with quite different FWHMs.





Fig 15.- Fit with RIETAN-94 without taking account of defects seen by electron microscopy.





Fig 16.- Different approaches of amorphous contribution.





Fig 17.- LaNi5 by TEM after hydrogen sorption-desorption.





Fig 18.- Norbornane as fitted by MPROF with or without anisotropic line broadening.





Fig 19.- Kaolinite as fitted by BGMN with or without microstructure consideration.





Fig 20.- Lead oxalate as fitted by BGMN with or without anisotropic line broadening.





Fig 21.- HNbO3 neutron pattern as fitted by BGMN with or without anisotropic line broadening.





Fig 22.- Extreme low angle assymetry.





Fig 23.- Asymmetry in LaB6.





Fig 24.- Fit by a Gaussian-Hermite polynomial function.





Fig 25.- Y2O3 on amorphous silica with weight 10/90%





Fig 26.- Fit by the Stephens phenomenological approach. RWP decreases by a factor 2.





Fig 27.- Three dimensionnal strain distribution. That curious shape is not really understood.





Fig 28.- Cu-tablet.  Mixed model, dislocations + stacking and twin faults.








Fig 29.- Non-Rietveld fits of (-MnO2 powder patterns. The structure is defined as an intergrowth of ramsdellitic and pyrolusitic domains.
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