ALLEN HUNTER'S YOUNGSTOWN STATE UNIVERSITY

X-RAY STRUCTURE ANALYSIS LAB MANUAL:

A BEGINNER'S INTRODUCTION¹

OPTIMIZED FOR USE WITH SHELXTL AND DOS

Dr. Allen D. Hunter Professor of Chemistry Director of the YSU Structure Center Department of Chemistry Youngstown State University 1 University Plaza, Youngstown Ohio 44555-3663 <u>adhunter@cc.ysu.edu</u> <u>http://www.as.ysu.edu/~adhunter/index.html</u>

Winter 1999 Draft Release: Version W99D1

Detailed Comments On This Draft Manual Are Requested From All Users

© Dr. Allen D. Hunter, March 24th 1997 and October 27th, 1998.

¹ This lab manual is based on the authors experience teaching crystallography to undergraduates and MS students at Youngstown State University, his experience with the software, the SHELXTL manual (Version 5.1) from Bruker AXS (Siemens), George Sheldrick's SHELX manuals, as well as the other references listed in the appendix.

INFORMATION ABOUT THE USER LICENSE

This laboratory manual was written by Dr. Allen D. Hunter of the Youngstown State University Chemistry Department from 1996 to the present. The author retains sole copyright on this manual in both its printed and electronic forms.² Whether you obtained this manual directly from him (i.e., as a registered user), through the agency of a registered user, or through one or more intermediaries, the following license information applies to you. By using this manual for your teaching, research, or other purposes you are accepting the terms of this license agreement. The term of this agreement expires on December 31st, 2000.³

This laboratory manual is provided free of charge for use in both teaching and research to educational and non-profit institutions. Corporate users are asked to contact the author about any fees, which will depend upon the nature of the intended use. The source files for the manual may not be edited/rewritten, however, hand written annotations before printing are allowed and are even encouraged to make this manual of more use to your students. The sole exception to this restriction is that licensed users may freely elect to duplicate and distribute parts/sections of this manual to students if this makes financial and/or pedagogical sense to them. Licensed users may of course distribute any supplementary materials they think valuable within the manual's bindings.⁴ Redistributed outside of the original licensed site⁵ without the author's express written permission is forbidden. Licensed users are permitted to copy and distribute this lab manual to up to fifty users at their site at no cost. When the licensed user has this manual duplicated by their department or campus print shop, book store, or commercial printer, the copyright remains with the author. Because this manual was written to support the teaching of crystallography, cost to the student is a major concern. Therefore, the license holder should endeavor to duplicate and distribute this manual at the smallest possible cost. Student users may be charged no more than reasonable costs for printing, binding (if any), and distribution. In no case, are these charges to exceed \$30.00 without the author's permission. For the same reason, this manual is being distributed to registered users electronically in Microsoft WORD 97, html, and pdf formats. Where required, printed copies may be obtained from the author. [To keep cost down and to save me some time, I am currently investigating having the Youngstown State University bookstore, Polycrystal Book Service, the ACA, the IUCr, or some other group distribute inexpensively bound printed copies of this manual for library use and/or for those preferring this format.]

² The author has consciously chosen to self publish and distribute this work for several reasons: to keep costs to the minimum, to ensure the widest possible distribution and usage, to give him total creative control and reduce hassles, and to enable rapid and timely revisions based on user comments. I would welcome reader comments on the desirability of having this work formally published.

³ The limited term of this agreement is designed to encourage users to get the latest edition of this lab manual.

⁴ The author does request that copies of any extensive annotations or supplementary materials be forwarded to him for possible inclusion in future editions.

A single site is defined as one university campus or physical location.

To aid in the writing of future editions of this manual,⁶ all users are strongly encouraged to send the author detailed comments⁷ on this manual, including: spelling, grammatical, and typographical errors, errors in the description of how the software functions and is used, errors in the crystallography described, sections of the text that are unclear, confusing, or need further explanation or examples, omissions, formatting problems, additional literature/WEB references, etc. The author particularly wishes to encourage users to write or help write new sections of text to explain topics not covered, or are not covered in sufficient detail, in the current edition. He strongly encourages users to send him crystallographic data sets that would be useful in teaching. These will be posted on his WEB site. All data sets should include all required files and they should be in formats such that may be used directly in SHELXTL. Submission would also be much more valuable is they included information useful to students and instructors about the crystallography of each compound (in the form short text documents/commentaries describing interesting features and/or problems associated with the structure's solution).

Each licensed user is required to fill out and sign the following license form and mail it to the author. In addition, all users making copies of this manual for teaching purposes (even if they are not the licensed user) are required to mail the author a signed copy of this form each year that they use this manual. This user information is important, as it will be used to help justify the expenditure of the author's time in writing, revising, and distributing this teaching manual to the crystallographic and educational communities during his annual reviews at YSU, when requesting internal support for this effort, and possibly to seek future external support for crystallography education.

⁶ It is expected that this manual will undergo major updates at least once a year for the next several years with minor updates occurring more frequently.

⁷ Such "error messages" are most useful to me and will be more quickly incorporated into revised editions if they list the page, section, and line(s) of each error and suggestions for the correction of each.

LICENSE FORM: ADH-YSU X-RAY STRUCTURE SOLUTION LAB MANUAL

This License is From Dr. Allen D. Hunter for the Fall 1998 Edition Expires Dec. 31st, 2000

Name of Registered User/Instructor:				
Department:				
University /Organization:				
Address:				
Phone Number: ()	FAX Number: ()			
E-Mail Address:	_@			
Home Page: <u>http://</u>				
For your site, please estimate the follow	ing:			
Total number of copies to be made from 1999 through 2000: Total number of undergraduate student users: 1999 through 2000: Total number of graduate student users: 1999 through 2000: Total number of post-doc users: 1999 through 2000: Total number of faculty and staff users: 1999 through 2000:				
For each courses which uses this manual	l, please estimate the following:			
1 st Course to use this manual: Course Number: Se Is this Course Offered Every Y Course Name: Annual Undergraduate Student Annual Graduate Student Enro	mester/Quarter Offered: ear? Enrollments: 1998/99, 1999/2000, 2000/200 illments: 1998/99, 1999/2000, 2000/2001)1		
2 nd Course to use this manual: Course Number: Se Is this Course Offered Every Y Course Name: Annual Undergraduate Student Enro	mester/Quarter Offered: ear? t Enrollments: 1998/99, 1999/2000, 2000/200 llments: 1998/99, 1999/2000, 2000/2001)1		
Signature of Licensed User:	Date:			

Please mail the signed forms to: Dr. Allen D. Hunter, Department of Chemistry, Youngstown State University, Youngstown, Ohio, USA, 44555-3663.

Suggestions for:

Improvements/Deletions/Additions/Changes (to Future Editions of this Manual)

I am writing this manual as a resource for the crystallographic educational community. I plan on improving future editions by incorporating feedback from manual users. This will be facilitated by the fact that it is being distributed as a .pdf file which will allow regular revision and rapid inexpensive distribution. For this to work, I need the user community to give me as much detailed feedback as possible. This could take the form of short notes to myself on any minor or major errors (and especially how to correct them!). I would also greatly appreciate longer sections of text that could be directly inserted into the main body or as separate appendices on topics not yet covered.

Known Problems With This Version of the Manual for Corrections in Future Editions:

- 1. The graphics is this .pdf file are at relatively low resolution because I have yet to find an acceptable way to get higher resolution graphics from XP (for DOS) into MS Word files, I welcome suggestions.
- 2. The list of teaching links is just starting, I need more suggestions.
- 3.

TABLE OF CONTENTS

	TITLE PAGE ⁸	
i		
	INFORMATION ABOUT THE USER LICENSE	ii
	LICENSE FORM: ADH-YSU X-RAY STRUCTURE SOLUTION LAB MANUAL	.iv
CONTE	TABLE ENTSvi	OF
	ACKNOWLEDGEMENTS	

XV

A.	Pu	RPOSES OF THIS MANUAL	I-17
	1.	Crystallography and the Synthetic Chemist	<i>I-17</i>
	2.	Reference Materials on X-ray Diffraction Analysis	<i>I-17</i>
	3.	My Crystallography Teaching Philosophy	<i>I-18</i>
	4.	Crystallographic Software, SHELXTL, and This Manual	<i>I-18</i>
	5.	Approach Taken by This Manual	<i>I-19</i>
	6.	When Should a Non-Crystallographer Attempt to Solve a Crystal Structure	<i>I-19</i>
	7.	Data Files to Practice Your Skills On	<i>I-20</i>
	8.	Errors, Short Cuts, and Request for Readers' Help	I-21
B.	BA	SIC COMPONENTS OF AN X-RAY DIFFRACTOMETER	I-22
	1.	Block Diagram of an X-ray Diffractometer	<i>I-22</i>
	2.	X-ray Generators	<i>I-23</i>
		a) Sealed tube X-ray generators	I-23
		b) Increasing the S/N ratio in diffraction data by increasing the data collection time	I-23
		c) Increasing the S/N ratio in diffraction data by increasing the beam intensity	I-24
		d) Summary of methods for increasing S/N ratios in collected data	I-25
	3.	Monochromator and Collimator	<i>I-26</i>
	4.	Goniometer and Crystal Orientation	<i>I-26</i>
		a) Goniometer heads	I-26
		b) Goniometer	I-26
	5.	Detectors	<i>I-27</i>
		a) Point detectors	I-27
		b) Multi-wire area detectors	I-27
		c) CCD and imaging plate detectors	I-28
	6.	Data Systems	<i>I-28</i>

⁸ The diagram shown on the cover represents the thought experiment of bouncing quantum mechanical basket balls off of a team and using the resulting diffraction pattern to calculate the players' positions.

	a) Room temperature and computer crashes	I-28
	b) Embedded computers	I-28
	c) Diffractometer control computer	I-29
	d) Computers for structure solution	I-29
	7. Diffractometer Maintenance	<i>I-29</i>
	a) Diffractometer maintenance	I-29
	b) Lab maintenance	I-30
	8. Comparison to Neutron Diffraction	I-30
C.	COLLECTING CRYSTALLOGRAPHIC DATA	I-31
	1. General Procedures	I-31
	2. Evaluating Crystal Quality	I-31
	a) Optical methods	I-31
	b) Rotation photos	I-31
	c) Peak profiles	I-31
	3. Collecting the Crystallographic Data	<i>I-32</i>
	4. Powder Patterns	<i>I-32</i>
D.	BRIEF DESCRIPTIONS OF THE MAJOR PROGRAMS INCLUDED IN SHELXTL	I-33
	1. General Capabilities	I-33
	2. XPREP for Data Preparation	<i>I-33</i>
	3. XS for Trial Solutions	<i>I-33</i>
	4. XL for Structure Refinement	I-34
	5. XP for Data Analysis and Graphics	I-34
	6. XCIF for Table Preparation	I-34
	7. Chi90 for Psi Scans	<i>I-35</i>
	8. XPS for Fragment Searches	I-35
	9. XPOW and XFOG for Simulated Powder Patterns	<i>I-35</i>
E.	BRIEF DESCRIPTIONS OF THE MAIN FILE TYPES USED BY SHELXTL	I-36
	1. A Short Note on the Naming of Compounds in Our Labs	<i>I-36</i>
	2. The Main File Types Generated by SHELX and its Component Programs	I-36
F.	FLOW CHART FOR A TYPICAL X-RAY STRUCTURE SOLUTION	I-39
CHAP	TER II. DATA PREPARATION USING XPREP	II-40
А	XPREP II-40	
B	RECORE STARTING YOUR WORK WITH SHELYTL BACK UP YOUR ET ES (!!!!)	Π_/1
D.	Linna VDDED to Deprint Vorth Ditte	
C.	USING APREP TO PREPARE YOUR DATA	II-42
	1. Using XPREP to Determine the Correct space Group	11-42 11-42
	2. Using AFKEP to Define the Unit Cell Contents	11-43
	5. Using AFKEP to do Absorption Corrections	
	4. Using XPREP to View Reciprocal Space Plots	
	5. Using XPKEP to Set Up the SHELXIL Input Files	<i>II-45</i>
	o. Duplicate and Backup Your SHELXIL Input files	11-46

CHAPTER III. FINDING TRIAL SOLUTIONS TO THE "PHASE PROBLEM" USING XSIII-47

A.	THE PROGRAM XS	III-47
	1. Basic Features of XS	
	2. Direct Methods and XS	
	3. Patterson Methods and XS	<i>III-47</i>
	4. Setting Up and Running XS	<i>III-4</i> 8
B.	SETTING XS TO CARRY OUT A DIRECT METHODS OR PATTERSON SEARCH, THE NAME.INS FILE	III-49
C.	LISTING OF THE MOST COMMON XS COMMANDS.	III-50
D.	RUNNING XS TRIAL SOLUTION SEARCHES	III-54
E.	EVALUATING THE QUALITY OF THE RESULTS FROM XS	III-55
	1. Using R Factors to Evaluate the Success of XS	III-55
	2. Using XP to Evaluate the Success of XS	III-55
F.	WHAT TO DO IF XS FAILS TO GIVE A REASONABLE SOLUTION	III-56
	1. Things to Check When Direct Methods Fails	III-56
	2. Several Ways to Finesse Direct Methods	III-56
	a) Use more brute force in your Direct methods calculation	III-56
	b) Pick some of the other suggested Direct methods solutions	
	3. Simple Things to do if Even These Steps Fail to give a Reasonable Solution	<i>III-57</i>
	4. Advanced Crystallographic Techniques to Try When These Steps Fail to Give a Reasonal	ble Solution.
		III-57
	a) Modify the Symmetry of the Input Files	Ш-58
	b) Use XPS to find a solution	III-58
G.	THE USE OF XS TO FIND TRIAL SOLUTIONS FOR NEUTRON DIFFRACTION DATA	III-58
<u>CHAP'</u>	FER IV. THE ASSIGNMENT OF ATOMS USING XP	IV-59
A.	AN OVERVIEW OF THE PROGRAM XP	IV-59
B.	THE TYPICAL STEPS WHEN USING XP TO ASSIGN ATOMS	IV-60
	1. Starting XP to Analyze Data	IV-60
	2. Evaluating and Assigning Atoms and Q Peaks	IV-60
	a) Evaluating atoms and Q peaks	IV-61
	b) Assigning Q peaks and changing the assignment of atoms	IV-61
	c) Killing sets of atoms	IV-61
	d) Naming of atoms	IV-62
	e) Sorting atom lists	IV-62
	3. Checking Your Assignments for "Chemical Reasonableness"	IV-62
	4. Saving the Results of Your XP Analyses	IV-62
	5. Returning to XP from the Parameters Saved in Name.ins	IV-63
<u>CHAP'</u>	FER V. REFINING ATOMIC POSITIONS USING XL	V-64

CHAPTER V. REFINING ATOMIC POSITIONS USING XL V-64 A. INTRODUCTION TO XL V-64 1. Refining Data V-64 a) Intensities and structure factors V-64 b) Defining many Γ^2 or E V/64

	2. A Qualitative (If Somewhat Misleading) Picture of How Crystal Structures Can Be Refined	V-65
	a) The 1 st Step: Read the Data and Instructions	V-65
	b) The 2 nd Step: Calculate Partial Phases	V-65
	c) The 3 rd Step: Calculate an "Observed" Electron Density Map	V-65
	d) The 4 th Step: Calculate a "Difference" Electron Density Map	V-66
	e) The 5 th Step: Calculate Improved Structural Parameters	V-66
	f) The 6 th Step: Repeat This Cycle	V-66
	3. A Qualitative Description of How XL Actually Carries Out a Least Squares Refinement	V-66
	a) Read the Data and Instructions	V-66
	b) Calculate Structure Factors and Partial Derivatives and R Factors	V-66
	c) Build Normal Equations and Invert the Matrix	V-67
	d) Calculate Shifted Positions and Shifted Displacement Parameters	V-67
	e) Repeat Items b Through d Until Completion	V-67
	f) Calculate an Analysis of Variance	V-67
	g) Calculate Geometry	V-67
	h) Calculate a Difference Electron Density Map	V-67
	4. The R factors and GOOF	V-67
B.	TYPICAL STAGES OF AN XL REFINEMENT	V-68
	1. The 1 st Stage: Find a Trial Solution Using XS and XP	V-68
	2. The 2 nd Stage: Using XL and XP to Refine All Non-Hydrogen Atoms with Isotropic displacem	ent
	Parameters	V-68
	3. The 3 rd Stage: Using XL and XP to Refine All Non-Hydrogen Atoms with Anisotropic displace Parameters	ement V-69
	4. The 4 th Stage: Using XL and XP to Assign and Refine all Hydrogen Atoms	V-70
	5. The 5 th Stage: Using XL to Refine Additional Crystallographic Parameters Such as Extinction	n V-70
	6. The 6 th Stage: Using XL to Determine Absolute Structure	V-70
	7. The 7 th Stage: Convergence	V-71
	8. Advanced Tasks and Problems for Refinement That Merit More Detailed Treatment in Future	
	Editions	V-72
C.	ALPHABETICAL LISTING OF THE COMMAND LINES FOR XL AND XS	V-73
D.	A TYPICAL INPUT FILE FOR XL AT THE LATTER STAGES OF REFINEMENT.	V-79
E.	THE USE OF XL TO FIND TRIAL SOLUTIONS FOR NEUTRON DIFFRACTION DATA	V-81
<u>CHAP</u>	TER VI. CHECKING YOUR STRUCTURE FOR CHEMICAL REASONABLENESS (YO	<u>UR</u>
STRU(CTURE MAY BE PRECISE BUT IS IT THE CORRECT ONE?)	VI-82
A.	By Looking at Your Plots	VI-82
B.	By Looking at Your Atomic Parameters	VI-82
C.	By Looking at Your Bond Parameters	VI-82
D.	By Looking at Your Displacement Parameters	VI-83
E.	STATISTICAL MEASURES OF QUALITY	VI-83
	1. Definitions of R, wR, and GOOF	VI-83
	2. Limitations of R, wR, and GOOF	VI-84

	3.	The Residual Electron Density	VI-84
F.	The	E CRITERIA OF CHEMICAL REASONABLENESS	/I-84

CHAPTER VII. GENERATING MOLECULAR AND CRYSTAL STRUCTURE PLOTS USING XP VII-85

A.	Hei	LP FOR XP COMMANDS	85
B.	3. TYPICAL TYPES OF XP PLOTS		
	1.	Choosing Which Atoms Will be Labeled and How	86
	2.	Ball and Stick Plots	87
	3.	Plots with Special Orientations	88
	4.	Displacement Ellipsoid Plots	89
	5.	Space Filling Plots	90
	6.	Editing Bonds and Adding Dummy Atoms	91
	7.	Packing Diagrams for the Unique Molecule(s)/Fragment(s) in the Unit Cell	92
	8.	Packing Diagrams for Multiple Molecules Packed Around the Unit Cell	93
	9.	Inverting Molecules (i.e., to their Enantiomers)	95
	10.	Interatomic Lines, Least Squares Planes, and Torsion Angles	96
C.	Alf	PHABETICAL LISTING OF XP COMMANDS, COMMON VARIANTS, AND EXAMPLES OF THEIR USEVII-	98

CHAPTER VIII. GENERATING TABLES FOR PUBLICATION USING XCIF VIII-119

А.	Usi	SING XCIF TO GENERATE TABLES	VIII-119
	1.	What is XCIF	
	2.	Using XCIF	
		a) Starting XCIF and using the default settings	VIII-119
		b) [S] Change Structure Code	VIII-119
		c) [R] Use another CIF files to resolve '?' items	VIII-120
		d) [C] Set compound code number for tables (currently 1)	VIII-120
		e) [N] Set next table number (currently 1)	VIII-120
		f) [T] Crystal/atom tables from .cif	VIII-120
		g) [F] Structure factor tables from .fcf	VIII-121
		h) [X] Print from SHELXTL XTEXT format file	VIII-121
		i) [Q] Quit	VIII-121
	З.	The Seven Standard Tables Which One Can Print From XCIF	VIII-122
B.	Usi	SING XCIF TO PREPARE DATA FOR PUBLICATION IN ACTA CRYSTALLOGRAPHICA	VIII-123
	1.	What Are CIF Format Files	VIII-123
	2.	Some Useful Things That Any Chemist Can Do With a CIF File	VIII-123
	3.	Modifying CIF Files for Electronic Submission to Acta Crystallographica	VIII-123

<u>CHAPTER IX.</u> A WORKED EXAMPLE OF STRUCTURE SOLUTION FOR A TYPICAL DATA SET, "CALCTEST", (**h**⁶-1,2,3-(OMe)₃-5-(CO₂Me)C₆H₂)CR(CO)₃), USING XS, XL, AND XP......IX-125

А.	THE 1 st Cycle: Finding a Trial Solution with XS and Direct Methods IX-126
	1. CALCTEST.INS Input File for 1 st Cycle: XS with Direct MethodsIX-126
	2. CALCTEST.RES Output File for 1 st Cycle: XS with Direct MethodsIX-126
	3. CALCTEST.LST Output File for 1 st Cycle: XS with Direct MethodsIX-127
B.	THE 2 ND Cycle: Finding a Trial Solution with XS and the Patterson Method IX-140
	1. CALCTEST.INS Input File for 2 nd Cycle: XS with the Patterson MethodIX-140
	2. CALCTEST.RES Output File for 2 nd Cycle: XS with the Patterson MethodIX-140
	3. CALCTEST.LST Output File for 2 nd Cycle: XS with the Patterson MethodIX-141
C.	THE 3 RD CYCLE: USING XL AND FINDING MOST NON-HYDROGEN ATOMS WITH XP IX-145
	1. CALCTEST.INS Input File for 3 rd Cycle: Using XL to Find Most Non-Hydrogen AtomsIX-145
	2. CALCTEST.RES Output File for 3 rd Cycle: Using XL to Find Most Non-Hydrogen AtomsIX-146
	3. CALCTEST.LST Output File for 3 rd Cycle: Using XL to Find Most Non-Hydrogen AtomsIX-146
	4. Plot calctest.3, After The 3 rd Cycle
D.	THE 4 TH CYCLE: USING XL AND FINDING THE REMAINING NON-HYDROGEN ATOMS WITH XP IX-153
	1. CALCTEST.INS Input File for 4 th Cycle: Using XL to Find the Remaining Non-Hydrogen AtomsIX-
	153
	2. CALCTEST.RES Output File for 4 th Cycle: Using XL to Find the Remaining Non-Hydrogen Atoms
	X-154
	3. CALCIEST.LST Output File for 4 th Cycle: Using XL to Find the Remaining Non-Hydrogen Atoms IX-155
	4. Plot calctest.4. After The 4 th Cycle
E.	THE 5 TH CYCLE: USING XL AND REFINING ALL NON-HYDROGEN ATOMS TO THEIR BEST ISOTROPIC VALUES.
	1. CALCTEST.INS Input File for 5 th Cycle: Using XL to Obtain the Best Isotropic displacement Parameters
	2. CALCTEST.RES Output File for 5 th Cycle: Using XL to Obtain the Best Isotropic displacement Parameters
	3. CALCTEST.LST Output File for 5 th Cycle: Using XL to Obtain the Best Isotropic displacement Parameters
	4. Plot calctest.5, After The 5 th CycleIX-160
F. Dis	THE 6 th Cycle: Using XL and Refining all Non-Hydrogen Atoms Using Anisotropic Splacement Parameters
	1. CALCTEST.INS Input File for 6 th Cycle: Using XL to Refine Anisotropic displacement Parameters and Assign Most of the Hydrogen Atoms
	2. CALCTEST.RES Output File for 6 th Cycle: Using XL to Refine Anisotropic displacement Parameters and Assign Most of the Hydrogen Atoms
	3. CALCTEST.LST Output File for 6 th Cycle: Using XL to Refine Anisotropic Displacement Parameters and Assign Most of the Hydrogen Atoms
	4. Plot calctest.6, After The 6 th CycleIX-165
G. Iso	THE 7 th Cycle: Using XL and Refining Anisotropic Non-Hydrogen Atoms and the First Set of tropic Hydrogen Atoms
	1. CALCTEST.INS Input File for 7 th Cycle: Using XL to do an Anisotropic Refinement of all Non- Hydrogen Atoms and the Isotropic Refinement of the First Set of Hydrogen AtomsIX-166

	2. CALCTEST.RES Output File for 7 th Cycle: Using XL to do an Anisotropic Refinement of all Non- Hydrogen Atoms and the Isotropic Refinement of the First Set of Hydrogen Atoms
	<i>3. CALCTEST.LST Output File for 7th Cycle: Using XL to do an Anisotropic Refinement of all Non-</i>
	Hydrogen Atoms and the Isotropic Refinement of the First Set of Hydrogen Atoms
	4. Plot calctest./, After The / Cycle
H. Ex	THE 8 ¹⁴ Cycle: Using XL and doing the Final Refinement of All Atoms Including Refinement of tinction and the Use of the Weighting Function
	1. CALCTEST.INS Input File for 8 th Cycle: Using XL to do the Final Refinement Cycles
	2. CALCTEST.RES Output File for 8 th Cycle: Using XL to do the Final Refinement CyclesIX-174
	3. CALCTEST.LST Output File for 8 th Cycle: Using XL to do the Final Refinement CyclesIX-176
	4. Plot calctest.8, After The 8 th CycleIX-187
I.	The 9 th Cycle: Using XL To Drive the Solution to Convergence
	1. CALCTEST.INS Input File for 9 th Cycle: Using XL to do the Final Refinement CyclesIX-188
	2. CALCTEST.RES Output File for 9 th Cycle: Using XL to do the Final Refinement CyclesIX-190
	3. CALCTEST.LST Output File for 9 th Cycle: Using XL to do the Final Refinement CyclesIX-191
CILAD	FED V
DATA	<u>TER X. EXAMPLES OF MOLECULAR PLOTS GENERATED USING XP FOR THE TEST</u> SET "PLOTTEST". (h ⁶ -1.2.3-(OMe) ₂ -5-(CO ₂ Me)C ₆ H ₂)CR(CO) ₂)
Δ	$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i$
R.	PLOTTEST B A DISPLACEMENT ELLIPSOID VIEW WITH 50% ELLIPSOIDS X-196
D. C	PLOTTEST C A DISPLACEMENT ELLIPSOID VIEW WITH 100% ELLIPSOIDS X_107
С. D	$\mathbf{X} = \mathbf{X} = $
D. Е	FLOTTEST. D'A DISFLACEMENT ELLIPSOID VIEW WITH 75% ELLIPSOIDS.
E. 'PR	OJ' WITH 75% ELLIPSOIDS
F.	PLOTTEST.F A DISPLACEMENT ELLIPSOID VIEW WITH 75% ELLIPSOIDS AND WITHOUT HYDROGENS X-200
G.	PLOTTEST.G A STEREO VIEW OF THE MOLECULE
Н.	PLOTTEST.H THIS GIVES A STEREO VIEW OF THE MOLECULE AND THE UNIT CELL
I. "FA	PLOTTEST.I A S <i>tereo</i> displacement ellipsoid view of the molecule with 50% ellipsoids and with atter" bonds
J. Eli	PLOTTEST.J AFTER ALL BONDS TO THE CR ATOM REMOVED. A DISPLACEMENT ELLIPSOID VIEW WITH 75%
K. VIE	PLOTTEST.K AFTER THE BONDS TO THE CARBONYL CARBONS ARE ADDED BACK. A DISPLACEMENT ELLIPSOID W WITH 75% ELLIPSOIDS
L. CO	PLOTTEST.L AFTER A DUMMY ATOM HAS BEEN ADDED IN THE CENTROID OF THE ARENE RING (I.E., X1A) AND NNECTED TO THE CR ATOM. A DISPLACEMENT ELLIPSOID VIEW WITH 75% ELLIPSOIDS
M. Eli	PLOTTEST.M THIS GIVES AND DISPLACEMENT ELLIPSOID PLOT OF THE INVERTED MOLECULE HAVING 75% IPSOIDS. X-207
N.	PLOTTEST.N A VIEW OF THE PACKING WITH A ORIENTATION CHOSEN IN 'PROJ' X-208
0.	PLOTTEST.O A VIEW CHOSEN DOWN THE A AXIS OF THE UNIT CELL.
P.	PLOTTEST.P A VIEW CHOSEN DOWN THE B AXIS OF THE UNIT CELL
Q.	PLOTTEST.Q A VIEW CHOSEN DOWN THE C AXIS OF THE UNIT CELL.

R.	PLOTTEST.R A 'SFIL' SPACE FILLING PLOT.	X-212
S.	PLOTTEST.S A STEREO 'SFIL' SPACE FILLING PLOT	X-213
<u>CHAP</u>	TER XI. EXAMPLES OF TABLES GENERATED USING XCIF FOR THE TEST	T DATA SET
"CAL	<u>CTEST", (h⁶-1,2,3-(OMe)₃-5-(CO₂Me)C₆H₂)CR(CO)₃)</u>	XI-214
A. (C	TABLE 1. Crystal data and structure refinement for "calctest", $(\eta^{6}-1,2,3-(OME)O_{2}ME)C_{6}H_{2})Cr(CO)_{3})$.) ₃ -5- XI-215
В. "С.	TABLE 2. ATOMIC COORDINATES AND EQUIVALENT ISOTROPIC DISPLACEMENT PARAMETERS ALCTEST", $(\eta^6-1,2,3-(OME)_3-5-(CO_2ME)C_6H_2)CR(CO)_3)$	FOR
TA	ABLE 3. BOND LENGTHS AND ANGLES FOR "CALCTEST", $(\eta^6-1,2,3-(OME)_3-5-(CO_2ME)C_6H_2)C_6H_2)C_6H_2$	CR(CO) ₃).XI-217
TA (C	ABLE 4. ANISOTROPIC DISPLACEMENT PARAMETERS FOR "CALCTEST", $(\eta^6-1,2,3-(OME)_3-5-O_2ME)C_6H_2)C_8(CO)_3)$	XI-220
C. 1,2	TABLE 5. HYDROGEN COORDINATES AND ISOTROPIC DISPLACEMENT PARAMETERS FOR "CAL 2,3- $(OME)_3$ -5- $(CO_2ME)C_6H_2$)CR $(CO)_3$)	CTEST", (η ⁶ - XI-221
<u>PAR</u>	Γ III: APPENDICES	XI-223
CILAD		
CHAP	TER XII. REFERENCE MATERIALS CONCERNING X-RAY DIFFRACTION AND	<u>ALYSIS.XII-224</u>
А.	CRYSTALLOGRAPHY TEXTS	XII-224
	 Text which Are Particularly Suitable for the Novice Crystallographer The International Tables 	XII-224 XII 224
	 The International Tables General Crystallography Texts 	XII-224
В	REVIEW ARTICLES AND CHAPTERS ON CRYSTALLOGRAPHY	XII-226
D.		
C.	1. Educational and General Interest Journals Which Regularly Publish Articles on X-r Methods	ay Diffraction XII-226
	2. Journals Devoted Largely to X-ray Crystallography	XII-227
	3. Synthetic Chemistry Journals Which Deal With Crystallographic Results Particularl	y Rigorously XII-227
D.	REFERENCES AND LITERATURE SOURCES ON X-RAY DIFFRACTION	XII-227
	1. Papers Discussing Teaching Methods in Crystallography	XII-227
	a) Interesting Journal of Chemical Education Papers	XII-227
	b) Journal of Chemical Education Searches	XII-227
	c) Papers from other journals concerning the teaching of crystallography and/or general aspectystallography	ects ofXII-234
	2. Papers Discussing Strategies for Growing Crystals	XII-234
	3. Papers on Technical Aspects of X-ray Crystallography	XII-235
	4. References on Mosaic Tiling, Escher Patterns, etc.	XII-235
	5. Allen Hunter's Papers That Contain an X-ray Crystallographic Component	XII-235
E.	WEB BASED MATERIALS	XII-236
	1. WEB Based Instructional Materials	XII-236
	2. WEB Sites Devoted to Various Aspects of X-ray Crystallography	XII-236
	3. WEB Sites on Diffraction Hardware and Software	XII-236

CHAPTER XIII. A QUICK INTRODUCTION TO DOS COMMANDS......XIII-238

CHAPTER XIV. GROWING SINGLE CRYSTALS SUITABLE FOR DIFFRACTION ANALYSISXIV-240

A.	GENERAL PRINCIPLES OF GROWING SINGLE CRYSTALS	XIV-240
	1. Rates of Crystal Growth	XIV-240
	2. General Conditions for Crystal Growth	XIV-240
	3. Solvent Properties and Saturated Solutions	XIV-241
	4. Master Several Favorite Methods	XIV-241
B.	PROVEN METHODS FOR GROWING CRYSTALS	XIV-241
	1. Crystallization by Slow Evaporation	XIV-241
	2. Crystallization by Cooling	XIV-242
	3. Crystallization Using Mixed Solvents and Solvent Diffusion in the Gas Phase	XIV-242
	4. Crystallization by Solvent Layering	XIV-243
	5. Crystallization by Diffusion Through Capillaries and Gels	XIV-243
	6. Crystallization From Melts	XIV-244
	7. Crystallization by Sublimation	XIV-244
	8. Crystallization Using Combinations	XIV-244
	9. Syntheses In Situ	XIV-244
	10. The Magic of NMR Tubes	XIV-245
	11. Other Chance Methods	XIV-245
C.	WHAT TO DO WHEN PROVEN METHODS FAIL	XIV-245
	1. Purify Your Material	XIV-245
	2. Seed Crystals	XIV-245
	3. The Role of Extraneous Materials	XIV-246
	a) Dust, dandruff, and grease	XIV-246
	b) Scratches and defects in the container walls	XIV-246
	c) Surface treatments of the container walls	XIV-246
	4. Try, Try Again	XIV-246
	a) Sequential crystal growing strategies	XIV-246
	b) Systematic approaches to growing crystals and the exploration of crystallization: th	ne multiplex advantage XIV-247
	5. Make Derivatives	XIV-247
	6. Solvates and Crystallization Agents	XIV-247
	7. Inclusion Compounds and Supramolecular Complexes	XIV-247
СНАР	FER XV. INDEX	XV-248

ACKNOWLEDGEMENTS

The author would like to gratefully acknowledge the contributions of the many people and organizations that have made the writing of this manual possible. I am a synthetic chemist who has learned sufficient crystallography to support my teaching and research but I do not have the expertise or experience to consider myself a professional crystallographer. However, I have been able to rely on substantial support, advice, and feedback from those more expert in crystallography than myself. I owe them a debt of gratitude for pointing out the errors in earlier editions of this manual and suggesting valuable additions and changes. I hope that they and others will continue to provide this invaluable service for this and future editions. I would particularly like thank the following individuals who have read over and made detailed comments and suggestions about this and earlier editions of this manuscript, especially: John Andrews, Rasika Dais, Jeanette Krause Bauer, Doug Powell, Zaki Sedge, Casey Raymond, and Tim Wagner. In addition, my Chemistry 832: Solid State Structural Methods students (especially Janet Gbur, Carrie Kolly, Mike Lufaso, Vince Lucarelli, and Jane Pollack) have provided me with invaluable feedback. I would also like to thank Bill Allen, John Jackson, Katy Landis, and Larry Curtin for providing crystals used to collect some of the diffraction data mentioned in this manual.

I would like to acknowledge the generous financial support of the National Science Foundation (NSF-RUI grant DUE-9403889), the Ohio Board of Reagents, (1994 OBoR Action Fund grant CAP-098, and a 1995 OBoR Investment Fund grant: "Ohio Crystallography Consortium at Toledo" CAP-075), and Youngstown State University for funds used to purchase and upgrade our diffractometers and data systems. I would also like to thank Youngstown State University for Research Professorships (for 1993/94,1994/95, and 1998/99), a Faculty Improvement Leave (1995/96), and Faculty Development Time (1994/1995, 1996/97, and 1998/99), parts of which were used to develop this laboratory manual. I would like to thank Bruker AXS (Siemens) for providing me with the SHELXTL for NT software used in the preparation of this manual.

Finally, I would like to thank my wife Susan and daughter April for their loving support, encouragement, and understanding while I wrote this manual.

PART I: GENERAL PROCEDURES FOR SOLVING STRUCTURES

- CHAPTER I INTRODUCTION TO THIS MANUAL AND X-RAY CRSYTALLOGRAPHY
- CHAPTER II DATA PREPARATION USING XPREP
- CHAPTER III FINDING TRIAL SOLUTIONS TO THE "PHASE PROBLEM" USING XS
- CHAPTER IV THE ASSIGNMENT OF ATOMS USING XP
- CHAPTER V REFINING ATOMIC POSITIONS USING XL
- CHAPTER VI CHECKING YOUR STRUCTURE FOR CHEMICAL REASONABLENESS YOUR STRUCTURE MAY BE PRECISE BUT IS IT THE CORRECT ONE?)
- CHAPTER VII GENERATING MOLECULAR AND CRYSTAL STRUCTURE PLOTS USING XP
- CHAPTER VIII GENERATING TABLES FOR PUBLICATION USING XCIF

<u>CHAPTER I. INTRODUCTION TO THIS MANUAL AND X-RAY</u> <u>CRSYTALLOGRAPHY</u>

A. PURPOSES OF THIS MANUAL

1. Crystallography and the Synthetic Chemist

As recently as the early 1980's, crystallography was still largely the domain of professional crystallographers. Since then, numerous advances in diffraction hardware, in computers, in the theoretical foundations of crystallography, and in crystallographic software have fundamentally changed how crystallography is carried out. These changes have rapidly increased the rate at which crystallographic data is collected, decreased the cost of collecting this data, while simultaneously making single crystal diffraction analysis more accessible to the novice. As a direct result, more and more non-specialists are participating in the solving of their crystal structures. Indeed, I strongly believe that by the early years of the next century, if this is not true today, crystallography will be second only to NMR as the characterization method of choice in chemistry. For this reason, I think all graduating chemists should have at least a basic working knowledge of X-ray diffraction.

In some cases, the participation of synthetic chemists in diffraction analysis might be limited to "watching over the shoulder" of a skilled crystallographer and preparing graphics and tables for publication while, increasingly, this participation involves doing most of the crystallographic data solution and analysis. Crystallography is a technique in which it is easy to get started in but it is also a technique which is very hard to master. Someone with "a little bit of knowledge" can easily produce results which look entirely convincing to them but that are also entirely incorrect. For this reason, crystal structure analysis should always be done under the guidance of an expert.

2. Reference Materials on X-ray Diffraction Analysis

There are many excellent reference materials for both beginners and experts on the theory and practice of X-ray crystallography. In chapter XII in the Appendix, I have included a listing of many of these materials that I regularly consult and/or are available in the YSU library. These reference materials include a selection of texts, review articles and book chapters, journals, literature papers, and WEB based materials. However, there is remarkably little material available to help the novice user through the intricacies of solving X-ray structures. For use by my undergraduate research students and in my crystallography class for undergraduates and MS students that I teach at Youngstown State University (i.e., Chemistry 832: Solid State Structural Methods), I felt this need very clearly. To help my students and myself learn more about crystallography, I therefore wrote this beginners guide.

3. My Crystallography Teaching Philosophy

In teaching crystallography, as in almost any area of Chemistry, I believe that students need simultaneous exposure to both "lectures" and labs (i.e., because most people like myself learn best "with their hands"). The theory and practice of a discipline such as crystallography can be well presented in lectures using one of the many excellent texts which are available. However, in my experience, little of this information "sinks in" without a strong laboratory experience. For crystallography, I believe this should include "hands on" exposure to each of the steps in data collection and analysis. For this purpose, we at Youngstown State University have available excellent crystallographic and computing facilities. We have each student carry out "skills" exercises on the individual steps of data collection, solve a variety of structures from previously collected data, and take one sample from crystals in a sample tube to final report. We use Bruker AXS (Siemens) P4 diffractometers for our data collection. These are easy for the students to learn to operate and the Tutorial Manual that comes with the **XSCANS** diffractometer makes an excellent lab manual for the data collection part of the course.

There are several excellent packages available for solving X-ray crystal structures. There are substantial variations in how each of these programs are used to analyze data (i.e., in terms of input files, commands, and other idiosyncratic features). These surface differences hide from a novice the high degree of similarity which resides in their interiors. Indeed, most use George Sheldrick's SHELX engine for structure solution and refinement. For instructional purposes, one needs a lab manual that describes in minute detail how to carry out each step of a diffraction analysis. I find that only after doing so do students really understand the theory of crystallography and the general principles its practice. I have not found it possible to write a program independent lab manual adequate to teaching the practical side of diffraction analysis to novice crystallographers and have not found such a manual in the literature. I therefore decided when I wrote the current manual to tailor it to one particular software suite.

4. Crystallographic Software, SHELXTL, and This Manual

Here at YSU, we use the commercial **SHELXTL** package from Bruker AXS (Siemens) and George Sheldrick to solve our crystal structures. Earlier versions of package came to us with the purchase of our diffractometers and these have recently been upgraded to version 5.1. This package is arguably the most powerful and versatile available for solving X-ray crystal structures. **SHELXTL** incorporates the most current version of George Sheldrick's **SHELX** package (i.e., **SHELXTL-97**) as its central core. It also includes a direct interface with the **XSCANS** data collection package from Bruker AXS (Siemens) diffractometers as well as numerous additional features that enhance its ease of use and graphical capabilities. Because of this, I have optimized this manual for the **SHELXTL**⁹ package. The **SHELXTL** package runs similarly on SGI UNIX workstations and on Microsoft/Intel PCs running under **DOS** and **Windows NT**. The differences between these versions lie primarily in processor speed and file editing commands. The manuals

9

The current version of SHELXTL is 5.1 for both DOS and Windows NT.

provided by Bruker AXS (Siemens) for **SHELXTL**¹⁰ and that provided by Sheldrick for **SHELX**¹¹ are excellent resources for skilled crystallographers. The <u>present</u> manual is optimized for the <u>novice user</u> using a DOS based system since this is how we currently solve our structures here at YSU. When I become more familiar with its use, I will add supplementary material that describes any differences in the Windows NT version. However, my preliminary work suggests that these will be minor and only for the better.

5. Approach Taken by This Manual

The procedure for solving a crystal structure involves several iterative stages. This manual is designed for two main groups: beginning crystallographers just learning to do this and as a resource for more experienced crystallographers who want a quick reference guide. Because the commercial software package **SHELXTL** is what we use here at Youngstown State University and because it and its **SHELX** parent are so very widely used, I will illustrate the method for solving crystal structures using the **SHELXTL** programs. In Part I of the manual, I include step by step descriptions of the major stages of structure solution and refinement and the preparation of results for publication. I also include several annotated tables of the commands used most commonly by beginners. In Part II of the manual, I then walk the student through the solution of a representative data set. Finally, in Part III of the manual, I include several useful Appendices including a brief introduction to **DOS**, a list of crystallographic literature, and hints on growing single crystals.

6. When Should a Non-Crystallographer Attempt to Solve a Crystal Structure

Some crystallographic purists would argue that the answer to this question is never. Given the trends discussed above, my interest in exposing chemists to the full beauty and diversity of our field, and the pure joy that crystallography can bring, I lean towards teaching anyone with a desire to learn and a sufficient background in math, physics, and chemistry to understand. However, the skeptics are correct in pointing out the deep trouble that a crystallographic neophyte can get themselves into. Therefore, I will focus on helping the students solve the majority of *routine* crystal structures of "chemical interest" and amenable to the efforts of a novice. More complex and "crystallographically interesting" cases (e.g., twinned crystals, recalcitrant data sets, and ambiguous space groups) are observed from 10 to 30% of the time (i.e., depending on a person's luck). However, the successful solution of such cases by an unaided novice is extremely unlikely. Indeed, most experienced crystallographers, and I concur, would

¹⁰ Copies of the **SHELXTL** manual from Bruker AXS (Siemens) are available in the X-ray crystallography lab and can be purchased from Bruker.

Copies of George Sheldrick's SHELX manual come with the program as text files and are also available in the X-ray crystallography lab. It is also available in html format in a version prepared by Dr. Robert McDonald at the University of Alberta (Bob.McDonald@ualberta.ca, http://rocket.chem.ualberta.ca/). To obtain a copy, download and expand the file Shelxhtm.exe, available from our WEB page at http://www.as.ysu.edu/~adhunter/YSUSC/index.html, and use your favorite browser to read it.

say that for a beginner to even attempt them is dangerous (to their mental health if nothing else) and unwise.

For these reasons, and because of my own limited experience as a crystallographer, the solution of more complex crystallographic problems will not generally be addressed here. [Note: Contributions about such topics, especially if they are written by or with the assistance of some of my readers, will be included as appendices to future editions.] Indeed, when I come across such recalcitrant cases myself I tend to consult extensively with my crystallographic colleagues and/or to attempt to sidestep the crystallographic problem using tools more familiar to a synthetic chemist such as myself. My two favorite strategies are attempting to grow new crystals from a different solvent system (i.e., presumably of better quality and/or in a different space group) or synthesizing a derivative of the molecule of interest (e.g., preparing the methyl rather than the ethyl derivative).

7. Data Files to Practice Your Skills On

Mastery of any skill, be it basketball or crystallography, is only accomplished with "practice, practice, practice." While taking a typical crystallography lab course, a student will usually collect only one or a few data sets. This is certainly not enough for the mastery of data collection, however, modern diffractometer control software, especially XSCANS, is so user friendly that this is sufficient to give a student a good start for routine cases. In my experience, after this point a student can be trusted to use the instrument without constant supervision. However, solving only a few crystallographic data sets to give their structures produces a much lower level of mastery. This is because correctly solving crystal structures, and hence crystallographic software, is intrinsically much more complex than is data collection. Indeed, expertise in diffraction analysis comes only after both mastering the theory and solving hundreds of structures (in so doing, gaining "the touch"). Few can hope to obtain this level of mastery. However, a novice can aspire to reaching the point that they can solve routine structures under the guidance of someone more expert than themselves. In my experience, this takes working through a half dozen or more carefully chosen structures, with greater mastery coming with solving increasing numbers. Although diffractometer time limitations mean it is unlikely that most students will collect more than a few data sets, the low cost of personal computers and the speed with which they can process data means that students can be reasonably expected to solve a dozen or more structures as part of a semester long lab course.¹² To help meet this need for annotated data sets, I have collected a selection "well behaved" and more "challenging" data sets that a beginner practice These provided bv mv WEB site can on. are at http://www.as.ysu.edu/~adhunter/YSUSC/index.html. [Note: This site will be fully functional by late November 1998.]

Dear Reader: if you have any favorite data sets you would be willing to contribute (either "well behaved" data sets or data sets illustrating specific common and/or interesting problems)

¹² Indeed, with the provision of one or more "road trips" to a fully equipped diffraction facility, one should be able to do a great job of teaching diffraction analysis even if your school has only a computer lab and some software.

please send them to me in the form of files readable by **SHELXTL** along with any commentary on the solution you believe it would be worthwhile for the students to see.

8. Errors, Short Cuts, and Request for Readers' Help

To keep this manual accessible to crystallographic novices, I have only attempted to cover the basics of crystallographic data analysis. In so doing, I have left out many of the more powerful features of SHELX and SHELXTL which, in my opinion, were unlikely to be safely used by beginners. Also, to keep this manual from getting too intimidating, I have tried to keep the coverage focussed and taken some "short cuts" with my explanations.

I hope that readers who find errors in spelling and grammar, consistency of format, clarity of presentation, accuracy of explanation, etc., while using this manual will let me know. Such advice is invaluable for the regular updates I plan to this manual.¹³

¹³ Such "error messages" are most useful to me and will be more quickly incorporated into revised editions if they list the page, section, and line(s) of each error and suggestions for the correction of each.

B. BASIC COMPONENTS OF AN X-RAY DIFFRACTOMETER

1. Block Diagram of an X-ray Diffractometer

The details of construction of X-ray diffractometers varies from model to model, but they all contain the same basic components. These are illustrated in the block diagram below.

To gain familiarity with the parts of a diffractometer, read the relevant portions of our lecture text and the **XSCANS** manual and inspect our diffractometers in the crystallography lab. Be sure that you can identify their components for yourself. Over the years, increasing automation and the embedding of modern electronics and high technology into all diffractometer components have resulted in major changes to diffractometer design and operation. Our Bruker AXS (Siemens) P4 diffractometers, which were new in 1995/96, are representative of diffractometers in general.

2. X-ray Generators

a) Sealed tube X-ray generators

We have sealed tube X-ray generators on our two P4 systems. In the X-ray tubes of such systems, a high DC voltage is used to accelerate electrons towards a metal anode target. Upon striking this target, the electrons produce a broad background band as well as a series of sharp X-ray peaks. At the kV power levels used, this radiation centered in the X-ray band. The broad Bremsstrahlung radiation is produced as the electrons decelerate inside the metal target. The sharp bands are produced when electrons fall from the n = 2 to the n = 1 quantum shell of the metal atoms after an original 1s electron has been ejected from its orbital by an incident electron. Therefore, the position of these sharp bands will depend on the identity of the metal target. For most purposes, one chooses to use the K_{α} produced by the metal. One of our diffractometers has a Cu tube giving radiation with a characteristic wavelength of 1.54178 Å while our other diffractometer has a Mo tube giving radiation with a characteristic wavelength of 0.71073 Å. Because of its shorter wavelength, the Mo tube gives a much lower intensity X-ray beam than does the Cu tube at the same input power.

These X-ray generators are typically operated at about 80% of their rated power during data collection. This correspond to running the tubes at 40 kV and 40 mA to give 1,600 Watts of total power for Cu and 40 kV and 50 mA for 2,000 Watts of total power for Mo.¹⁴ We typically turn the power level down to its minimum value (i.e., 15 kV and 5 mA) when the systems will be out of use for several days or more. The maximum power level of these tubes is limited mainly by how quickly the cooling water which circulates through the back of the tube can remove the heat the electron beam produces. In our lab, the water from both diffractometers is, in turn, cooled by a single water to water heat exchanger. The cooling power of this heat exchanger is sufficient to cool both diffractometers when the city water which cools it is not too warm. However, in Youngstown we can only use one of the diffractometers at a time in mid Summer when our local tap water becomes quite warm. We will soon add a refrigerated chiller to the heat exchanger to overcome this problem of summer overheating.

b) Increasing the S/N ratio in diffraction data by increasing the data collection time

The signal to noise ratio of observed diffraction data increases approximately linearly with incident X-ray intensity but only with slightly less than the square route of data collection time. Therefore, one needs to collect data at least four times longer to double the signal to noise ratio on a poorly diffracting crystal but one can get the same increase by doubling the beam intensity. A further complicating feature is that crystals decay in the X-ray beam at a rate which is

¹⁴ Bob Sparks has pointed out that if one keeps the same total power setting but increases the voltage and decreases the current one will get a higher X-ray intensity. I will attempt to quantify the magnitude of this increase for a subsequent edition.

approximately linear with respect to time but that shows a much weaker dependence on beam intensity. Thus, one often sees much more radiation induced crystal damage when one chooses to increase the S/N ratio by increasing data collection time than when one increases beam intensity. It can also be hard to justify substantially increasing the data collection time in a busy and/or multi-user diffraction lab. However, it is still true that about the easiest way to increase S/N is to increase data collection time and if your crystal does not show too much decay and there is not too much of a line up to use the diffractometer this is often the route of choice (i.e., we may collect for up to several weeks as opposed to three to seven days for more typical samples).

c) Increasing the S/N ratio in diffraction data by increasing the beam intensity

A more powerful way to increase the signal to noise ratio of your data is to increase the X-ray beam intensity. In our lab, one of the first things we do to deal with weakly diffracting crystals is to turn the X-ray generator to its maximum power for that tube (i.e., 2,400 W for the Mo tube and 2,000 W for the Cu tube).¹⁵ For samples that give insufficient data quality under longer collection time and maximum tube power, the traditional approach is to get even greater X-ray intensity. Since Cu radiation is intrinsically more luminous (with the same total power level), we often use the Cu instrument for samples where the intrinsically higher absorption coefficients of the longer wavelength Cu radiation is not a problem. You may also want to replace the X-ray tube if the old one has lost significant intensities since losses of 50% or even 75% after two or three years are common.

Another approach to dealing with this problem, is to try and prepare better formed and/or larger crystals which will generally give much better quality data sets for the same data collection conditions. This is because diffracted intensity is approximately proportional to crystal volume for most crystals and also increases substantially with crystal quality. Our Mo diffractometer is equipped with a low temperature system. This cools to crystal by blowing a stream of cold gas over the crystal on the goniometer head as data is collected. Using cryogens to cool the gas stream is expensive due to the high boil off rates (i.e., liquid nitrogen is used to refrigerate and generate the cooling gas) and limits the available angles at which data can be collected. However, this type of equipment is relatively inexpensive and the use of lower crystal temperatures can substantially increase diffracted intensities at higher angles (i.e., due to reduced atomic vibrations) where data collection is always slowest. To lower these cryogen costs, one can now purchase somewhat more expensive closed cycle refrigerators for cooling the gas stream. Because the amplitude of vibrations increases dramatically as one nears a crystal's melting point, this improvement is typically greatest for molecular solids which melt at or near ambient temperatures and is least for minerals, metal oxides, etc., which melt at over 1000 °C.

It is worth noting that collecting the thousand reflection having the greatest 2θ angles always takes much longer than collecting the first thousand reflections. Therefore, where the desired resolution of the structure makes this feasible, one of the best ways to increase S/N is to

¹⁵ The X-ray generators are not operated at maximum power to conserve tube life which decreases dramatically with increased total power (and also if the tubes are turned on and off too frequently).

collect a data set out to only moderate angles. Where one needs or desires the maximum resolution in the final structure, one must collect data out to the highest possible angles and simply accept that this will mean a more difficult data collection.

In the most demanding applications where these simpler methods fail, one can use more luminous rotating anode or synchrotron radiation sources. The former can be found in many labs and give up to 15 kW of total power while the latter can be several orders of magnitude brighter. Suitable synchrotron sources are available only at the national labs, however, we have direct access to an instrument equipped with a Cu rotating anode. This instrument is located in the Ohio Crystallography Consortium facility at the University of Toledo and through our founding membership in the OCC we have guaranteed access to it. An alternative method of obtaining increased X-ray luminosity is to add focusing/mirror optics between the X-ray generator and the goniometer. The rotating anode system at Toledo is so equipped.

d) Summary of methods for increasing S/N ratios in collected data

To summarize, several of the most common methods of *increasing the signal to noise ratio*, *S/N*, *in a data set* include:

- Increase the power output of the sealed tube generator (S/N increases linearly with power).
- Increase the data collection time (S/N increases with the square route of time).
- Use a diffractometer/tube with a longer wavelength radiation (S/N increases linearly with incident intensity which increases approximately with the square of the wavelength).
- Replace the X-ray tube if the old one has lost significant intensities since losses of 50% or more after two years are not unexpected (S/N increases of from two to four times are easily observed).
- Grow or pick larger crystals (S/N increases linearly with the crystal volume).
- Grow better quality crystals (S/N increases with increasing crystal quality for typical crystals grown in the lab).
- Collect your data at low temperatures (S/N increases substantially, particularly at higher angles).
- Decrease the maximum 2θ angle (for a given data collection time this will substantially increase S/N but will simultaneously reduce the resolution of the data).
- Use a rotating anode generator (S/N may increase five or six times this way).
- Use a synchrotron source (S/N will increase several orders of magnitude).
- Use focusing/mirror optics after the X-ray generator (S/N may increase up to an order of magnitude)
- Use an area detector to obtain the multiplex advantage (S/N increases of over an order of magnitude easily obtained, especially for large unit cells).

3. Monochromator and Collimator

On our two diffractometers, as on most single crystal machines, we use a graphite crystal monochromator to select the desired K_{α} radiation from the other sharp bands and the broad wavelength distribution produced in the X-ray tubes. We use a tubular collimator to reduce the angular spread on the X-ray beam (i.e., making it more nearly collinear). This collimator contains a pair of disks whose pin hole size limits the size of the incident X-ray beam. We usually use disks having pin hole diameters of 0.5 mm and thus limit the diameter of the homogeneous X-ray beam on our systems to about 0.5 mm. The sets the maximum dimension of the crystals we study.

4. Goniometer and Crystal Orientation

a) Goniometer heads

We typically mount our crystals on the end of a glass fiber attached to an adjustable goniometer head. We use goniometer heads that can be adjusted on three axes so that one can center the crystals in the incident X-ray beam. These heads are numbered and a record *must* be kept at all times on the lab white board of which are in use, by whom, and with which samples. This is because these heads are rather expensive and so their supply is limited in any lab. These goniometer heads are attached to the goniometer on the diffractometers for data collection. They can be removed and remounted without losing the crystal positioning and orientation. One can therefore remove a sample and its goniometer head from the diffractometer (i.e., so that someone else can use the system) and replace it on the goniometer later to do additional data collection. Experience indicates, however, that for novices 10 to 30% or more of the time that one does this one accidentally knocks the crystal off of the goniometer head are removed from and replaced on the diffractometer. In particular, we generally leave crystals on the goniometer until data processing reveals that the data collection is complete.

b) Goniometer

The goniometer is the most expensive component of our diffractometers. This is because it is an extremely finely machined device. It accurately orients the crystal to almost any arbitrary angle with respect to the incident beam, the crystal coordinates, and the diffracted beam.¹⁶ This is done under direction of the host computer which also is able to read the angles of the axes. Diffractometers require movement about four independent axes (ϕ , ω , X, and 2 θ) on systems such as ours equipped with point detectors and two or three axes on area detector systems.

¹⁶ Mechanical constraints limit the observable diffraction angles on our machines to $-xxx^{\circ}$ to $+xxx^{\circ}$ when using the point detectors and much smaller angles when using the area detector. In additions, these same mechanical limitations make some crystal orientations inaccessible, especially when the diffractometer is equipped for low temperature operations.

5. Detectors

a) **Point detectors**

On both of our diffractometers, we have point detectors which are used to measure the intensity of the diffracted X-ray beams. These detectors typically are composed of a phosphor coated screen that converts incident X-rays into visible photons, a photomultiplier tube to amplify the signal, and an analogue to digital converter to produce the digital intensity signal. These detectors are mounted on the sliding rails of the 2θ arms, the same arms that the Polaroid cameras can be mounted on. Our systems are typically used with the detector slid forward to the position on the arm nearest the crystal (i.e., with a crystal to detector distance of xxx Å). However, for crystals having exceptionally large unit cells, and hence having very small angular differences between their reflections, the detector is moved back on the arm further from the crystal.

Modern point detectors have excellent counting efficiencies and dynamic ranges but can only collect diffraction data for one reflection at a time. They do this by scanning through a peak, collecting both background intensity data and peak profiles (from which integrated intensities are calculated) during each scan. The data collection software is programmed such that most reflections are scanned twice. The first scan is done very quickly, typically taking a few seconds, and gives adequate counting statistics only for the strongest peaks. For weaker peaks, the software has the diffractometer scan the peak a second time at a much lower velocity, as long as 60 seconds on our systems, designed to give better counting statistics. The various data files produced in a data collection using such serial detectors typically total from a few to ten or twenty megabytes. After data processing these are reduced to a few megabytes or less.

b) Multi-wire area detectors

Area detectors allow one to collect many reflections simultaneously. The resulting multiplex advantage means that area detectors give inherently quicker data collection for a given crystal, especially if that crystal has large unit cell parameters. The first area detector was simply a stack of X-ray films which after exposure to the X-ray were developed and then the intensities of the peaks were measured using a manual or automated methods. Subsequently, a variety of electronic area detectors were developed. One of the most successful of these was the multiwire area detector. We have such a multiwire area detector available for our Cu machine. It has a 512 by 512 wire array and Xenon detector gas. This detector has an excellent counting efficiency, but like all multi-wire systems it has a relatively poor dynamic range. It also has poor sensitivity for shorter wavelength radiation like that produced by Mo and therefore the more readily absorbed Cu radiation must be used. As a consequence of these limitations, this detector is of limited utility for strongly absorbing single crystals (e.g., those containing the heavier transition metals) and for crystals having a wide range of peak intensities (i.e., small molecule samples). However, it is excellent for the collection of powder X-ray data and for collecting X-ray data on macromolecular

samples such as proteins. We use it extensively for the former purpose and much of the protein diffraction data in the literature has been collected on this type of detector. The various raw data files produced in a data collection using area detectors typically total up to a few gigabytes. However, these large file reduce to the same size as those produced from point detectors after initial data processing.

c) CCD and imaging plate detectors

In recent years, multiwire detectors have been largely supplanted for the study of single crystals by more capable area detectors. Currently, macromolecular crystallographers seem to prefer imaging plate systems while small molecule crystallographers prefer CCD, charge coupled device, systems. This preference is partially due to history but mainly due to the fact that traditionally imaging plate systems were more sensitive to Cu radiation which the protein people prefer and the CCD systems were developed to be more sensitive to shorter wavelength Mo radiation which most small molecule crystallographers prefer. The OCC facility at Toledo has both types of more capable area detectors. The Cu rotating anode/focussing optics system is equipped with a modern imaging plate system is especially useful for macromolecular samples and for small crystals that are not too strongly absorbing. The CCD system is ideal for all weakly diffracting crystals. Both of these systems are available to us through our founding membership in the OCC.

6. Data Systems

a) Room temperature and computer crashes

As anyone who has worked with computers knows, they function best at temperatures below about 70 °F. Unfortunately, in spite of building air conditioning the crystallography lab can get rather warm in mid Summer and this tends to make the computer systems on the diffractometers more crash prone. We are currently in the process of adding supplemental air conditioning to the lab to overcome this problem.

b) Embedded computers

All modern diffractometers contain embedded processors that control the X-ray generator, goniometer, variable temperature system, etc. Fortunately, these processors make the users job easier but are invisible to all but the maintenance personnel.

Modern diffractometers are controlled by an external computer. Our diffractometer uses a Siemens DOS computer. This computer controls all aspects of data collection and if it is not being otherwise used it can also run the SHELXTL structure solution software. Diffractometers may also be controlled by more powerful workstations. The latter are especially popular on area detector systems with their much larger data processing demands while basic DOS machines are entirely adequate to control conventional diffractometers.

d) Computers for structure solution

c)

All modern personal computers are excellent for solving the structures of typical small molecules. For macromolecular structures, high end workstations such as Wintel Windows NT, SGI Unix, IBM RS-6000 Unix, and DEC VMS workstations are still preferred. Because of their cost, their familiarity to most students, their ease of use, and their utility for other chemistry software, we prefer to use the Wintel personal computers in our offices and research, departmental computing, NMR, and X-ray labs for structure solution. Although some quality programs will run on obsolete 386 systems, modern software requires computers that should, at a minimum, have Pentium chips running at 166 MHz, 2 gigabyte hard drives, 32 megabytes of RAM , and ZIP drives or Ethernet connections to the diffractometer. We use such computers running both DOS/Windows 95 and Windows NT in our department. In our department we are currently running **SHELXTL** version 5.1 under DOS and are in the process of installing it on our Windows NT machines.

7. Diffractometer Maintenance

a) Diffractometer maintenance

Modern single crystal diffractometers equipped with conventional Wintel computers, sealed tube X-ray generators, optics, goniometers, and point detectors require remarkably little maintenance. The major operating expenses are cooling water, electricity, and an average of perhaps one day a year of skilled servicing (almost all of which is within the competence of a typical electronics maintenance person) with various minor maintenance chores taking a few additional days of the crystallographers time. The largest expense comes from replacing the X-ray tubes. We find that by normally running them at 80% or less of their peak power and only turning them on and off when they will be out of use for several weeks or more a tube may last upwards of three years before its intensity drops off too far. In busier labs, such tubes typically last from one to three years. Such tubes cost almost three thousand dollars each and their replacement is one of the two trickiest maintenance chore which a diffractometer routinely requires. The other is realigning the diffractometer after a serious "bump", tube changes, etc., causes the X-ray beam path falls out of alignment. Both of these tasks can be carried out by a non-expert with some training and practice.

b) Lab maintenance

As with any other multi-user chemistry lab, without constant care an X-ray lab can quickly become a complete mess. We have found that the areas around the crystal mounting microscope, the sample storage area, the goniometer storage area, and the computers and printers are particularly prone to this "house keeping" problem. Regularly "cleaning" the hard drive on the control computer and archiving the massive amounts of data collected in a lab is also an essential job. We have found it particularly valuable to number each goniometer head and use a "white board" to keep track of who is using it and what samples are mounted on it at all times. The larger task of keeping the mess in the lab under controls remains a small but most annoying part of running a multi-user facility.

8. Comparison to Neutron Diffraction

In principle, the components of a neutron diffractometer are similar to those of an X-ray system and the processing of the resulting data is done similarly. The primary difference in the data processing lies in the fact the nuclei scatter neutrons with a much narrower range of scattering powers (i.e., the normalized scattering factors range from -1.00 to +2.66 for ¹H to ⁵⁶Fe, respectively) and with both positive and negative signs. In contrast, the electron clouds around the nucleus scatter X-rays with a very wide range of scattering powers (i.e., the scattering factors at 0° range from 1.0 for ¹H to 92.0 for ²³⁸U) and always with the same sign. The practical significance of this is that neutron diffraction patterns give much more information about light atoms such as hydrogen and lithium than do X-ray patterns and that neutron data can be used to distinguish isotopes of an element from one another. The fundamental difference in the hardware lies in the fact that the thermal neutrons, which have the appropriate wavelengths of about an Å for diffraction studies, used in diffraction studies are much harder to produce. For this reason, neutron beams of sufficient intensity are not available in "lab size." Instead, they are produced at the beam dumps of accelerators or in specially constructed nuclear reactors. In addition, even the best of these sources produce neutron beams of much lower intensity than the X-ray beam produced by a typical sealed tube generator. For this reason, neutron diffraction typically requires crystals a fraction of a centimeter on a side and data collection times measured in weeks or months.

Dear Readers: If you have any neutron data sets you could provide along with details in how to modify the **name.ins** files to process them with **SHELXTL** I would greatly appreciate it.

C. COLLECTING CRYSTALLOGRAPHIC DATA

1. General Procedures

General procedures for growing single crystals are presented in chapter XIV. Detailed procedures for collecting crystallographic data are outlined with exceptional clarity by the Bruker AXS (Siemens) manual **XSCANS** Software Tutorial/Users Guide and more detailed information is available in their **XSCANS** Technical Reference Manual. We will use the Tutorial Guide as the lab text for the first part of the lab course on data collection.

2. Evaluating Crystal Quality

a) Optical methods

There are several complementary methods for evaluating crystal quality. Perhaps the simplest is inspection of the crystal under both normal and polarizing light using a hand lens or low power microscope. Generally, crystals that have well defined faces and give uniform looking colors under polarizing light are the best candidates for diffraction analysis. However, sometimes "crystals" that have perfect gem like facets show no observable diffraction patterns and hence are really glasses while other samples that resemble nothing so much as a dried lump of dirt diffract exceptionally well.

b) Rotation photos

Taking Polaroid rotation photographs is the next step in evaluating crystal quality. For the diffractometer to be able to collect a reasonable data set under normal conditions, a rotation photograph taken for ten minutes should have spots over its whole area with at least of few weak ones being visible even near the top and bottom edges. These reflections should be well separated from one another and should be single with no streaking.

c) Peak profiles

Once you start centering reflections (i.e., to determining the unit cell) in **XSCANS**, the peak profiles shown on the display should be strong, narrow, and single. By the latter, I mean that they should not have two maxima or any visible shoulders.

3. Collecting the Crystallographic Data

One can use the excellent **XSCANS** manuals that were supplied with the diffractometers for all of the information required to set up the data collection. [Note: I have annotated this manual to include our standard data collection conditions where these differ from those suggested by Bruker AXS (Siemens).]

4. Powder Patterns

One question that is not widely answered in routine crystallographic analyses is whether the crystal one has collected data on is truly representative of the bulk sample. You may have chosen a good crystal that is literally "one in a thousand crystals"! It may have a different space group than the bulk sample, be one of two enantiomers present, or may even be a different compound (i.e., a minor byproduct that just crystallizes out well). Non-crystallographic information can give you some information on this but one shouldn't just rely on ones intuition that "it must be right because its what I wanted/expected." One of the best checks is to take some of the bulk sample, grind it into a powder, and collect its powder diffraction pattern. This can be compared with a powder diffraction pattern calculated for your crystal by the **SHELXTL XPOW/XFOG** subroutines. If the two powder patterns are identical, one can be much more confident that your crystal is truly representative of the bulk sample.

D. BRIEF DESCRIPTIONS OF THE MAJOR PROGRAMS INCLUDED IN SHELXTL

SHELXTL is a commercial software package from Bruker AXS (Siemens) for the solution and refinement of X-ray crystal structures and the preparation of these results for publication. It is based on George Sheldrick's **SHELX** core (currently the **SHELXTL–97** versions) and is composed of many individual components. Each of these programs serves a different function in the overall structure determination problem. Below, the key programs are briefly identified and the data files used by, and produced by, each is given.

1. General Capabilities

The **SHELXTL** package is capable of dealing with up to five thousand atoms for structure refinement and twice that for other calculations. On any decent personal computer, each cycle of calculations on small molecules typically take only a few seconds or minutes to complete. On the other hand, analyzing the results of each cycle takes many times (sometimes many orders of magnitude) longer. Even with routine structures, the speed of data analysis is almost entirely dependent on one's level of expertise and not on the speed of calculations.

2. XPREP for Data Preparation

This program is used to prepare the data one gets from the diffractometer (i.e., from **XSCANS** for our P4 diffractometers) for solution. It is used to determine the space group, modify unit cell contents, do absorption corrections, and scale and merge data sets, etc. It then writes the files needed by later programs.

Input: name.raw, name.p4p, and name.psi from XSCANS

Output: name.ins and name.hkl to XS/XL

name.prp as a log file

name.pcf for use in XCIF

3. XS for Trial Solutions

This program provides preliminary trial solutions for the positions of the first and/or heaviest atoms by either Direct methods or Patterson methods.

Input: name.ins and name.hkl from XPREP

I-34

Output: name.res as the results used for XP

name.lst as a log file

4. XL for Structure Refinement

This program carries out the iterative structure solution based on the experimental structure factors and crystal data and the atomic identities, positions, and displacements present in the model to be refined.

Input: name.ins and name.hkl from XS or previous XL cycles via XP

Output: **name.res** as the results used for **XP**

name.lst as a log file

name.cif and name.fcf after 'ACTA' command is used in the name.ins file

5. XP for Data Analysis and Graphics

This interactive program is used for examining the output from **XS** and **XL** calculations. It is used to assign atom identities, to visualize molecular and crystal structures, and to check these for "chemical reasonableness." It also provides a suite of interactive graphics and is used to produce publication quality plots of the final structure.

Input: name.res from XS or XL

Output: name.ins for XL

name.ort for orthogonal(Cartesian) coordinates

name.plt where PLT = a, b, c, etc. as plot files

6. XCIF for Table Preparation

This program is used for producing publication quality tables of data describing the final crystallographic results.

Input: name.cif, name.pcf, and name.fcf from XPREP and XL

Output: name.ang, name.def and name.sft for publication

7. Chi90 for Psi Scans

This non-Bruker AXS program (it was written by Doug Powell (<u>powell@chem.wisc.edu</u>) at the University of Wisconsin) is used to calculate which reflections should be used for ψ scans.¹⁷

Input: **name.raw** and **name.p4p**

Output: name.chi which you edit to give name.psr

8. XPS for Fragment Searches

This program is used to help carry out structure solutions using fragment searches (i.e., by positioning a phenyl ring or octahedral metal center at various orientations and positions in the unit cell). Its use is described in chapter 7 of the Bruker AXS (Siemens) manual.

Input: name.inp and name.pat

Output: name.rep and name.lst

9. XPOW and XFOG for Simulated Powder Patterns

This pair of programs can be used to calculate what the powder diffraction pattern. **XPOW** does this from the **name.hkl** file which you have generated in **XPREP** or simulated in **XFOG**. **XFOG** uses the unit cell parameters, the symmetry of the space group, and the atomic parameters to calculate a simulated **name.hkl** file for this compound.

Input: **name.hkl** and/or information from **name.ins**

Output: name.plt and name.pow (the latter is the simulated name.hkl file from XFOG)

¹⁷ These ψ scans are needed for samples containing highly absorbing elements, most organometallics and inorganics, and for "oddly" shaped crystals where the crystal dimensions are very different (e.g., needles or "chunks"). For more ideally shaped crystals (and many crystallographers contend in general) the face indexing method of correcting for absorption is preferred.

E. BRIEF DESCRIPTIONS OF THE MAIN FILE TYPES USED BY SHELXTL

1. A Short Note on the Naming of Compounds in Our Labs

To make the "book keeping" of structures in a multi-user environment easier, we have imposed a standardized and informative name for each structure. The "name" part of each file description is an 8-character code. The first 7 characters identify the sample with a 2-character year code, a 3-character user code (your initials), and a 2-character sample code. This is followed by a one character code that identifies the individual crystal and structure solution attempt. A typical example is as follows:

2. The Main File Types Generated by SHELX and its Component Programs

name._lg This file contains a log of everything you've done and all of the data you've collected.

name.ang This file contains the tables of structure solution parameters, coordinates, bond lengths and angles, etc., for publication. It is produced as the default option by **XCIF** or when the 'ang' option is selected. It produces tables in **SHELXTL** XTEXT format in units of Å. [Note: In previous editions of this manual this file was referred to as **name.tbl**.]

name.chi This file is produced by Chi90 and is a listing of this program's choices for the best reflections to use for ψ -scans.

name.cif This is a CIF format file produced by **XL** that contains crystal data, atoms, and refinement results. It is used by **XCIF**.

name.def This file is produced by **XCIF** while producing tables when you choose the 'def' option. It saves the selected tables in ASCII format for easy input in MS WORD, etc.

name.fcf This is a CIF format file produced by **XL** that contains the observed and calculated structure factors. It is used by **XCIF**.

name.hkl This file contains the reduced reflection data (i.e., after corrections or Lorenz and polarization effects (i.e., Lp effects), decay, merging, absorption, etc.). Initial processing of data gives a list of reflections, each entry containing h, k, and l indexes and corresponding
"intensity" data in the form of I and $\sigma(I)$. These numbers are the integrated intensity of each reflection and the estimated standard deviation in this intensity. This file is produced by **XPREP** from **name.raw**, **name.psi**, etc. This data will be treated differently in **XS** and **XL** refinements depending on the **HKLF** code used: an **HKLF 3** code causes the data to be treated as F and $\sigma(F)$ while an **HKLF 4** code causes the data to be treated as F^2 and $\sigma(F^2)$ (where F is the structure factor for each reflection and $\sigma(F)$ is its standard deviation). [Note: For reasons discussed below, anthrogenic crystals typically have intensities almost proportional to F^2 while minerals typically have intensities more proportional to F.]

name.ins This file contains the input instructions to be used for **XS** and **XL** including the molecular formula, Z number, space group, equivalent positions, any assigned atoms, extinction and weighting parameters, etc. It is produced by **XPREP** from the data in the **name.p4p** file and based on your choice of space group, etc.

name.int This is the backup copy that you make of the initial **name.ins** file from **XPREP**. [NOTE: It is often useful to make a second backup file of **name.ins** called **name.inz**.]

name.lst This is essentially a log file of what **XS** or **XL** has done during the most recent refinement cycle.

name.ort This is an orthogonal(Cartesian) coordinates file that is generated by XP.

name.p4p This file contains a summary of all the data you've put in about the sample (e.g., color, size, temp.) as well as all the data collection parameters (e.g., unit cell dimensions, 2θ range, identities of standard reflections, the list of up to 100 centered reflections).

name.p4t This file contains the raw X-ray data including all of the angle data and each of the peak profiles for data collected in the theta/2theta mode (which we always use). The data reduction procedure in **XSCANS** converts this to **name.raw**.

name.pcf This is a data file in CIF format (i.e., for use in generating tables, Acta Cryst., etc.) used by **XCIF**. It is generated by **XPREP**.

name.plt (e.g., **name.a**, **name.b**, **name.c**) These are plot files that contain pictures of your molecule and are most commonly generated from 'telp' in **XP** and plotted by 'rast' or 'rast/c' in **XP**. Other types of **name.plt** files include plot files from other **XP** routines and simulated powder patterns from **XPOW**.

name.pow This is the simulated .hkl file generated by **XFOG** and used in **XPOW** to calculate powder patterns.

name.prp This is the log file from **XPREP**.

name.psi This file contains the reduced ψ -scan X-ray data. The reduction procedure in **XSCANS** converts **name.pst** to **name.psi**.

name.psr This file contains a list of the hkl indices for each of the reflections used to collect ψ -scan data. It can be calculated automatically by **XSCANS** or separately using **Chi90**. (Note: The **Chi90** program must be used for low temperature data collections.)

name.pst This file contains the raw ψ -scan X-ray data including each of the peak profiles. The reduce command in **XSCANS** converts this to **name.psi**

name.raw This file contains the reduced data set for each reflection measured. It contains at least hkl, I, $\sigma(I)$ for each reflection rather that the peak profile and angle information found in **name.p4t**. If you want to be able to correct it for absorption, it must also contain the direction cosines. The reduce command of **XSCANS** converts **name.p4t** to **name.raw**. **XPREP** converts **name.raw** to **name.hkl** after suitable corrections have been applied.

name.res This is the output file from **XS** and **XL** that contains the old assigned crystal data and atomic positions used in the last run and new calculated positions for the Q-peaks. **XP** converts this file (after assignments of atoms, etc.) to **name.ins**.

name.sft This file contains the table of structure factors for publication. It is produced by **XCIF**.

F. FLOW CHART FOR A TYPICAL X-RAY STRUCTURE SOLUTION

CHAPTER II. DATA PREPARATION USING XPREP

A. XPREP

Data preparation is done using this interactive menu-driven program. It duplicates some of the functions of the later stages of the diffractometer program, **XSCANS**, especially its Space Group Determination and Generation of SHELXTL Files chapters (numbers 22 and 23, respectively, in version 2.2 of the tutorial manual). **XPREP** uses the files **name.p4p**, **name.raw**, and **name.psi** (if you are doing empirical absorption corrections). It produces a log file, **name.prp**, a file for **XCIF**, **name.pcf**, and **name.hkl** and **name.ins** for **XS**.

From Unit Cells Through Symmetry to Space Groups

B. BEFORE STARTING YOUR WORK WITH SHELXTL BACK UP YOUR FILES (!!!!)

Copy <u>at least</u> the data files **name.p4p**, **name.raw**, and **name.psi** from the diffractometer PC onto a <u>new</u> labeled diskette(s) (the other **name.*** should be copied as well). <u>WRITE</u> <u>PROTECT</u> this diskette, it is your emergency backup!!!!! Load these files into a new directory (just for this compound) on the hard drive of the PC where you will do the solution. To copy your files from the data collection computer to your backup floppy, place your disk in the floppy drive and then type:

copy name.* a:*.* [ent]

To copy your files from your backup floppy to the processing computer, place your disk in the floppy drive and then type:

c: [ent]

This tells the computer to go to the C drive, the main hard disk on our systems.

cd \ [ent]

This command takes you to the main directory on drive c.

md c:\C832\YOURNAME\COMPOUND [ent]

This makes a new file, where YOURNAME is up to 8 characters of your name, and **COMPOUND** is up to 7 characters identifying the sample (i.e., **95ADH01**, Note: There is no trial number).

cd c:\C832\YOURNAME\COMPOUND [ent]

This puts you into the directory for your compound.

copy a:*.* [ent]

This copies the data on your backup floppy disk to this directory. Repeat for each of your backup disks.

dir [ent]

This gives you a directory of the contents of this file. Ensure that all of your files were copied.

C. USING XPREP TO PREPARE YOUR DATA

This package will provide you with information to help you choose the correct space group, absorption correction, etc. Usually, here and later, you can accept its default choice (i.e., the program's best guess). You do this by hitting enter.

To start **XPREP**, type:

XPREP name [ent] (where name is the 8 character code for your data set)

To accept the program's choice press the enter key, i.e.,

[ent]

1. Using XPREP to Determine the Correct Space Group

If you want to try a different crystal lattice type, type in the code for that lattice (i.e., to change the lattice type to "C" type the c key followed by the enter key), i.e.

c [ent]

Note: The first choice above accepts the computer's choice while the second overrides it to choose lattice type C. The package then shows the current data on the crystal/sample at the top of the screen and a list of options in the middle of the screen. It prompts you as to which option is typically run next.

For us, we typically Search for Higher Metric Symmetry next, i.e.,

H [ent]

The program gives you information on the current unit cell and then gives you some choices for other potential cells. Usually go with what it suggests, e.g.,

A [ent]

The program then updates the information on the current crystal/sample and gives you the list of options again.

For us, we typically Determine or Input Space Group next, i.e.,

S [ent]

You then have a chance to tell it if the sample is chiral (i.e., it had been previously resolved) or not, to input a known space group, or to Determine the Space Group, normally we choose the latter, i.e.,

S [ent]

It gives you the choice of crystal system (e.g., Triclinic, etc.), typically we accept its choice, e.g.,

A [ent]

You then have a choice to *change the lattice exceptions* (i.e., P, A, C, etc.), typically take its choice, e.g.,

P [ent]

It then goes through information about possible systematic absences, statistics on whether it is likely centrosymmetric, etc., and gives you choices for space group. You normally choose the one it does and in particular you usually want the highest symmetry space group that is reasonable with a low CFOM (i.e., combined figure of merit) and one that is quite common in the CSD (i.e., the Cambridge Structural Database),¹⁸ e.g.,

A [ent]

You now have assigned the space group.

2. Using XPREP to Define the Unit Cell Contents

You now need to define the unit cell contents,

C [ent]

It tells you the current formula and Z value, the calculated density (rho) and non-H atomic volume (should be about 17-20 Å³/non-hydrogen atom), and the unit cell contents. You can modify the formula (if it was wrong in **XSCANS** or you have had new data), or Z value, or the radiation (in rare cases). To accept current values when you are done.

E [ent]

This gives you an updated data table. <u>Write Down</u> the calculated absorption coefficient μ (i.e., the last entry, Mu[mm⁻¹]:x), you'll need it for the absorption correction in the next section.

18

The CSD and CCDB are two terms for the same electronic database housed at Cambridge.

3. Using XPREP to do Absorption Corrections

At this point the default is to write **SHELXTL** files. However, you will usually want to do *absorption corrections*. One should be careful in applying absorption corrections if you don't have a good unit cell formula as this can actually hurt the quality of the solution.¹⁹ To carry out the absorption corrections, enter

A [ent]

Depending on how you collected your data, you collected the information needed to do face indexed or ψ -scan absorption corrections. In this lab class we always collect the ψ -scan data and only face index the crystal where time permits and the crystal is appropriate. To process the ψ -scan corrections use:

P [ent]

It then asks you several questions where you normally accept its choices (but check that the choices it makes are physically reasonable! When in doubt, ask the instructor.).

[ent] [ent] [ent] [ent] [ent]

It then chooses a subset of your reflections to try out the different absorption correction models. You then have a choice of the Lamina or Ellipsoid Models (the former is best for many flat plates, the later is best in most other cases). For the ellipsoidal model:

E [ent]

You then try different values of $\mu \ge r$ (i.e., μ times r) where μ (i.e., mu) is the absorption coefficient and r is the average crystal diameter. You try and vary $\mu \ge r$ to minimize R(int) (the agreement between the intensities of equivalent reflections) and to maximize the (maximum transmission)/(minimum transmission) ratio. Sometimes it seems that you can't get both of these to vary the way you want them to. In that case, stick with minimizing R(int). Typically, the "true" $\mu \ge r$ should be used where the μ is the absorption coefficient calculated by the program (and which you wrote down earlier) and r is your average measured crystal diameter. Also, try to get a spread of max and minimum transmission factors similar to those you observed in your experimental ψ -scan plots. Example

0.2 [ent] N [ent] R [ent], etc. to calculate several values with the one finally chosen having say 0.3 [ent] Y [ent] P [ent] to process the data.

¹⁹ Where the formula for the unit cell is uncertain, or when you later find out that the one you initially chose was incorrect, you should not do the absorption correction at this point (or at least you should not trust it to be totally accurate). Instead, you should: (1) skip the absorption correction (or apply it with caution), (2) solve the structure using the uncorrected structure factors to get a better idea of the unit cell contents, (3) use the resulting unit cell contents to do a quality absorption correction, and (4) repeat the structure of the structure with the improved structure factors.

You next input the name of the raw data you want to have corrected i.e.,

name.raw [ent]

and the program corrects all that data.

You can do this to several data sets (i.e., different shells or from different crystals of the same compound) and then merge the corrected data. Then exit this step:

E [ent]

4. Using XPREP to View Reciprocal Space Plots

It is always advisable to check the absences in your experimental data by comparing "reciprocal plots" (available in **XSCANS** or **XPREP**) against the systematic absences expected for the chosen space group (available in the International Tables). Any significant differences should lead you to strongly question your space group assignment. One of the choices in the main XPREP menu is view reciprocal space plots (i.e., **[R] RECIPROCAL space displays**). If you choose this selection it will display reciprocal space intensity plots for any of the planes perpendicular to the crystal axis for your inspection.

5. Using XPREP to Set Up the SHELXTL Input Files

Next, you want to set up the input files for SHELXTL, i.e.,

F [ent]

You have to give an output file name. It is best if the 8th character in this is different from the raw data (i.e., if raw data was **95ADH03a**, you should use **95ADH03b** for the corrected data name) i.e.,

name [ent]

The program then shows you the projected contents of the **name.ins** file and asks you if you want to overwrite **name.hkl**.

Y [ent] (Note: This is <u>not</u> the default setting)

At this point you can easily go back to other possible space groups suggested earlier and make each with its own name (i.e., **95ADH03c**).

Q [ent] to quit

6. Duplicate and Backup Your SHELXTL Input files

You now have generated the **name.ins** and **name.hkl** files needed by **XS**. It is a good idea to make two backup copies of the INS file, (i.e., the **.int** and the **.inz** files):

COPY name.ins name.int [ent]

COPY name.ins name.inz [ent]

This will help you run both Patterson and Direct methods, if required, or retry one without having to rerun **XPREP**.

Make sure you back up these SHELXTL input files on your floppy disks.

CHAPTER III. FINDING TRIAL SOLUTIONS TO THE "PHASE PROBLEM" USING XS

A. THE PROGRAM XS

1. Basic Features of XS

The program **XS** is used to generate trial solutions to the phase problem. In essence, it uses of number of different methods to try and guess the identity and location of at least one of the atoms in your crystal. If it does this successfully, then analysis of this result by **XP** and subsequent refinement cycles by **XL** will eventually allow you to find all of the other atoms. The two most common approaches used by **XS** to do this are *Direct methods* and *Patterson methods*.

2. Direct Methods and XS

Direct methods is an approach based on statistical analyses of the intensities of the name.hkl reflections to find the most probable phase relationships. The automated Direct methods solutions from XS usually generates 10+ atoms as Qs. [Note: These Qs are peaks of presumed electron density found in the calculated electron density map.] Direct methods is most useful for organics or metal containing compounds where one atom isn't "too heavy" relative to the rest. It is less workable for 2nd and especially 3rd row transition element compounds and organics with heavy atom substituents. It also requires a relatively large number of observed reflections out to moderately high angles. This is not typically a problem for crystals of acceptable size and quality and where sufficient data collection time is available. It typically assigns several of the stronger peaks to the heavier atoms and gives a list of Q peaks in descending order of intensity. These assigned atom types are often incorrect and their exact identities should be treated with caution. However, the relative geometry's of the peaks (i.e., the presence of an octahedral coordinated metal center or a naphthalene ring) are generally much more reliable. On the first round, you should be very conservative in your assignments. Just pick out the few heaviest atoms or the substructures you are most sure about. For most molecules, Direct methods is the route of choice for finding a trial solution and for this reason it is the default **XS** program choice.

3. Patterson Methods and XS

The automated *Patterson method* used by **XS** is particularly suitable for structures dominated by one or a few heavy atoms (e.g., for transition metal coordination and organometallic compounds and organic compounds with a few "heavy" atoms such as P, S, Cl, Br, and I). Its output usually assigns tentative positions and identities for 1 to 8 of the heavier atoms. For organometallics/inorganics, one can often assign the metal and attached "heavy"

atoms by their shape and distances while for organics the "heavy" atoms typically show clearly. As with *Direct methods*, in many cases it will get the exact choices of these atoms wrong (e.g., it will confuse a Cr with a S or a O with a N). However, these mistakes are easily corrected within **XP** when analyzing the **XS** output (typically by running the 'pick' routine).

4. Setting Up and Running XS

The generation of the initial trial solutions for data refinement is done by **XS**. It uses the files **name.ins** and **name.hkl** files produced by **XPREP**.

Before starting. Ensure that you have made a backup copy of **name.ins** as **name.int**, i.e.,

copy name.ins name.int [ent]

Make a copy of all your files with a new 8 character name (e.g., if your raw data was **95ADH03a** and the ψ -scan corrected data from **XPREP** was saved as **95ADH03b**, make a copy **95ADH03c** on which to try solutions.

copy name.* name **¢*** [ent]

(Where **name** \$\mathcal{G}\$s the new file name you've chosen for the data analysis run.)

To run **XS** type:

XS name [ent] (Where **name** is your new 8 character name for this run.)

This produces a **name.res** file for use in **XP** (it has trial assigned atoms and Q peaks (these are peaks in the calculated electron density map that have not yet been assigned)) and **name.lst**, a log file of what **XS** did.

B. SETTING XS TO CARRY OUT A DIRECT METHODS OR PATTERSON SEARCH, THE NAME.INS FILE.

The default **name.ins** file from **XPREP** has a line of text (referred to for historical reasons as a "card") that says 'TREF'. This line sets **XS** up to do a Direct methods search for a solution just as the command 'PATT' on the same line sets XS up to do a Patterson solution. You can change this command line by editing this input file, i.e.

edit name.ins [ent]

You then use **XP** and later **XL** to see which give the best guess for the trial solution **XS** produces. [Note: the only difference in the two input files for a Direct methods and a Patterson methods run is the TREF vs. the PATT line.] *See the following sections and our text book for more information on the nature of Direct Methods and Patterson Methods*. Below are examples of two typical input files set up for the compound 95adh06e, $(\eta^6-1,2,3-(OMe)_3-5-(CO_2Me)C_6H_2)Cr(CO)_3)$, by XPREP.

The input file, **95adh06e.ins** (i.e., **calctest.ins** see chapter IX), for a *Direct methods* solution on **95adh06e** by the program **XS**

TITL 95adh06e in P-1
CELL 0.71073 7.5265 10.0508 10.7429 97.271 108.116 99.782
ZERR 2.00 0.0003 0.0005 0.0005 0.004 0.004 0.004
LATT 1
SFAC C H O CR
UNIT 28 28 16 2
TEMP -50
TREF
HKLF 4
END

The input file, **95adh06e.ins** (i.e., **calctest.ins** see chapter IX), for a *Patterson* solution on **95adh06e** by the program **XS**

TITL 95adh06e in P-1
CELL 0.71073 7.5265 10.0508 10.7429 97.271 108.116 99.782
ZERR 2.00 0.0003 0.0005 0.0005 0.004 0.004 0.004
LATT 1
SFAC C H O CR
UNIT 28 28 16 2
TEMP -50
PATT
HKLF 4
END

C. LISTING OF THE MOST COMMON XS COMMANDS.

The **XPREP** program sets up the **name.ins** file for each structure automatically for you. In particular, it uses the information in its input files to put the following information in the **name.ins** file for use by **XS**. The program **XL** uses many of the same commands. These are modified by editing the instruction file for your data set (i.e., the **name.ins** file).

Note: the $\langle ctrl l \rangle$ key stroke combination (i.e., the control and "ell" keys being depressed simultaneously) causes **XS** and **XL** to stop at the next safe moment and results in all of the data that has been calculated being stored in the required files. The $\langle ctrl c \rangle$ key stroke combination (i.e., the control and "c" keys being depressed simultaneously) causes **XS** and **XL** to stop immediately and results in all of the data that has been calculated being lost.

Line Number in .ins file	Command and Page in the SHELXTL Manual ²⁰	Variables and Explanation
1 st line	TITL	This line contains the name and space group of the sample, written in
	5-4	plain text.
2 nd line	CELL	l a b c a b g
	5-4	The wavelength of the radiation used and the unit cell axial lengths and angles.
3 rd line	ZERR	$Z \operatorname{esd}(a) \operatorname{esd}(b) \operatorname{esd}(c) \operatorname{esd}(\mathbf{a}) \operatorname{esd}(\mathbf{b}) \operatorname{esd}(\mathbf{g})$
	5-4	The number of formula units in the unit cell and the estimated standard deviations in the unit cell axial lengths and angles.
4 th line	LATT	N
	5-4	The lattice type (i.e., 1 for primitive (P), 2 for body centered (I), 3 for rhombohedral obverse, 4 for face centered (F), 5 for A centered (A), 6 for B centered (B), or 7 for C centered (C). For non-centrosymmetric space groups N is a negative number while it is a positive for a centrosymmetric space group.

²⁰ These page numbers are taken from the Bruker AXS (Siemens) reference manual for **SHELXTL**, version 5.1.

5 th line	SYMM	The following values are the symmetry operations for that space group.
	5-4	They are the "general positions' of the space group taken from the "International Tables" and they can be used to convert any random
		position in the unit cell (i.e., X, Y, Z) into all its equivalent positions. For
		some high symmetry space groups this may correspond to many lines of
		SYMM codes. For the low symmetry triclinic space groups this line is
		absent. [Note: the identity operation, operations related by a center of
		symmetry, and cell centering operations should be omitted if this line is filled in my hand. They are not placed here by VPPFP .
		inted in my hand. They are not placed here by AI KEI .]
6 th line	SFAC	element symbols
	5-5	This line gives the symbols for the elements present in the crystal. The
		first two elements are always C followed by H (if they are present). The
		each atom type when it is doing calculations
7 th line	UNIT	number of atoms of each type in the unit cell
	5-5	These numbers have to be in the same order as the SFAC lists.
		NOTE: THE ORDER OF THE ABOVE SEVEN LINES MUST
		NOT BE CHANGED AND YOU CAN'T INSERT ANY OTHER
		COMMAND LINES IN HERE OR AS WILL CRASH.
8 th line	TREF	The command for a Direct methods structure search (see the previous
	5-10	sections).
	or	
	PATT	The command for a <i>Patterson methods</i> structure search (see the previous
	6-1	sections).
9 th line	FMAP	This line is inserted by XPREP and helps XS to carry out the Fourier
	5-8	peak calculation. You don't need to worry about this one.
1		

10 th line	HKLF #	This line tells XS and XL to read the reflections from the name.hkl file
or	5-9	and how to treat the I and $\sigma(I)$ data in the name.hkl file. When $\# = 3$
	•	(i.e., HKLF 3), XS and XL treat the intensity data as F and σ (F). When #
		= 4 (i.e., HKLF 4), XS and XL treat the intensity data as F^2 and $\sigma(F^2)$.
		[Note: Intensity is proportional to F^2 in ideally imperfect crystals (i.e., as
		described in the kinematic diffraction model) but because of extinction's
		the dynamic diffraction model) Real crystals behave somewhere between
		these extremes but those typically grown by synthetic chemists more
		closely resemble kinematic diffraction. Interestingly, mineral crystals,
		which grow many orders of magnitude more slowly than do
		anthropomorphic crystals, behave more like perfect crystal and extinction
		effects are much bigger for them. Thus, anthrogenic crystals are typically
		refined with HKLF 4 mode while mineral crystals are refined with
		HKLF 5.]
11 th line	END	This line tells XS that all required commands have now been read.
	5-10	
		The following lines <i>might</i> be put in before the HLKF 4 command if
		needed.
	MORE	0 or 1 or 2 or 3
	5-6	This command can be used to vary the verbosity (i.e., level of detail) of
		the output files (e.g., name.lst) with 3 being the most verbose.
	OMIT	This command can be used to omit reflections based on the angle they
		were collected at, their signal to noise ratios, and their index values.
	5-6	
	PLAN	This gives the number of Fourier peaks (Q peaks) that will be written to
	5-8	the name.lst and name.res files for later use by you and XP .
	REM	text on the same line
	5-5	This text isn't used by XS but is output onto the name.res file. It is a
		useful way to make comments to yourself.
	SIZE	The three dimensions of the crystal. This data is placed in the CIF file.
	TEMP	The temperature of the data collection. This data is placed in the CIF file.
	TIME	TIME t
	5-6, 12-4	This command sets the maximum time (t in seconds) for the XS or XL
		run. After this time has been exceeded, this command causes these
		programs to gracefully stop at the end of the current cycle.

Examples of the uses of these commands are given in the proceeding and following sections.

D. RUNNING XS TRIAL SOLUTION SEARCHES

The contents of each line in the input file, **95adh03e.ins**, for a *Direct methods* solution on **95adh03e** by the program **XS** are shown below as an example.

TITL 95ADH03E in C2/c CELL 0.71073 24.115 6.155 15.924 90.00 99.92 90.00 ZERR 8.00 0.001 0.000 0.001 0.00 0.00 0.00 LATT 7 SYMM -X, Y, .5-Z SFAC C H N O CR UNIT 88 96 16 24 8 TREF FMAP HKLF 4 END

To use this to run **XS** on your data set, go to the **DOS** directory containing your input files for that compound (i.e., **95adh03e.ins** and **95adh03e.hkl**) in the above case.

XS name [ent]

This would then set up and run **XS** for your files. This typically takes a few seconds to a few minutes. Note: just use the eight letter name for your compound (i.e., without the **.ins** extension). For this particular example one would type:

XS 95adh03e [ent]

For a detailed discussion of the application of *Direct methods* by **XS**, see pages 5-10 to 5-20 in the Bruker AXS manual.

A detailed example of the use of XS and XL to solve the structure of calctest , (h^{6} -1,2,3-(OMe)₃-5-(CO₂Me)C₆H₂)Cr(CO)₃, is given in chapter IX.

E. EVALUATING THE QUALITY OF THE RESULTS FROM XS

1. Using R Factors to Evaluate the Success of XS.

The **XS** output printed to the **name.lst** file and the computer screen includes several parameters that are useful in telling you if **XS** gave a productive result (i.e., one that is likely to lead to the finding of all of the non-Hydrogen atoms). One of the most important classes of these is the calculated R factors. An R factor is the "residual index" and it is found near the end of the **name.lst** file and the data displayed on the screen. The theoretical value for the R factor is 0.83 for centrosymmetric structures and 0.59 for non-centrosymmetric structures for random atomic placement in the unit cell. *In practice, if the R factor after XS is not somewhat less than about 0.5 you will seldom get a solution that will refine to give you the molecular structure*. Indeed, unless you are desperate this **XS** result is not worth pursuing. Instead, run **XS** again with different input parameters (i.e., PATT vs. TREF). For this purpose, I pay the most attention to the first R factor printed out by **XL** which is the one for the subset of reflections having Fo > 4 σ (Fo). In my experience this is typically about 0.46 or smaller if even one heavy atom is assigned correctly.

2. Using XP to Evaluate the Success of XS

The routine **XP** is also used to evaluate if the trial solution produced by **XS** is likely to be useful. Load the results of **XS** into **XP**, e.g.

XP name [ent] fmol [ent]

info [ent] or mpln [ent]

proj [ent]

Use the view in 'proj' to see if any chemically reasonable parts of the molecule "leap" out at you. [Note: Sometimes in more complicated structures this is easier to see if you first delete most of the weakest Q peaks, especially those below the intensity "drop off."] The utility 'bang' can also be useful for this. If even one of the peaks put out by **XS** is real, and you assign it correctly using 'pick' and then save the results using 'file' then the following **XL** cycle almost always will show that you are on your way to the correct structure.

F. WHAT TO DO IF XS FAILS TO GIVE A REASONABLE SOLUTION

When XS fails, as it can for even what are expected to be the simplest structures, then one typically has a hard road ahead. The first thing to try is to make sure you have given both *Direct methods* and the *Patterson method* a shot. Major problems can arise if you have chosen the wrong space group or if your crystal is twinned. If this is what has happened, working this out can be a very tough challenges for even an experienced crystallographer. What even a novice can do is check that the volume of the unit cell per non-Hydrogen atom is reasonable. This value is typically about 18 Å³/non-hydrogen atom but ranges up to 20 or 30 for molecules with many heavier elements and down to about 13 for highly condensed structures such as polycyclic aromatic hydrocarbons. The value of R(int) is the average difference in intensities for sets of crystallographically equivalent reflections. Ideally, R(int) should be near zero with the deviation from zero being due to random statistical fluctuations in the peak intensities. However, in the real world it should be less than about 0.1 for quality data that has been correctly processed. A higher value may indicate the wrong space group was chosen and/or that a poor absorption correction was done (i.e., on a very non-spherical crystal). Similarly, the value of $|E^2 - 1|$ should be close to 0.968 and 0.736 for centric or acentric space groups, respectively.

1. Things to Check When Direct Methods Fails

This question is discussed at some length in the SIEMENS manual on pages 5-19 to 5-21. A special problem for *Direct methods* is the data quality. A successful Direct methods solutions requires adequate signal to noise ratios out to sufficiently high angles. If less than about half of the possible peaks are observed in the range of 1.1 to 1.2Å resolution (i.e., $\lambda/2\sin\theta$ which corresponds to θ angles of about 18 and 42 degrees for Mo and Cu, respectively) then *Direct methods* seldom works. Similarly, data should be collected out to sufficiently high angles of 2 θ that the maximum index values of the collected reflections have values that are about equal to or greater than the unit cell axial lengths in Å. [Thus, if the unit cell had axial lengths of 6.6, 7.3, and 13.2 Å then one should have collected X-ray data out to reflections with indexes of at least about 7, 8, and 14 in h, k, and l, respectively.] It can also have problems if a heavy atom is near, but not on, a symmetry element in the unit cell.

2. Several Ways to Finesse Direct Methods

a) Use more brute force in your Direct methods calculation

Sometimes it pays to use brute force with *Direct methods*. To do so, change the **TREF** card in the **XS** input file (i.e., **name.ins**) from its default value to one that is more powerful but also much slower, e.g.

TREF 2000

or even

TREF 10000 50

[Note: What you are doing is increasing the number of **TREF** cycles (i.e., to 2,000 or 10,000, respectively) and changing the nE option in the **TREF** card (i.e., Jeanette Krause Bauer reports that values from 30 to 100 work for her and suggests 50, see above). Then, rerun **XS** with this more powerful version of the *Direct methods* routine.

b) Pick some of the other suggested Direct methods solutions

The *Direct methods* calculations in **XS** does not just find the single solutions present in the **name.res** file. Instead, it finds a large number of different solution that are listed near the middle of the **name.lst** output file for **XS** which is indicated by a * after its CFOM value (see chapter IX section A3 for an example of such a **XS** output file). **XS** chooses the "best" solution number (in the case of the example # 1155913 with a CFOM = 0.0806) for its subsequent analyses (i.e., it chooses the one with the best CFOM and semi-invariants). [Note: this is typically the last solution shown.] However, typically several other solutions have CFOM values which are almost as good (e.g., solutions 602457, 1522673, and 235117 in the example). One can often use one of these other solutions to get a better initial model. This is done by visually picking another good solution and then rerunning **XS**²¹ with the **TREF** line edited to read:

TREF -solution # (e.g., **TREF -602457** in the example). [Note: There should be a negative sign before the solution number.]

3. Simple Things to do if Even These Steps Fail to give a Reasonable Solution

If these things fail, then look to the *Patterson method*, collect better data at higher angles, recheck your space group, and/or look to a higher being for help! If all else fails, blame the crystals and try to grow more "cooperative" crystals using different crystallization conditions, solvents, etc. This latter approach often works quite well, requires less crystallographic knowledge, and certainly takes less of your time, especially if you can get *someone else* to grow the crystals!

4. Advanced Crystallographic Techniques to Try When These Steps Fail to Give a Reasonable Solution

If one is a more skilled crystallographer with more experience and a deeper understanding of what one is doing, there are a wide range of more sophisticated methods for getting a starting solution. Most novice crystallographers will have little experience using these methods, but if the

21

This second solution should be done on the same computer as the original XS run.

structure is important to you they may be worth pursuing. Below are listed some suggestions that have been made crystallographers more skilled than myself.

a) Modify the Symmetry of the Input Files

For problem structures, one can often artificially lower the symmetry of the space group and retry **XS** (removing centers of symmetry can be especially helpful). The structure is then refined in this "modified" space group until all atoms are found and converged isotropically. Then if necessary, one locates any additional symmetry operations between related molecular groups, moves all of the atoms to the appropriate positions for the higher symmetry space group, deletes the symmetry-related atoms, and changes the 'LATT' and/or 'SYMM' lines from the **name.ins** file to give those for the correct space group. [Note: this method was suggested by Doug Powell at the University of Wisconsin.]

b) Use XPS to find a solution

Dear Readers: I would greatly appreciate suggestions for this section as I have yet to use **XPS**!

Dear Readers: I would greatly appreciate any other hints and ideas on other relatively simple things that could be tried here.

G. THE USE OF XS TO FIND TRIAL SOLUTIONS FOR NEUTRON DIFFRACTION DATA

The program \mathbf{XS} runs identically for analyzing neutron data with the exception(s) that.....

Again Dear Readers: I would greatly appreciate suggestions for this section as I have yet to use **XS** for neutron data myself!

CHAPTER IV. THE ASSIGNMENT OF ATOMS USING XP

A. AN OVERVIEW OF THE PROGRAM XP

The **XP** program is a graphical interface between the data calculated by **XS** or **XL** and you. It basically converts the **name.res** file (which is an ASCII file containing the contents of the **name.ins** file from the start of the cycle (i.e., giving some space group, symmetry, etc., data, and the atomic positions and displacement parameters in the earlier model) and any Q peaks (i.e., peaks in the calculated electron density map that are not yet accounted for) calculated by the **XS** or **XL** run into an easier to use form. For example, there are various graphical molecule viewing subroutines (e.g., 'proj'), one for deleting and naming atoms using a graphical tool (i.e., 'pick'), and routines to view peak positions and intensities in a tabular format (i.e., 'info') and calculate bond lengths and angles (i.e., 'bang').

Every time you start it, **XP** takes the last **name.res** file and uses it to generate all this data. If you save the results of your efforts (i.e., using 'file'), they are saved to **name.ins**. This does not change **name.res** so if you rerun **XP** before running **XL** (which converts **name.ins** to a new **name.res** file) you will "lose" the work done under the last **XP** run. However, if you start **XP** by typing **XP name.ins** [ent] then it will load the atomic positions from the **name.ins** file.

The use of \mathbf{XP} in <u>structure solution</u> will be discussed in the next several chapters. In chapter VIII, its use in generating pictures for publication is discussed. Detailed descriptions of the most useful \mathbf{XP} commands are found at the end of chapter VII.

B. THE TYPICAL STEPS WHEN USING XP TO ASSIGN ATOMS

1. Starting XP to Analyze Data

In a typical cycle of assigning atoms, the various subroutines from **XP** (indicated by single quotes, i.e., 'proj') would be used in the following order. First though, you start **XP** by typing:

XP name [ent]

where name is the 8 digit code that includes the compound and trial number (e.g., **95ADH03c**). This reads the **name.res** file for that trial number into **XP**. [Note: if you type in **XP name.ins** [**ent**] the program loads the atomic positions from the .ins file.] The **DOS** screen then converts to the **XP** screen which has a "**Windows**" feel.

The first routine you must always run is 'fmol'. It converts the bare atomic and Q coordinates into the correct format for graphics and makes a connectivity list, i.e.,

fmol [ent]

It then displays the connectivity list.

Then run 'info', i.e.,

info [ent] or

info/L [ent] print [ent]

This routine displays information on the current list of atoms and Q peaks. The set of commands on the second line above sends the 'info' list to the printer. Most useful is the last column which lists the intensities of the Q peaks. The strongest of these are most likely to be real atoms. The weakest are often ghosts and often several are very close (<0.7 Å) to "heavy" atoms that haven't been made anisotropic yet. They can be killed with confidence as this distance is too close to be real. A careful inspection of the intensities will often show a "drop off" in intensities between strong peaks (i.e., more likely real) and weak peaks (i.e., likely garbage).

2. Evaluating and Assigning Atoms and Q Peaks

<u>Remember: When in doubt, don't make an assignment. If the peak is real it will</u> <u>come back in the next XL cycle and if it's incorrect it might drive you away from the</u> <u>correct solution.</u>

a) Evaluating atoms and Q peaks

First inspect in output from 'info'. Look for atoms that have suspiciously large displacement parameters compared to their neighbors and for Q's of such low intensity that they are unlikely to be real atoms. Then, run 'proj', i.e.,

proj [ent]

This routine is an interactive way to display and rotate the molecule. You look for insight into probable structural fragments (e.g., octahedral transition metals, aromatic rings). When you find an orientation you like, click on exit. This saves the view last used in 'proj' for input into other graphical routines, e.g., 'pick', 'pers', 'telp.'

b) Assigning Q peaks and changing the assignment of atoms

Then run 'pick', i.e.,

pick [ent]

This routine is an interactive way to delete Q peaks, assign Q peaks as particular atom types, and name or rename peaks interactively. To kill the blinking peak, push the [ent] key. To assign, name, or rename a peak type in the four letter ID (i.e., atom symbol followed by alphanumerics) then [ent]. To go backwards in the peak list, push the [\leftarrow] key at the top right of the keyboard. To skip a peak without changing its type, push the space bar. Pushing the [/] key exits 'pick' and saves the result. Pushing the [esc] key exits 'pick' without saving your work. The 'pick' routine starts with the last Q peak on the 'info' list and works backwards to the strongest (i.e., "heaviest") atom. [Note: Some crystallographers prefer to use a combination of the 'diag' and 'name' commands to assign atoms rather than 'pick' but I find the use of 'pick' more intuitive for beginners.]

In this first round, you may not be able to tell similar peaks due to atoms having similar total numbers of electrons apart based on height or position. Thus, a C, N, O, or F or a Si, P, S, or Cl will often look similar. If however, you are sure the peak is really an atom and is one of these, it is safe in early refinement cycles to assign it a generic label (i.e., C or S, respectively) at first and change it to the correct atom type in a later cycle when your information will be better. Since the number of electrons is similar, this won't hurt you too badly in an early cycle.

c) Killing sets of atoms

An alternative to 'pick' that is very useful when many atoms need cutting is kill, e.g.,

kill Q7 to Q13 [ent] or

kill C11 H24 Q7 Q8 Q14 [ent]

kill \$Q [ent]

This routine kills the specified ranges of atoms, lists of atoms, or types of atoms, respectively, very quickly.

d) Naming of atoms

You should start giving the atoms "complete" names (e.g., C12, H7) as soon as the structure is clear. Choose names that are reasonably intuitive and also consistent with common usage in the field (i.e., IUPAC) to save yourself work later on.

e) Sorting atom lists

You should also start to 'sort' your atom list early on and continue to do so after each cycle which adds new atoms. This will greatly increase the ease with which you can interpret the data tables later in the refinement process.

3. Checking Your Assignments for "Chemical Reasonableness"

You should check your assignments from 'pick' for chemical reasonableness. Use 'proj' to view them for reasonable bond lengths and angles visually and 'bang' to do this numerically (the set of commands on the second line below sends the 'bang' list to the printer), i.e.,

bang [ent] or

bang/L [ent] print [ent]

This 'bang' routine prints out, for atoms in "close contact" (within the sum of Van der Waals radii where they may be assumed to be bonded), a summary of bond lengths and angles that can be scanned to look for "chemical reasonableness" (≈ 1.5 Å for C-C bonds, 1.0 Å for C-H bonds, etc.).

4. Saving the Results of Your XP Analyses

Once you have assigned or killed all the Qs, you want to save and exit, i.e.,

file name [ent]

where name is the eight digit code for this run. It will then ask you which file to take the raw positions from, you can accept the default, i.e.,

[ent]

To exit back to **DOS**, type

exit [ent]

5. Returning to XP from the Parameters Saved in Name.ins

If you type:

XP name.ins [ent]

then **XP** will start by reading in the data from the **name.ins** file. This is particularly useful if you have already analyzed the data from the **name.res** file, saved the results, and then exited from **XP** and decide you want to do another plot, generate a new set of planes, look at a close contact or displacement parameter, etc.

CHAPTER V. REFINING ATOMIC POSITIONS USING XL

A. INTRODUCTION TO XL

The least squares program **XL** is the industry standard for refining crystallographic data. It is described in detail in chapters 8 and 9 of the Bruker AXS (Siemens) SHELXTL manual and is based on George Sheldrick's latest SHELX engine. The central principle of such a least squares refinement is an iterative approach to solving the "phase problem" and improving the quality of the structural model.

1. Refining Data

a) Intensities and structure factors

The data collection software measures the intensities of each reflection, I, as well as the standard deviation of these intensities, $\sigma(I)$. These values are later corrected in **XPREP** to produce a final set of I and $\sigma(I)$ that are used in structure analysis. For ideally imperfect crystals, a model which most crystals grown by chemists closely resemble, these measured intensities are proportional to the square of the structure factors, F_o^2 . For perfect crystals, which some mineral crystals more closely resemble, the dynamic diffraction model is more appropriate and suggests that the measured intensities are proportional to the observed structure factors, F_o .

b) Refining versus F^2 or F

The **SHELXTL** program always refines the model versus F^2 . Older software, written when computer resources were much more scarce, often refined the model versus F. For most crystals one is likely to see in a chemistry crystallography lab, refining against F^2 is superior. However, refining against F^2 will tend to increase the magnitude of the R values by about a factor of two. The **XSCANS** software on our P4 produces a **name.hkl** file with the intensities expressed as F_o^2 and $\sigma(F_o^2)$. However, one can change the **HKLF** instruction in the **XS** and **XL name.ins** input file from its default value of 4 (which treats the experimental data as F_o^2 and $\sigma(F_o^2)$) to a value of 3 (which treats the experimental data as F_o and $\sigma(F_o)$) if one is using an old diffractometer data processing program which still outputs the data in the latter form.

c) Refining on all of the data

In the past, people often refined the model against only part of the experimental data. Typically, all reflections having intensity over standard deviation values (i.e., $I/\sigma(I)$) less than or

equal to some arbitrary cut off (often I > x σ (I) where x equaled 2, 3, or 4) were not included in the calculation. Since computers used to be slow and the computational difficulty of the calculation increases linearly with the number of reflections and with the square of the number of refined parameters, this was once widely practiced. It is now strongly discouraged since such an arbitrary cut off throws out useful information and systematically biases the results. However, including the statistically weak reflections does increase the R values as compared to refining against only the strongest reflections. Nevertheless, **SHELXTL** routinely refines against all of the data since this produces the most reliable crystallographic results. [Note: It does calculate for you what the R values would be if only the strongest data was used.] Sometimes it is scientifically justified to remove one or more individual reflections using the **OMIT** command. However, this should never be done by the novice and always done with great care and sound reasons for each reflection excluded. [Note: One of the most common acceptable excuses is when peak profiles show that one or more low angle reflections have been partially cut of by the beam stop or for some other such mechanical reason.]

2. A Qualitative (If Somewhat Misleading) Picture of How Crystal Structures Can Be Refined

What happens in the process of the refinement of your model against the experimental data can be qualitatively understood as occurring through the following steps. They are akin to some Fourier refinement methods still in use by some protein crystallography labs. This is not how **XL** actually carries out the refinement, but I often find it useful to think about it this way since the mathematics of a more correct picture can, for many people, lead to more "fog" than "clarity."

a) The 1st Step: Read the Data and Instructions

The software reads the instructions from the input file (i.e., **name.ins**) and the diffraction data from the (i.e., **name.hkl**) files.

b) The 2nd Step: Calculate Partial Phases

The software uses any assigned atoms (i.e., positions, sizes, and shapes) determined in previous refinement cycles to calculate a set of partially correct phases for the structure.

c) The 3rd Step: Calculate an "Observed" Electron Density Map

The software combines these calculated phases with the experimental intensities to calculate an "observed" electron density map.

d) The 4th Step: Calculate a "Difference" Electron Density Map

The software subtracts the electron density due to any atoms previously assigned from the "observed" electron density map to give a difference electron density map.

e) The 5th Step: Calculate Improved Structural Parameters

The software uses the positions and intensities (both positive and negative) of the residual electron density on this map to calculate better atomic coordinates, displacement parameters, and any other refined parameters.

f) The 6th Step: Repeat This Cycle

This process is typically cycled through several times to give the final output (i.e., **name.lst** and **name.res**) that is used by the crystallographer in the next step to evaluate the refinement results.

3. A Qualitative Description of How XL Actually Carries Out a Least Squares Refinement

[Note: this section needs substantial work yet and particularly input from my external reviewers! It needs to be accurate, it needs more detail, but it also needs to be accessible to the mathematically unsophisticated and give a better visual picture of what is going on! A real challenging combination!!!]

The least squares process actually used by **XL** can be visualized in terms of the following eight steps.

a) Read the Data and Instructions

The software reads the **XL** instructions from the **name.ins** and the diffraction data from the **name.hkl** files.

b) Calculate Structure Factors and Partial Derivatives and R Factors

The software uses this information to calculate structure factors and their partial derivatives and R factors.

V-67

c) Build Normal Equations and Invert the Matrix

The software determines the normal equations and inverts the matrix.

d) Calculate Shifted Positions and Shifted Displacement Parameters

The software uses this information to evaluates how the positions and displacement parameters should be shifted.

e) Repeat Items b Through d Until Completion

This process is typically cycled through several times to give the final output.

f) Calculate an Analysis of Variance

The software then carries out an analysis of variance.

g) Calculate Geometry

The software then uses this information to calculate the atomic positions and displacement parameters.

h) Calculate a Difference Electron Density Map

The software subtracts the electron density due to any atoms previously assigned from the "observed" electron density map to give a difference electron density map.

4. The R factors and GOOF

The R, wR, and GOOF parameters are very useful in monitoring the progress of a refinement from step to step where one wants to see the R and wR factors decreasing and GOOF approaching one. However, they are of less use in comparing the structure refinements of different molecules, especially if the data analysis assumptions are different. They are discussed in more detail in chapter VI section E.

B. TYPICAL STAGES OF AN XL REFINEMENT

There are an almost infinite number of ways that one could approach solving the structure of even a single sample. The stages that I follow for routine structures are outlined below. Examples of one such approach for one molecule (**95ADH06e** referred to as "calctest", $(\eta^{6}-1,2,3-(OMe)_{3}-5-(CO_{2}Me)C_{6}H_{2})Cr(CO)_{3})$ are illustrated in chapter IX, below.

1. The 1st Stage: Find a Trial Solution Using XS and XP.

In general, one would first use *Direct methods* and then the *Patterson method* (only where required) to try to find a good trial solution using **XS**. This would be evaluated using **XP** as described above. At the end of this stage you have identified at least one atom to start your least squares refinement with in the next stage. See chapter IV for more details.

Hints for this stage of the process:

- You need to find only the approximate identity (i.e., it is a Cr or an Fe), size, and position of one atom for most structures.
- Assigning more atoms at this stage can speed later refinements but only if they are correct.
- Incorrect assignments can lead you to failure in later stages.
- It is therefore best to assign only the atom(s) about which you can be most confident.

2. The 2nd Stage: Using XL and XP to Refine All Non-Hydrogen Atoms with Isotropic displacement Parameters.

This stage involves the first of several isotropic refinement cycles by **XL**. In this stage, which may have to be repeated several times, one uses **XP** to try to assign the atoms and subsequently **XL** calculates improved atom positions and isotropic displacement parameters. The use of **XP** commands is discussed in detail in other chapters. At the end of this process one hopes to have reasonable positions and isotropic displacement parameters for all of the non-Hydrogen atoms. These spherical electron density models are typically adequate for locating and identifying all non-Hydrogen atoms.

Hints for this stage of the process:

- The first **XL** cycle should give R values of significantly below 50% if the initial atom(s) assigned from **XS** were correct.
- Assigning the maximum number of atoms in each cycle is tempting but may easily lead you away from the global minimum to some "dead end" local minimum.
- Therefore, only assign those atoms in each step about which you can be most confident. Assigning only one new atom in each cycle will eventually bring you to a

- You should never try and assign hydrogen atoms when the other atoms are still isotropic as many of these assignments will be incorrect.
- There is often a cutoff in the list of Q peaks between ones which are almost all real and ones which are ghosts. This cutoff will be found where the peak intensities list suddenly changes from a rather smooth decrease to a rapid drop off of in intensities to about half in one step followed by another rather smooth decrease.
- Use the displacement parameters (i.e., from the 'info' command) to tell you if your assignments are correct. They should be similar for atoms of the same type, especially if they are in the same part of the molecule. Atoms that become unusually large may be due to an assignment of the Q peak to an atom type with too many electrons and you should change the atom type appropriately (e.g., change an O to a C). Or the assigned Q peak might have been a ghost and this assigned atom should then be deleted. Atoms that become unusually small may be due to an assignment of the Q peak to an atom type with too few electrons and you should change the atom type appropriately (e.g., change atom should then be deleted. Atoms that become unusually small may be due to an assignment of the Q peak to an atom type with too few electrons and you should change the atom type appropriately (e.g., change a C to an O).
- Use the 'proj' and 'bang' commands to check that the refined atoms maintain reasonable three dimensional structures, bond lengths, and bond angles.

3. The 3rd Stage: Using XL and XP to Refine All Non-Hydrogen Atoms with Anisotropic displacement Parameters.

This stage typically involves one anisotropic refinement cycle by \mathbf{XL} . It converts the non-Hydrogen atoms to displacement ellipsoids (i.e., football or pancake shaped objects) to better account for their real electron density distributions.

Hints for this stage of the process:

- This should be done only after all or almost all of the non-hydrogen atoms have been found and refined isotropically.
- You add the **ANIS** instruction to the **name.ins** file to convert all non-hydrogen atoms following this command on the list to anisotropic refinements.
- This will produce a dramatic drop in the R values after the next XL cycle.
- If more non-hydrogens are added later then the **ANIS** instruction must be repeated.
- If your data to parameter ratio drops to low (i.e., below about 7 or 8), you may elect to refine only some of the more strongly diffracting elements with anisotropic displacement parameters. If this does not reduce the number of parameters sufficiently, you may elect to refine some groups (e.g. phenyl groups) as rigid bodies or use other tricks.

4. The 4th Stage: Using XL and XP to Assign and Refine all Hydrogen Atoms.

This stage typically involves several refinement cycles by **XL**. In these, one uses **XP** to successively identify and refine most or all of the Hydrogen atoms from the Q peaks calculated by **XL** and, if necessary, by calculating their positions.

Hints for this stage of the process:

- Some authors advocate first placing the hydrogen atoms in calculated positions and perhaps even refining them as simply riding on their attached atoms.
- I require my students to first find the hydrogens in the Q peak list and then to fully refine them. With good data quality this is generally successful although it may take several refinement cycles.
- Only if this effort does not result in all hydrogens being located from the Q peak list do I place them in calculated position. I then still refine them isotropically.
- I only refine hydrogens with a riding model of some type if my data to parameter ratio is too low or the data quality is sufficiently low that these atoms "blow up" or "wander off" in subsequent refinement cycles.

5. The 5th Stage: Using XL to Refine Additional Crystallographic Parameters Such as Extinction

This stage typically involves several refinement cycles by **XL** in which additional parameters to be refined are edited into the **name.ins** file.

Hints for this stage of the process:

- If it is suggested in the XL output, refine the extinction parameter by adding the EXTI command to the **name.ins** file.
- At this stage it make sense to ask the program to make the files needed by **XCIF** to calculate tables by adding the **ACTA** command to the **name.ins** file and modifying the **BOND** command to say **BOND** \$**H** in this same file.
- Near convergence one can modify the **WGHT** command by adding in the weighting values suggested by the **name.res** file into the **name.ins** file. [For example, in the worked example given in chapter IX you can see that I've shaded the weighting suggestion in the calctest.res file from the 7th cycle and used these numbers in the calctest.ins file of the 8th cycle.] This sometimes takes several refinement cycles to converge on a steady value and can't be completed until after the absolute structure is determined.

6. The 6th Stage: Using XL to Determine Absolute Structure

If the quality of your crystallographic data is good enough then you should be able to easily determine the absolute structure of your molecule or crystal. Quality crystallographic data for this purpose is characterized by: a good signal to noise ratio and a large number of reflections per refined parameter (i.e., at least 9 or 10)), the collection of sufficient Friedel pairs (i.e., those reflections in reciprocal space most sensitive to the absolute structure), and the presence of elements with sufficiently strong anomalous dispersion. Generally, any good quality data set on a sample collected with Cu radiation with different atom types (not counting hydrogens) can be assigned the proper absolute structure. Data sets on samples collected with Mo radiation usually require atoms on different rows of the periodic table to make proper assignments of the absolute structure.

Only non-centrosymmetric space groups (i.e., those lacking an inversion center) can give optically active crystals but there are a number of non-centrosymmetric space groups that are not suitable for chiral compounds. These space groups contain no center of symmetry, but they do contain symmetry operations of the second kind which change the handedness of any molecular groups. Note that the absolute structure of these non-centrosymmetric but nonchiral space groups must also be determined. The chirality of the crystal may be due to the presence of molecules that were optically resolved before they were crystallized, to the presence of molecules that resolved themselves into right any left handed crystals (cf., Louis Pasteur), or to molecules that were not chiral in solution but crystallized into optically active crystals.

In many cases, the **XL** output on the screen warns you if you have solved for the wrong optical isomer. It does this by analysis of the value of the Flack parameter. The meaning of this parameter is described in detail in our text and on pages 8.4, 8.5, and 11.2 in the SHELXTL manual. In brief, this parameter tells you if you have picked the correct absolute structure. In theory, it should equal 0 if you have the correct structure and +1 if you have the opposite one. In practice, **XL** calculates this parameter and its estimated standard deviation. If the calculated Flack parameter is within 3 esd's of 0 one can conclude with confidence that one has the correct absolute structure.

In general, if you get this warning of possibly having the wrong absolute structure, then, for most space groups, you can usually use the 'invt' command in **XP** to convert it to the right one. If you are not sure you have the right isomer, then use 'invt' in **XP** to convert your structure to the other one and then rerun **XL** and see if the R factors get better or worse. The exceptional space groups also require a change of space group operator(s). The simple 'invt' command inverts around the center of the unit cell. The seven exceptional space groups (i.e. Fdd2, I4(1), I4(1)22, I4(1)md, I4(1)cd, I4bar2d, and F4(1)32), which are listed in the Bruker AXS (Siemens) **SHELXTL** manual (page 11-3), must be inverted around some other point in the cell. For these special space groups it is highly advisable to consult an experienced crystallographer.

7. The 7th Stage: Convergence

Your structure solution is done when the solution has gone to convergence and you have added all of the parameters you want to refine. By convergence, I mean that additional least squares cycles in **XL** no longer move any atomic positions, displacement factors, occupancies, etc., appreciably. The current standard for the definitive journal, *Acta. Cryst.*, is that the maximum absolute value of the shift/standard uncertainty should be less than 0.1. However, with

modern computers and methods this standard is widely considered to be too high and it is expected to be lowered soon. In my lab, the maximum value I typically aim for is substantially under 0.01 with less that a 0.001 change in any positional or displacement parameter.

8. Advanced Tasks and Problems for Refinement That Merit More Detailed Treatment in Future Editions

While solving more demanding structures, one needs a variety of more specialized and advanced skills that involve **XP** and **XL**. I will not include a detailed discussion of these in this edition of the manual. However, I hope to include such discussion as one or more appendices useful to the more advanced students. These sections will be written as my time permits, as my expertise in their use increases, and as users volunteer to supply and/or assist me in writing them.

Topics that merit more detailed treatment include:

- The general topic of constraints, restraints, and the difference between the two.
- The fixing of displacement parameters of related atoms (e.g., those of hydrogen atoms to values 1.2 times that of the atoms they ride or of all carbon atoms in a benzene solvate to the same value).
- The fixing of X-H distances.
- The use of riding models for hydrogens and other atoms.
- The use of **XPS** and Shake and Bake type refinements.
- Refining linked parameters (e.g., occupancies and U values).
- The refining of occupancies in general.
 - The refining of solvent occupancies.
 - The refining of structures with several atoms occupying the same or very close sites.
 - The refining of occupancies with the total occupancies for sites fixed.
- The use of rigid body models in refinement.
- The refining of twinned data sets.
- Dealing with Renninger reflections.
- Dealing with disorder in groups such as methyl groups.
- •
C. ALPHABETICAL LISTING OF THE COMMAND LINES FOR XL AND XS

Many of the command lines for **XS** and **XL** are the same. Below are repeated the most important ones in alphabetical order.

Note: the order of the first seven lines of the name.ins file should remain the same for XL as it was for XS (i.e., TITL, CELL, ZERR, LATT, SYMM (where required), SFAC, and UNIT.

The commands of most use for beginners (e.g., in courses such as Chemistry 832: Solid State Structural Methods) are given shading below.

Command Code	Page in the SHELXTL Manual ²²	Variables and Explanation of the Use of These Commands
<ctrl l=""></ctrl>		This key stroke combination (i.e., the control and "ell" keys being depressed simultaneously) causes XS and XL to stop at the next safe moment and results in all of the data that has been calculated being stored in the required files.
<ctrl c=""></ctrl>		This key stroke combination (i.e., the control and "c" keys being depressed simultaneously) causes XS and XL to stop immediately and results in all of the data that has been calculated being lost.
ACTA	13-37	This command tells the program to save all the required data in "Crystallographic Information File", CIF, format for use in preparing tables with XCIF and for use in electronically submitting papers.

²² These page numbers are taken from the Bruker AXS (Siemens) reference manual for **SHELXTL**, version 5.1.

AFIX	12-12	This powerful command applies constraints and/or generates atoms at idealized coordinates (often with respect to the heavier atoms to which they are bonded). I do not routinely use the AFIX or HFIX commands. My data sets have generally been of sufficiently high quality that not fixing these parameters has not been a problem. This is largely because our two dedicated diffractometers means we have sufficient data collection time that we usually get excellent signal to noise ratios on the peaks and data collected out to relatively large angles. This means that all of my hydrogen parameters are fully refined and not fixed to any idealized values. While this can give bonding parameters that are not "perfect" looking they are true experimental values. I only discard this approach and fix these parameters when refinement fails to give chemically reasonable answers. This is typically because of having very small or weakly diffracting crystals, disorder, and/or the presence of a very heavy atom that dominates the scattering of the crystal.
		sourcering of the orystal.
ANIS	12-12	 ANIS Makes all of the following non-Hydrogen atoms anisotropic in the next XL refinement. ANIS n Makes the next n atoms anisotropic in the next XL refinement. ANIS atoms Makes the next named atoms anisotropic in the next XL refinement, e.g. ANIS \$P ANIS Cr O11 C14 would make all phosphorous atoms and the Cr, O11, and C14 atoms anisotropic in the next XL cycle, respectively.
BOND	12-35	This command tells the program to store bond lengths and angles. BOND \$H includes Hydrogen atoms in the stored values.
CELL	5-4, 12-1	l <i>a b c</i> a b <i>g</i> The wavelength of the radiation used and the unit cell axial lengths and angles.
DELU		This command restrains all the named atoms to having the same displacement parameters.
DFIX	12-25	This command is used to fix the distance between two named atoms.

EADP	12-22	This command is used to give two or more atoms the same isotropic or anisotropic displacement parameters.
END	5-10,	This line tells XL that all required commands have now been read.
	12-4	
EQIV	12-18	This command along with RTAB gives information on symmetry and bonding of inter- and intra-molecular interactions.
EXTI	12-7	This command is placed in the name.ins file after the non-Hydrogen atoms have gone anisotropic to allow the program to refine for extinction in the crystal (i.e., to deal with effects discussed on pages 210 and 327 in Glusker's text).
EXYZ	12-17	This command is used to put two or more different atoms at the same position in a crystal (e.g., for different metals in a tetrahedral or octahedral site of a mineral). See SUMP for multiple atoms on the same site with restrained total occupancy.
FLAT	12-25	This command restrains to named atoms to be coplanar.
HFIX	12-16	This powerful command applies constraints and/or generates Hydrogen atoms at idealized coordinates. See page 8-24 for a detailed discussion of dealing with Hydrogen atoms. For the same reasons described above for AFIX , I do not routinely use the powerful AFIX or HFIX commands.
HKLF #	5-9, 12-4	This line tells XS and XL to read the reflections from the name.hkl file and how to treat the I and σ (I) data in the name.hkl file. When $\# = 3$ (i.e., HKLF 3), XS and XL treat the intensity data as F and σ (F). When $\# = 4$ (i.e., HKLF 4), XS and XL treat the intensity data as F^2 and σ (F ²). [Note: Intensity is proportional to F^2 in ideally imperfect crystals (i.e., as described in the kinematic diffraction model) but because of extinction's affects it is only proportional to F in perfect crystals (i.e., as described in the dynamic diffraction model). Real crystals behave somewhere between these extremes but those typically grown by synthetic chemists more closely resemble kinematic diffraction. Interestingly, mineral crystals, which grow many orders of magnitude more slowly than do anthropomorphic crystals, behave more like perfect crystals are typically refined with HKLF 4 mode while mineral crystals are refined with HKLF 3 .]

L.S .	12-29	This command sets the total number of least squares cycles to be performed by XL . I most commonly use 4 during refinement and then 10 at the last XL cycle to drive the solution to convergence, e.g.
		L.J. 4
LATT	5-4, 12-1	LATT N
		The lattice type (i.e., 1 for primitive, P 2 for body centered, I, 3 for rhombohedral obverse, 4 for face centered, F, 5 for A centered, 6 for B centered, or 7 for C centered. For non-centrosymmetric space groups N is a negative number.
LIST	5-7, 12-36	This command tells the program to save the h, k, l, Fo, etc., values to the specified tables.
MORE	5-6, 12-4	0 or 1 or 2 or 3
		This command can be used to vary the verbosity (i.e., level of detail) of the output files (e.g., name.lst) with 3 being the most verbose.
OMIT	5-6,	This command can be used to omit reflections based on the angle they were
	12-6,	collected at, their signal to noise ratios, and their index values.
	12-18	
PLAN	5-9,	This gives the number of Fourier peaks (Q peaks) that will be written to the
	12-39	name.lst and name.res files for later use by you and XP .
REM	5-5, 12-3	text on the same line
		This text isn't used by XL but is output onto the name.res file. It is a useful way to make comments to yourself.
RTAB	12-35	This command along with EQIV gives information on symmetry and bonding of inter- and intra-molecular interactions.
SFAC	5-5, 12-2	element symbols
		The symbols for the elements present in the crystal. The first two elements are always C followed by H (if they are present). The program will use the element identities to look up the scattering power of each atom type when it is doing calculations.
SHEL	12-6	This command is useful in the restriction of the resolution of the data.

SIMU	12-25	This command restrains all the named atoms within a certain distance to having the same displacement parameters.
SUMP	12-28	This command restrains total site occupancy for multiple atoms to a defined total value. See EXYZ for multiple atoms at the same site but no restraint on the total occupancy.
SWAT	12-8	This command allows one to model diffuse solvent molecules such as water in proteins. It is very seldom used for small molecules.
SYMM	5-4, 12-2	The following values are the symmetry operations for that space group. They are the "general positions" of the space group taken from the "International Tables" and they can be used to convert any random position in the unit cell (i.e., X, Y, Z) into all its equivalent positions. For some high symmetry space groups this may correspond to many lines of SYMM codes. For lower symmetry space groups this line is absent.
TEMP	12-38	This value is the temperature in degrees Celsius of data collection and is used to set default displacement parameters.
TIME	5-6, 12-4	TIME t This command sets the maximum time (t in seconds) for the XS or XL run. After this time has been exceeded, this command causes these programs to gracefully stop at the end of the current cycle.
TITL	5-4, 12-1	Name and Space group of the sample in text
TWIN	12-7	This command is used by X-ray crystallography "gods" to solve structures for twinned crystals.
UNIT	5-5, 12-3	This command gives the number of atoms of each type in the unit cell. These numbers have to be in the same order as the order of atoms in the SFAC lists.
WPDB	12-38	This command causes the program to save the results to a file that is in the Brookhaven Protein Data Base, PDB, PDB, format used by many other programs.

V-78

WGHT	12-33	This command sets the weighting function used. It is read off of the last name.res file and entered into the name.ins file at the very last refinement cycles.
ZERR	5-4, 12-1	Z esd(<i>a</i>) esd esd – the estimated standard deviations of the unit cell parameters (<i>b</i>) esd(<i>c</i>) esd(<i>a</i>) esd(<i>b</i>) esd(<i>g</i>) The number of formula units in the unit cell and the estimated standard deviations in the cell axial lengths and angles.

D. A TYPICAL INPUT FILE FOR XL AT THE LATTER STAGES OF REFINEMENT.

Below is a typical XL input file at a late stage of refinement after all the atoms have been found and the non-Hydrogen atoms have been converted to anisotropic refinement, namely for: **95adh06e.ins** for $(\eta^6-1,2,3-(OMe)_3-5-(CO_2Me)C_6H_2)Cr(CO)_3)$ from chapter IX.

TITL 95adh06e in P-1
CELL 0.71073 7.5265 10.0508 10.7429 97.271 108.116 99.782
ZERR 2.00 0.0003 0.0005 0.0005 0.004 0.003 0.004
LATT 1
SFAC C H O CR
UNIT 28 28 16 2
L.S. 4
BOND \$H
FMAP 2
PLAN 5
АСТА
WGHT 0.008800 0.757500
EXTL 0.008535
FVAR 0.63137
CR = 4 = 0.15437 = 0.72255 = 0.32865 = 11.00000 = 0.02708 = 0.02044 = 0.02044
0.01711 0.00356 0.00693 0.00579
07 3 0 02391 0 95638 0 14839 11 00000 0 03839 0 02917 =
0.02156 0.01085 0.00478 0.00407
08 3 -0.24436 0.72970 0.07763 11 00000 0.03852 0.03729 =
0.01976 0.00492 -0.00172 0.00598
O9 = 3 - 0.31168 = 0.58266 = 0.26097 = 11.00000 = 0.03166 = 0.03245 =
0.02869 0.00727 0.00489 -0.00214
$010 \ 3 \ 0.36356 \ 1.00596 \ 0.65321 \ 11.00000 \ 0.04816 \ 0.04201 =$
0.02502 0.00272 0.00260 -0.00632
0.02502 + 0.00272 + 0.002200 + 0.00022 0.011 + 3 + 0.18504 + 0.83025 + 0.69993 + 11.00000 + 0.04491 + 0.04754 = 0.04754
0.01861 0.01016 0.00669 0.00322
$0.01001 \ 0.00000 \ 0.000000 \ 0.000000 \ 0.000000 \ 0.07403 \ 0.06557 =$
0.04144 0.01896 0.03824 0.02470
0.01111 0.01090 0.03021 0.02170
0.05871 0.00710 0.03214 0.01143
0.02071 - 0.00710 - 0.00211 - 0.01110 - 0.03299 - 0.04417 - 0.014 -
0.04133 0.00570 0.00033 0.01060
C1 = 1 = 0.00985 = 0.89155 = 0.24807 = 11 = 0.0000 = 0.03313 = 0.02488 = -0.000000 = 0.03313 = 0.02488 = -0.0000000000000000000000000000000000

0.01988 0.00727 0.00762 0.00946
$C_{2} = 1 - 0.13074 = 0.76566 = 0.20811 = 11.00000 = 0.02809 = 0.02710 - 0.02809 = 0.02809 = 0.02710 - 0.02809 = 0$
0.01838 + 0.0371 + 0.0333 + 0.0700
$C_{2}^{3} = 1 + 0.16510 + 0.60371 + 0.00333 + 0.00700 + 0.00701 + 0.02521 - 0.00701 + 0.02521 - 0.00701 + 0.02521 - 0.00701 + 0.02521 - 0.00701 + 0.02521 + 0.00701 + 0.02521 + 0.00700 + 0.02701 + 0.02521 + 0.00700 + 0.02701 + 0.02521 + 0.00700 + 0.02701 + 0.02521 + 0.00700 + 0.02701 + 0.02521 + 0.00700 + 0.02701 + 0.02521 + 0.00700 + 0.02701 + 0.02521 + 0.00700 + 0.02701 + 0.02521 + 0.00700 + 0.02701 + 0.02521 + 0.00700 + 0.02701 + 0.02521 + 0.00700 + 0.02701 + 0.02521 + 0.00700 + 0.02701 + 0.02521 + 0.00700 + 0.02701 + 0.02521 + 0.00700 + 0.02701 + 0.02521 + 0.00700 + 0.02701 + 0.02521 + 0.00700 + 0.02701 + 0.02521 + 0.00700 + 0.02701 + 0.02521 + 0.00700 + 0.02701 + 0.02521 + 0.00700 + 0.02701 + 0.02521 + 0.00700 + 0.02701 + 0.02521 + 0.00700 $
0.02511 - 0.0484 - 0.00748 - 0.0606
$C_{4} = 1 - 0.04674 - 0.73858 - 0.44128 - 11.00000 - 0.02936 - 0.0266 - 0.0266 -$
0.02105 0.00708 0.00088 0.00745
0.02195 0.00706 0.00766 0.00745
0.01704 = 0.00225 = 0.00727 = 0.00754
$0.01704 \ 0.00225 \ 0.00727 \ 0.00754$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
0.01992 0.00402 0.00700 0.00035
C/1 0.1/84 1.0/565 0.18084 11.00000 0.0456/ 0.03934 = 0.02021 0.01467 0.00764 0.00120
0.02921 0.01467 0.00764 -0.00128
C8 = 1 - 0.24277 = 0.60033 = 0.00593 = 11.00000 = 0.06628 = 0.05213 = 0.05215 = 0.005628 = 0.05213 = 0.00140 = 0.01000 = 0.006628 = 0.05213 = 0.00140 = 0.01000 = 0.006628 = 0.05213 = 0.00140 = 0.01000 = 0.006628 = 0.05213 = 0.00140 = 0.01000 = 0.006628 = 0.05213 = 0.00140 = 0.01000 = 0.006628 = 0.05213 = 0.00140 = 0.01000 = 0.006628 = 0.05213 = 0.00140 = 0.01000 = 0.006628 = 0.05213 = 0.00140 = 0.01000 = 0.006628 = 0.05213 = 0.00140 = 0.01000 = 0.006628 = 0.05213 = 0.00140 = 0.01000 = 0.006628 = 0.05213 = 0.00140 = 0.01000 = 0.006628 = 0.05213 = 0.00140 = 0.01000 = 0.006628 = 0.00528 = 0
0.02545 -0.00602 0.00149 0.01009
C9 1 -0.32999 0.49001 0.34961 11.00000 0.03775 0.03155 =
0.03704 0.01047 0.01104 0.00120
C10 1 0.23272 0.90834 0.61905 11.00000 0.03253 $0.02959 =$
0.01924 0.00387 0.00770 0.00925
C11 1 0.30598 0.86718 0.83922 11.00000 0.05012 $0.07241 =$
0.01960 0.01275 0.00540 0.01423
C12 1 0.26048 0.73141 0.19507 11.00000 0.04211 $0.03186 =$
0.02665 0.00819 0.01382 0.01239
C13 1 0.12626 0.53549 0.30093 11.00000 0.03536 $0.02739 =$
0.02884 0.00625 0.01377 0.00766
C14 1 0.39564 0.73692 0.44579 11.00000 0.03359 $0.02388 =$
0.02649 0.00327 0.00969 0.00722
H4 2 -0.06225 0.68644 0.50623 11.00000 0.02830
H6 2 0.21979 1.01241 0.40553 11.00000 0.02961
H7A 2 0.16707 1.10182 0.09730 11.00000 0.03647
H7B 2 0.30275 1.05073 0.22211 11.00000 0.04841
H7C 2 0.15582 1.14804 0.24042 11.00000 0.04394
H8A 2 -0.11521 0.61526 -0.00865 11.00000 0.12360
H8B 2 -0.25094 0.52828 0.04863 11.00000 0.10381
H8C 2 -0.31515 0.59076 -0.07707 11.00000 0.08579
H9A 2 -0.21767 0.45501 0.37756 11.00000 0.03525
H9B 2 -0.43432 0.41842 0.30449 11.00000 0.05373
H9C 2 -0.35499 0.53437 0.42955 11.00000 0.04830
H11A 2 0.32875 0.95414 0.87009 11.00000 0.08280
H11B 2 0.42265 0.84317 0.85339 11.00000 0.07204
H11C 2 0.23116 0.82075 0.88383 11.00000 0.07771
HKLF 4
END

E. THE USE OF XL TO FIND TRIAL SOLUTIONS FOR NEUTRON DIFFRACTION DATA

The program \mathbf{XL} runs identically for analyzing neutron data with the exception(s) that.....

Again Dear Readers: I would greatly appreciate suggestions for this section as I have yet to use XL for neutron data myself!

<u>CHAPTER VI. CHECKING YOUR STRUCTURE FOR CHEMICAL</u> <u>REASONABLENESS (YOUR STRUCTURE MAY BE</u> <u>PRECISE BUT IS IT THE CORRECT ONE?)</u>

One of the most difficult challenges in X-ray crystallography is determining if your final answer is the correct one. Very often one gets a very precise answer that is actually wrong, most commonly because the structure was solved in the wrong space group. Estimates vary, but it is widely estimated that significant errors occur in up to 10% of published structures! Fortunately, even a non-crystallographer can catch many of these errors by checking the results for "chemical reasonableness".

A. BY LOOKING AT YOUR PLOTS

Do a careful visual inspection of your molecules as they rotate in the 'proj' view of **XP** and in your plots. Look for unusual bond distances and angles, close contacts, etc. Pay attention to close intermolecular contacts as well. The eye can sometimes catch what is hard to see in tables, particularly symmetry effects.

B. BY LOOKING AT YOUR ATOMIC PARAMETERS

Careful inspection of your tables of atomic parameters (e.g., from 'info') and of the apparent sizes and shapes of ellipsoids in plots will often reveal atoms that "don't fit." In such cases, one has several good options. If a Q peak has reappeared in the expected position for each such "bad" atom (i.e., each atom that has "wandered out of place"), one can delete such "bad" atom(s), assign the Q peak(s) as the correct atom type(s), and continue with the refinement. Alternately, just delete the bad atom(s) but don't reassign it(them) during this refinement cycle. In this case, one hopes that in the next cycle they will behave more reasonably. If neither of these approaches work, I find that it is best to go back to the start of the refinement and assign the atoms more slowly (i.e., only one or a few per cycle) as this may lead you away from a bad local minimum towards the global minimum. Just be careful to check that the new atom(s) is(are) well behaved in the next few refinement cycles. Some combination of these strategies usually works for me. If this sequence of steps doesn't work, this probably indicates deeper problems with your model such as disorder or the wrong choice of space group.

C. BY LOOKING AT YOUR BOND PARAMETERS

Carefully look over the tables of bond lengths and angles from 'bang' in **XP** and from the **XCIF** tables. Look for unusual bond distances (particularly bond distances that are substantially under 1 Å or are surprisingly long), unusual bond angles (particularly those that are too large or small for the expected hybridization of the atom), close contacts between "non-bonded" atoms, etc. Compare the bond lengths and angles to typical values listed in the Handbook. If your values

deviate significantly, an error in the structure is more probable than you having found the first example ever in the whole universe...... of such unusual values.

D. BY LOOKING AT YOUR DISPLACEMENT PARAMETERS

The displacement parameters of all similar atoms in similar molecular positions are usually close in magnitude. Unusually large or small values should make you suspicious and can indicate that you have assigned the wrong atom type, that the site is only partially occupied, that there is major disorder, etc. A very small value for the displacement parameter indicates that you may need an atom of higher electron density than the one currently assigned (i.e., replace a C by a O). Likewise, as very large value for the displacement parameter indicates that you may need an atom of lower electron density than the one currently assigned or that there is really no atom in that position. Commonly, the smallest values of the displacement parameters are near the center of the molecule and these values increase substantially as you move to the molecular periphery, especially for "floppy" groups like alkyls. The various atoms on relatively rigid groups such as carbonyls and arenes should show similarly oriented anisotropic ellipsoids.

E. STATISTICAL MEASURES OF QUALITY

1. Definitions of R, wR, and GOOF

The most useful statistical measures of the progress of a refinement are R, wR,²³ and GOOF. The residual indexes R and wR are calculated by **SHELXTL** based on F_o^2 . These values should decrease toward zero as the refinement progresses and will typically approach final values of 0.02 to around 0.1 when refinement is complete. These numbers are typically at least twice as large as old fashion refinements based on F_o . Because many scientists are more familiar with these obsolete refinement practices, **SHELXTL** also reports residual indexes that one would observe if the data had been refined this way. These "artificial" residual indexes are always substantially smaller. The goodness of fit, GOOF, parameter should approach one as a structure solution nears completion. These numbers are displayed on the screen after **XL** runs and appear in the **name.lst** files near the end. These parameters are shaded in the **calctest.lst** file presented in chapter IX, section H3.

The nature of these various parameters is summarized below:

- R The actual residual parameter (based on F_o^2 and all data).
- wR The actual weighted residual parameter (based on F_0^2 and all data).
- R1 The simulated residual parameter (based on hypothetical refinement based on F_o)
 - R1 for $F_o > 4\sigma(F_o)$ (calculated based on only the strongest data on F_o)
 - R1 for all data (calculated for all data on F_o)

²³ Note, our textbook refers to the weighted R values as Rw while SHELXTL refers to it as wR. For the purposes of this manual, we will use wR to retain consistency with the SHELXTL output.

• wR2 – The simulated weighted residual parameter (based on F_o)

Note: The exact interpretation of the parameters and their significance is the subject of no little controversy amongst even skilled crystallographers. Personally, I use them with extreme caution (i.e., mostly looking for trends in their values between subsequent refinement cycles).

2. Limitations of R, wR, and GOOF

Be very careful about trusting numbers such as the R, wR, and GOOF parameters. They are correlated with structure quality and should approach the low single digits for R and wR (i.e., near 3 to 5 % for R, wR is generally somewhat larger than twice the R value) and approach one for GOOF when the structure solution is complete. They are most useful when comparing the various stages of one particular crystal structure solution to other stages of that solution and when checking if the last thing one tried resulted in an improvement in the model. However, these parameters are easily biased (intentionally or not) and are less reliable indicators of the quality of a refinement than things such as the esd values of bond lengths and angles.

3. The Residual Electron Density

After **XL** has completed a cycle, it uses the F_o and F_c data to calculate a residual electron density map. From this calculation is prints to the **name.lst** file the maximum and minimum peaks of electron density. For well behaved structures these should be substantially less than one electron per cubic Å. These parameters are shaded in the **calctest.lst** file presented in chapter IX, section H3.

F. THE CRITERIA OF CHEMICAL REASONABLENESS

When all else fails, look to your intuition. If the numbers seem "too interesting to be true," they probably are.

VII-85

A. HELP FOR XP COMMANDS.

The Chapter references are to the Bruker AXS (Siemens) manual, version 5.1, especially chapters 18 and 19.

Type the "HELP command", e.g.

help ARAD [ent]

to find out about the 'ARAD' command. A similar method can be used to find out about any of the other **XP** commands, i.e.

ARAD, ATYP, BACK, BANG, CELL, CENT, DEMO, DIAG, DRAW, ECHO, EDEN, EGSD, END, ENVI, EXAM, EXIT, EYES, FILE, FMOL, FUSE, GAPS, GROW, HADD, HELP, HIMP, HLPD, INFO, INVT, ISOT, JOIN, KILL, LABL, LIBR, LINE, LINK, LITE, LOSE, MATR, MGEN, MODL, MOVE, MPLN, NAME, NEWM, NEXT, NOPL, OFIT, ORTH, PACK, PAGE, PART, PAWS, PBOX, PERS, PGEN, PICK, POLP, POLY, POST, PREV, PRIN, PROJ, PRUN, PUSH, QUIT, RASD, RAST, READ, REAP, RESI, RIDE, RING, ROTA, SAVE, SFIL, SGEN, SLPF, SLPR, SLXP, SORT, SPIX, SPLT, SPOT, SRCH, SYMM, SYSD, TELP, TITL, TORS, UNDO, UNIQ, USER, VIEW, WAIT, WIPE, ZOOM

or the following facilities in **XP** (the first four letters of these suffice):

ATOMS, BUGS, COLORS, COMPATIBILITY, ESCAPE, INITIALIZATION, INTERFACE, KEYWORDS, LABELS, NEWS, ORIENTATION, PLOTFILES, SYMCODES

B. TYPICAL TYPES OF XP PLOTS

There are an almost limitless number of ways one can use **XP** to illustrate a particular least squares planes calculated by XP. Some of the most common are described in the following sections. Examples of such plots for one molecule (95ADH06e referred to as "plottest", (η^{6} -1,2,3-(OMe)₃-5-(CO₂Me)C₆H₂)Cr(CO)₃) are given in chapter IX.

Before you plot your molecule using **XP**, you have to ensure that you have the correct atoms loaded into XP and that you have established their connectivities using the fmol instruction. In the discussion below, all of the file names have the form **plottest**.? (where the ? mark is replaced by a letter to give the plot number). When you do your plots, use the name of your sample instead of 'plottest'.

1. Choosing Which Atoms Will be Labeled and How

The default plots in **XP** label only the non-hydrogen atoms and place brackets (parentheses) around the atom numbers (i.e. causing C(10) to appear as C10). If one wants the hydrogen atoms labeled or does not want the brackets one must use the 'labl' command. Use the commands shown below to get the desired labeling on your plots from 'diag', 'sfil', 'telp', 'eden', and 'ofit'.

labl 0 [ent]

would give no labels on your plots.

labl 1 [ent]

would give no labels on hydrogen and no brackets on the numbers.

labl 2 [ent]

would give no labels on hydrogen and brackets on the numbers (i.e. this is the default case).

labl 3 [ent]

would give labels on hydrogen and no brackets on the numbers.

labl 4 [ent]

would give labels on the hydrogens and brackets on the numbers. This command can also be used to adjust the size of the labels.

2. Ball and Stick Plots

pers [ent]

This command converts the current view of the molecule into a very realistic ball and stick view on screen. Unfortunately, it can not be plotted.

To make a Ball and Stick plot of your molecule, you would carry out the following steps after you had loaded the desired atoms into the **XP** program.

proj [ent]

This step loads the interactive 'proj' routine which you use to get the desired orientation of your molecule.

telp [ent] plottest.a [ent]

This step loads the interactive 'telp' routine which lets you label your atoms. When you are done, press the 'B' key to save your plot and exit from 'telp'. If you want to exit from 'telp' without saving the file press [esc].

rast plottest.a [ent] or

rast/c plottest.a [ent]

These two commands would send this plot for black and white or color printing, respectively.

3. Plots with Special Orientations

To make a plot of your molecule with a special orientation (e.g., parallel to one of the unit cell axes or perpendicular to a particular plane in the crystal), you would carry out <u>one</u> of the following steps after you had loaded the desired atoms into the **XP** program.

matr 1 [ent] or
matr 2 [ent] or
matr 3 [ent] or
matr 2 4 -7 [ent]

These commands orient the molecule so that it is parallel to the x, y, and z axes of the unit cell or perpendicular to the crystal plane having Miller indices of 2 4 -7, respectively.

proj [ent]

Reminder, this step then loads the interactive 'proj' routine which you use to see the resulting orientation of your molecule.

After you have done this, you can use 'telp' as described above and below to get plots of these views taken at these special viewing angles.

4. Displacement Ellipsoid Plots

To make a displacement ellipsoid plot of your molecule (which shows the three dimensional size and shape of your atoms and looks a lot like an ORTEP plot), you would carry out the following steps after you had loaded the desired atoms into the **XP** program.

proj [ent]

This step loads the interactive 'proj' routine which you use to get the desired orientation of you molecule.

You would then give a command such as the following to get various types of displacement ellipsoid views of your molecule. [Note: *It is the negative sign on the second parameter after 'telp' that tells* **XP** *to use displacement ellipsoids rather than ball and stick drawings*. It is the first and last of these parameters that specifies which type of stereo plot will be produced.]

telp 0 -50 0.04 0 [ent] plottest.b [ent] (i.e., for a view at 50% ellipsoids)

telp 0 -100 0.04 0 [ent] plottest.c [ent] (i.e., for a view at 100% ellipsoids)

telp 0 -75 0.04 0 [ent] plottest.d [ent] (i.e., for a view at 75% ellipsoids)

telp 0 -75 0.04 0 less \$H [ent] plottest.f [ent] (i.e., for a view at 75% ellipsoids without Hydrogens)

telp 3 50 0.08 50 [ent] plottest.g [ent] (i.e., for a *stereo* view of ball and stick at 50% and with "fatter" bonds)

telp 3 -50 0.08 50 [ent] plottest.i [ent] (i.e., for a *stereo* view at 50% ellipsoids with "fatter" bonds)

[Note: most authors prefer to prepare graphics for publication as 30 to 50% ellipsoids. I prefer to use 75 to 100% ellipsoids only when I am looking for bad inter- or intra-molecular contact or trying to see if any of the atoms have unusually shaped ellipsoids.] These steps load the interactive 'telp' routine which lets you label your atoms. When you are done, press the 'B' key the save your plot and exit from 'telp'.

rast plottest.? [ent] or

rast/c plottest.? [ent]

These two commands would send each plot with the correct letter in place of the question mark for black and white or color printing, respectively.

5. Space Filling Plots

There are two ways of seeing space filling views of molecules, 'sfil' and 'spix'.

spix [ent]

This command converts the current view of the molecule into a very realistic space filling view on screen. If you type the 'P' key while in this view, it sends this picture to the plotter in black and white but does not save it.

sfil [ent] plottest.r or

sfil 3 50 [ent] plottest.s

These interactive commands allow you to label a space filling view of the molecule (the latter case being a *stereo* plot) for later plotting with 'rast' or 'rast/c', e.g.

rast plottest.r [ent] or

rast/c plottest.s [ent]

These two commands would send each plot for black and white or color printing for **plottest.r** and **plottest.s**, respectively.

6. Editing Bonds and Adding Dummy Atoms

Sometimes you want to edit bonds into or out of molecules or add dummy bonds to molecules (e.g., at the center of an aromatic ring). I prefer to first remove all bonds to an atom of interest to me using the 'prun' command, e.g.

prun Cr [ent]

This command would remove all bonds to the Cr atom (i.e., I have plotted the result as **plottest.j** in Chapter X).

I then add back all of the new bonds I want, e.g.

join Cr C12 [ent]

join Cr C13 [ent]

join Cr C14 [ent]

These three commands would add back bonds from the Cr atom to carbons C12, C13, and C14, respectively (i.e., I plotted the result as **plottest.k** in Chapter X).

cent/x C1 to C6 [ent]

join Cr X1A [ent] or link Cr X1A [ent]

This command would add a dummy atom in the center of a ring defined by carbons C1 to C6 (which in this case the program told me it named X1A) and then bond it to the Cr atom (i.e., I plotted the result as **plottest.l** in Chapter X).

I have used **telp 0 -75 0.04 0 [ent]** to create plots of this example and labeled them as **plottest.i**, **plottest.k**, **plottest.l** as indicated above.

7. Packing Diagrams for the Unique Molecule(s)/Fragment(s) in the Unit Cell

To make a displacement ellipsoid plot of your molecule (which shows the three dimensional sizes and shapes of your atoms), you would carry out the following steps after you had loaded the desired atoms into the **XP** program.

proj cell [ent]

This step loads the interactive 'proj' routine which you use to get the desired orientation of your molecule and an outline of the unit cell.

You would then give a command such as the following to get various types of displacement ellipsoid views of your molecule. [Note: you could just use **telp [ent]** if you wanted only a ball and stick plot with the unit cell shown.]

telp 0 -75 0.04 0 CELL [ent] plottest.e [ent] (i.e., for a mono view)

telp 3 50 0.08 50 CELL [ent] plottest.h [ent] (i.e., for a view with "fat" bonds)

These steps load the interactive 'telp' routine which lets you label your unit cell axes and your atoms. When you are done, press the 'B' key the save your plot and exit from 'telp'.

rast plottest.? [ent] or

rast/c plottest.? [ent]

These two commands would send each plot with the correct letter in place of the question mark for black and white or color printing, respectively.

8. Packing Diagrams for Multiple Molecules Packed Around the Unit Cell

pbox width depth [ent]

This command defines the size of the box that will be filled up with molecules. If you set the width and depth values (e.g., 5 to 10), which are in Å, as small numbers you will just get a few molecules. If you set them to large values (e.g., 20 and 40 or 30 and 30) you will get many molecules packed together but the calculation slows way down as you now are talking about thousands of atoms.

pack [ent]

This interactive utility is used to set up the packing plots with the size given by the 'pbox' command. If you like the looks of this command, you push the sgen/fmol button with the mouse to save the new molecules generated by these two steps. You can then use:

proj CELL [ent]

command to get the orientation of the molecule you want. You could also use one of the 'matr' commands to get a specific view down a unit cell axis or perpendicular to a lattice plane, e.g.

matr 1 [ent] or
matr 2 [ent] or
matr 3 [ent] or
matr 2 4 -7 [ent]

You would then give a command such as the following to get a Ball and Stick view of your molecule. [Note: you could just use **telp 0 50 0.04 0 CELL [ent]** if you wanted a displacement ellipsoid plot with the unit cell shown but this would calculated even slower.]

telp CELL [ent]	plottest.o [ent] (i.e., for a mono v	iew down the x axis)
telp CELL [ent]	plottest.p [ent] (i.e., for a mono v	view down the y axis)
telp CELL [ent]	plottest.q [ent] (i.e., for a mono v	view down the z axis)

These steps load the interactive 'telp' routine which lets you label your unit cell axes and your atoms. When you are done, press the 'B' key the save your plot and exit from 'telp'.

rast plottest.? [ent] or

rast/c plottest.? [ent]

These two commands would send each plot with the correct letter in place of the question mark for black and white or color printing, respectively.

9. Inverting Molecules (i.e., to their Enantiomers)

If you want to invert your molecule to its enantiomer, you may use the 'invt' command.

invt [ent]

proj [ent]

[Note: See the information in Chapter V, section B6 about a few special space groups where this command is not sufficient to change the chirality of the system.] This step loads the interactive 'proj' routine which you use to check the new structure of your molecule.

telp 0 -75 0.04 0 [ent] plottest.m [ent] (i.e., for a view at 50% ellipsoids)

These steps load the interactive 'telp' routine which lets you label your atoms. When you are done, press the 'B' key the save your plot and exit from 'telp'.

rast plottest.? [ent] or

rast/c plottest.? [ent]

These two commands would send each plot with the correct letter in place of the question mark for black and white or color printing, respectively.

10. Interatomic Lines, Least Squares Planes, and Torsion Angles

One often needs to know the equations of lines defined by various atoms in a molecule and the equations of planes defined by sets of atoms in the molecule (e.g., to answer questions about bonding, co-planarity, etc.). The commands 'line' and 'mpln' are used to calculate these lines and least squares planes. They also give the angles between them.

line Cr C12 [ent] and

line Cr C13 [ent]

These commands would calculate the lines for the Cr to C12 and Cr to C13 vectors, respectively, and if they intersect would also print the angle between them to the screen.

mpln C1 C2 C3 C4 C5 C6 [ent]

This command would calculate the least squares plane for the aromatic ring containing the carbons C1 to C6. It would also give you the deviations of all six of these carbons from the least squares plane, the distance of all other atoms in the molecule from this least squares plane, the equation of the normal to this plane, and the angle between the normal to this plane and the normal to any other planes previously defined and to any other lines defined previously (e.g., the Cr to C12 and Cr to C13 vectors calculated above).

For molecules you can define as many planes as you like and this command will then calculate the inter-plane angles as well.

mpln C12 C13 C14 [ent]

mpln O12 O13 O14 [ent]

Defining these additional planes would allow the program to calculate planes defined by the carbonyl carbons and oxygens, respectively, and the angles between the arene, carbonyl carbon, and carbonyl oxygen planes.

To determine the torsion angles about a bond use the 'tors' command, i.e. tors C1 C2 C4 C5 [ent]

These commands would print the C1 C2 C3 C4 torsion angle to the screen.

To print any of the above values to the printer as well as the screen, make the following changes in the command lines.

line/L Cr C12 [ent] print [ent] prints the information on the line connecting the Cr and C12

line/L Cr C13 [ent] print [ent] prints the information on the line connecting the Cr and C13 and the angle between this line and that between Cr and C12

mpln/L C1 to C6 [ent] print [ent] prints the equation for the plane defined by the atoms on the atom list between C1 and C6, the equation of the normal to this plane, and the angles between this plane and any previously defined lines and/or planes. [Note: if 27 atoms lie between C1 and C6 because you haven't carefully sorted the atom list then all of them will be included in the plane.]

mpln/L C1 C2 C3 C4 C5 C6 [ent] print [ent] prints the equation for the plane defined by the atoms C1, C2, C3, C4, C5, and C6 and the angles between this plane and any previously defined lines and/or planes

mpln/L C12 C13 C14 [ent] print **[ent]** prints the equation for the plane defined by the atoms C1, C2, C3, C4, C5, and C6 and the angles between this plane and any previously defined lines and/or planes

mpln/L O12 O13 O14 [ent] print [ent] prints the equation for the plane defined by the atoms O13, O14, and O15 and the angles between this plane and any previously defined lines and/or planes

tors/L C1 C2 C4 C5 [ent] print [ent] prints the torsion angle about the C2-C4 bond

tors/L print [ent] prints all of the torsion angles

[Note: the 'nopl' command deletes the stored table of lines and planes.] Examples of these tables are given at the end of Chapter XII for the sample compound "calctest."

C. ALPHABETICAL LISTING OF XP COMMANDS, COMMON VARIANTS, AND EXAMPLES OF THEIR USE.

The following is a list of the **XP** commands that I find the most useful. They are generally composed of a four letter identity code followed by various parameters that can be varied to modify their effects. I have given a short discussion for each including examples of how they are most commonly used. There is also a page number from the Bruker AXS (Siemens)/**SHELXTL** Version 5.1 manual for each which generally gives a more detailed/general explanation of each.

The commands and common variants of commands of most use for beginners (e.g., in courses such as Chemistry 832: Solid State Structural Methods) are shaded in below.

Code	Page ²⁴	Discussion
'arad'	19-1	This utility sets atomic radii for space filling plots.
ʻatyp'	19-1	This utility sets how an atom in a molecule will be represented in subsequent 'telp' plots. It is used in the following format [Note: Type in help for a full description of using 'atyp']:
		atyp type color KEYWORDS [ent]
		where the various codes are given on page 19-1 and 19-2 of the manual and at the end of this table (e.g., the codes I use the most for type are:
		 -3 is a "normal" boundary ellipse, -1 is a full displacement ellipse, 0 is "nothing" (i.e., for dummy atoms), 1 is a shaded circle with highlights,
		the color codes I use most for color are:
		0 black, 1 green, 2 red, 3 blue, 4 orange, 5 magenta, 7 cyan,
	l	8 green,

²⁴ These page numbers are taken from the Bruker AXS (Siemens) manual for SHELXTL, version 5.1. All of these page numbers will vary with the version of the manual you use.

		10 purple, etc.,
		and the KEYWORDS are given at the end of this table
		For example:
		atyp -1 less \$H [ent]
		atyp 2 \$H [ent]
		would plot all non Hydrogen atoms as full displacement ellipsoids and all Hydrogen as open circles.
		atyp -1 3 \$Pd [ent]
		atyp 2 2 all less Pd [ent]
		would plot all Palladium atoms as full displacement ellipsoids in blue and all other atoms as open circles in red.
		atyp 1 10 C1 to C14 [ent]
		atyp 2 7 C15 to C37 [ent]
		would plot all carbon atoms from C1 to C14 as purple shaded circles and all carbon atoms from C15 to C37 as cyan open circles.
		A full description of the 'atyp' command is available by typing
		help atyp [ent]
'bang/L'	19-2	bang/L KEYWORDS [ent] print [ent]
		This utility prints a list to the screen <i>and the printer</i> of all bond lengths and angles from the 'fmol' list, e.g.
		bang/L [ent] print [ent]
		bang/L Cr2 [ent] print [ent]
		would print a list of all the lengths and angles for the molecule and around the atom Cr2, respectively.
'bang'	19-2	bang KEYWORDS [ent]

		This utility prints a list to the screen of all bond lengths and angles from the 'fmol' list, e.g.
		bang [ent]
		bang Cr2 [ent]
		would print a list of all the lengths and angles for the molecule and around the atom Cr2, respectively.
'cell/L'	19-2	cell/L [ent] print [ent]
		This utility prints the current unit cell dimensions and angles to the printer.
'cell'	19-2	cell [ent]
		This utility displays the current unit cell dimensions and angles.
'cent/L'	19-3	cent/L KEYWORDS [ent] print [ent]
		This utility calculates x, y, and z coordinates of the centroid of the specified atoms (ATYP = 0) and sends it to the printer, e.g.,
		cent C1 TO C6 [ent] print [ent]
		would calculate centroid of these six atoms (e.g., in a benzene ring) and send it to the printer.
'cent'	19-3	cent KEYWORDS [ent]
		This utility calculates x, y, and z coordinates of the centroid of the specified atoms (ATYP = 0), e.g.,
		This utility calculates x, y, and z coordinates of the centroid of the specified atoms (ATYP = 0), e.g., cent C1 TO C6 [ent]
		This utility calculates x, y, and z coordinates of the centroid of the specified atoms (ATYP = 0), e.g., cent C1 TO C6 [ent] would calculate centroid of these six atoms (e.g., in a benzene ring).
'demo'	19-3	This utility calculates x, y, and z coordinates of the centroid of the specified atoms (ATYP = 0), e.g., cent C1 TO C6 [ent] would calculate centroid of these six atoms (e.g., in a benzene ring). demo [ent]
'demo'	19-3	This utility calculates x, y, and z coordinates of the centroid of the specified atoms (ATYP = 0), e.g., cent C1 TO C6 [ent] would calculate centroid of these six atoms (e.g., in a benzene ring). demo [ent] This utility runs the demonstration "video" of different types of XP graphical output. [esc] exits the 'demo' loop.

		This utility draws a labeled diagram that is saved as diag.plt and is displayed in the top right hand corner of the screen. The [F10] key toggles this on and off.
'draw'	19-4	draw name.x [ent]
		This utility converts the plot file (name.x) to a HPGL (Hewlett Packard Graphics Language or postscript format interactively. In newer version of the software it will also print the resulting plots to a postscript printer.
'eden'	19-5	This interactive utility calculates electron density contours for planes. ²⁵
'envi'	19-7	envi delta KEYWORDS [ent]
		This utility prints a list of all atoms and Qs within a distance defined as the sum of their covalent radii plus delta (e.g., for two carbons $0.77\text{\AA} + 0.77\text{\AA} + 0.5\text{\AA}$ (default) = 2.04Å) around the atoms defined by KEYWORDS . This is very useful for finding Hydrogen bonds, close contacts, neighboring molecules, etc. For example:
		envi 0.7 C11 [ent]
		would list all atoms within $r_1 + r_2 + 0.7$ Å of atom C11.
'exit'	19-7	exit [ent]
		This utility exits from XP but doesn't, in itself, save your work to the name.ins file (the 'file' command does that).
'file'	19-7	file name [ent]
		This utility saves the work you've done in XP as a name.ins file (where name is the 8 character name of your structure).
'fmol'	19-7	fmol [ent]
		This is normally the first instruction after you have started XP . It sets up a connectivity table of the atoms and Q peaks taken from the name.res file for which XP was started. The atoms are considered to be bonded if they are within the sum of their covalent radii plus delta. The default value of δ is 0.5 Å, thus, two carbons would be considered to be bonded if they were within 2.04Å (i.e., 2 x 0.77Å (the covalent radius of C) + 0.5Å). The command:

25

Details of how to do this will be included in future editions.

		would change this delta value to 0.8Å. The default is generally appropriate.
'fuse'	19-9	fuse delta [ent]
		This command is used to fuse all the atoms within a defined distance of one another together (default distance is 0.5Å), e.g.,
		fuse 0.7 [ent]
		would fuse all atoms within 0.7Å of one another together. After using the 'fuse' command, one almost always uses the 'uniq' command as well.
'grow'	19-9	grow delta KEYWORDS [ent]
		This utility uses all of the atoms in the 'fmol' list and the symmetry of the crystal (i.e., symmetry equivalent) to assemble complete molecules. The default value of delta is 0.5Å. This is commonly used to generate the symmetry equivalent atoms when a molecule is on a special position, e.g.
		grow [ent]
		grow \$P [ent]
		would find the symmetry equivalent atoms of all atoms already assigned and of only the symmetry equivalent phosphorous atoms, respectively. [Note: this command can be reversed using the 'fuse' and 'uniq' commands.]
'hadd'	19-10	This utility generates H atoms in idealized positions on the named, C, N, and O atoms. The default distances are 0.96Å for C-H, 0.90Å FOR N-H, AND 0.89Å for OH. The default U values assigned to atoms by the 'hadd' instruction are -1.2 for most groups and -1.5 for methyl and hydroxyl groups. If you don't specify "type" it will make an " intelligent" guess but errors are possible, especially for poorly determined atoms. The various types are:
		type = 1 tertiary C-H
		type = 2 secondary CH_2
		type = 3 methyl CH_3
		type = 4 aromatic C-H or amide N-H
		type = 8 OH

		type = 9 terminal CH_2 or NH_2
		This utility is good for visualizing where these atoms will occur but using HFIX in the name.ins file is better. The value of U is at 0.08 by default and is the isotropic U. As an example of this command:
		hadd 3 0.95 C1 [ent] or
		hadd 8 1.1 O3 [ent] or
		hadd \$C All [ent]
		would convert atom C1 to a methyl group with a C-H distance of 0.95, would convert atom O3 to a hydroxyl group with a O-H distance of 1.1, and would convert all carbons to XP 's best guess of their atom types with the default C-H distances, respectively.
'help'	19-11	help [ent]
		This is the help utility. If you type the above entry, XP will give you a list of commands about which HELP can tell you. If you type:
		help info [ent]
		would give you the help message for the info command.
'info/L'	19-12	info/L [ent] print [ent]
		This version of info sends the list to the printer!
'info'	19-12	info [ent]
		This utility summarizes the positional, etc., parameters for each atom and Q peak and prints them on the screen.
'invt'	19-12	invt Xi Yi Zi KEYWORDS [ent]
		This utility inverts atoms through the origin (or other points if Xi, Yi, and Zi are specified). The KEYWORDS identifies which atoms are inverted. It is very useful for converting one enantiomer to another, i.e.,
		invt ALL [ent] or
		invet [ant]

		would both invert all atoms. It can also be used to invert subsets of atoms, e.g.,
		invt Cr1 P21 C11 [ent]
		would invert atoms Cr1, P21, and C11, only. [Note: See the information in Chapter V, section B6 about a few special space groups where this command is not sufficient to change the chirality of the system.] This command is closely related to the 'push' command. For example:
		push 0 0 0 -1 [ent]
		would invert each atom's coordinates about the origin (i.e., as does 'invt). If coordinates are added, the 'push' command inverts the unit cell contents about this new point. This is particularly useful for a few unusual space groups. It is thus more suitable for these special space groups.
ʻjoin'	19-12	join BONDTYPE KEYWORDS [ent]
		This utility draws in bond(s) between atoms. If precisely two atoms are specified then only the bond connecting them is drawn. If the bond was already present then its type is changed. The default BONDTYPE is type 1 (solid) for join (this is the only difference from the 'list' command which has type 6 as default). A list of BONDTYPE values is at the end of this section. For example:
		join 2 C6 P2 [ent]
		would draw an open bond between atom C6 and atom P2.
		join 3 Cr [ent]
		would draw all bonds to the chromium atom as dashed solids.
		join C6 P2 [ent]
		would draw an solid bond between atom C6 and atom P2. A full description of the 'join' command is available by typing
		help join [ent]
'kill'	19-13	kill KEYWORDS [ent]
		This utility kills the atoms specified by KEYWORDS , e.g.,

		kill \$H [ent]
		would delete all Hydrogens from the list while
		kill O4 C11 to C14 [ent]
		would delete atoms O4 and C11 through C14.
'labl'	19-13	labl code size [ent]
		This 'labl' command defines how the commands 'diag', 'sfil', 'telp', 'eden', and 'ofit' label a plot. The size value is the height of the labels (in plot units, 600 is the default value). The code tells the programs which atoms to label and whether to use brackets around the atom numbers (the default code is 2), i.e.,
		0 = no labeling 1 = no labels on H and no brackets on atom numbers 2 = no labels on H and brackets on atom numbers 3 = labels on H and no brackets on atom numbers 4 = labels on H and brackets on atom numbers
		[Note: With codes 2 and 4, the plots omit the () parentheses around the atom labels (e.g., causing $C(10)$ to appear as C10 and all of the other labels to be similarly transformed).] Thus, the following commands
		labl 1 [ent] or
		labl 3 400 [ent]
		would put standard size labels with no brackets on the non-hydrogen atoms only and would put labels with no brackets that were two thirds of standard size on all atoms, respectively.
ʻlibr'	19-14	This command carries out a librational analysis of rigid body motion for the compound.
'line/L'	19-14	line/L two atoms [ent]
		This utility calculates the equation of the line joining the two atoms specified and outputs its angle with previously calculated lines and planes. 'nopl' deletes stored lines and planes, e.g.
		line/L Cr C12 [ent]
		line/L Cr C13 [ent]

		line/L Cr C14 [ent] print [ent]
		This set of commands would calculate the three vectors from the Cr to C12, C13, and C14, the angles between them, and print this data to the screen and to <i>the printer</i> .
'line'	19-14	line two atoms [ent]
		This utility calculates the equation of the line joining the two atoms specified and outputs its angle with previously calculated lines and planes. 'nopl' deletes stored lines and planes, e.g.
		line Cr C12 [ent]
		line Cr C13 [ent]
		line Cr C14 [ent]
		This set of commands would calculate the three vectors from the Cr to C12, C13, and C14, and angles between them, and print this data to the screen.
ʻlink'	19-14	link BONDTYPE KEYWORDS [ent]
		This utility is essentially identical to 'join'. The only difference from 'join' is that the default BONDTYPE is 6 (dashes). This utility draws in bond(s) between atoms. If only two atoms are specified then only the bond connecting them is drawn. If one or more than two atoms are specified then all bonds to those atoms are changed. For example:
		link 2 C6 P2 [ent]
		would draw an open bond between atom C6 and atom P2 while
		link 3 Cr [ent]
		would draw all bonds to the chromium atom as dashed solids. A full description of the 'link' command is available by typing
		help link [ent]
'matr'	19-15	matr variables [ent]
		This utility is used to specify an orientation matrix for view. For example:

		matr [ent]
		would print the current orientation matrix to the screen (this can be useful if you write it down so that latter you can come back to the exact same orientation) while
		matr p11 p12 p13 p21 p22 p23 p31 p32 p33 [ent]
		would convert to the new specified matrix and
		matr 1 [ent]
		matr 2 [ent]
		matr 3 [ent]
		would orient for projection down the real crystal axes x, y, and z, respectively. The command:
		matr 1 2 -4 [ent]
		where 1 2 -4 are a particular h, k, l set of Miller indices gives an orientation with this crystal plane perpendicular to the view direction.
'mgen'	19-16	mgen KEYWORDS delx dely delz XcYcZc [ent]
		This utility generates all symmetry equivalent molecules in the specified volume. KEYWORDS defines which atoms are used. The volume is defined by Xc±delx, Yc±dely, Zc±delz. You run 'mgen' (i.e., molecules on special positions should be treated with 'grow' first). Since 'mgen' hunts down bonded atoms to the specified ones, it usually works best just to specify the/a central atom in your molecule (if you used all, etc., it is very slow).
'mpln/L'	19-17	mpln/L KEYWORDS [ent] print [ent]
		This utility calculates the best least squares plane through the specified atoms. It calculates the angles between this plane's normal and the normals to all previous planes from 'mpln' and to previous lines from 'line'. For example:
		mpln/L C1 to C6 [ent]print [ent]mpln/L C7 C8 C9 [ent]print [ent]
		would calculate the equation of least squares plane defined by the atoms in the atoms list between C1 to C6 and the plane define by atoms C7, C8, and C9, the angle between the normal to these planes and any lines previously defined by

		'line' and then prints this data <i>to the printer</i> . [Note: if 27 atoms lie between C1 and C6 because you haven't carefully sorted the atom list then all of them will be included in the plane.] [Note: 'nopl' deletes the stored table of planes and lines.
'mpln'	19-17	mpln KEYWORDS [ent]
		This utility calculates the best least squares plane through the specified atoms. It calculates the angles between this plane's normal and the normals to all previous planes from 'mpln' and to previous lines from 'line'. For example:
		mpln C1 to C6 [ent]
		mpln C7 C8 C9 [ent]
		would calculate the equation of least squares plane defined by the atoms in the atoms list between C1 to C6 and the plane define by atoms C7, C8, and C9 and the angle between the normal to these planes and any lines previously defined by 'line'. [Note: if 27 atoms lie between C1 and C6 because you haven't carefully sorted the atom list then all of them will be included in the plane.] [Note: 'nopl' deletes the stored table of planes and lines.
'name'	19-18	name oldname newname SFAC code [ent]
		This utility renames atoms and ranges of atoms and will redefine their atom types (using the SFAC code (this is SHELXTL's code for each element type)) if required. For example:
		name Q7 C3 2 [ent]
		would rename peak Q7 as atom C3 and give it an SFAC code of 2.
		name Q?? C?? [ent]
		would change Q peaks Q11 to Q99 to carbons C11 to C99, respectively.
		Note: It can generally guess the SFAC code from the atom names.
'next'	19-18	next filename [ent]
		This utility recalls the saved structural parameters from 'save'.
'nopl'	19-19	nopl [ent]
		This command deletes stored planes (from 'mpln') and lines (from 'line').
'ofit'	19-19	ofit KEYWORDS [ent]
--------	-------	---
		This interactive utility is used to fit atoms to models (i.e., rigid rings, another steroid, etc.). This could be used to compare related molecules.
'orth'	19-20	orth filename [ent]
		This utility converts the crystallographic coordinates of the atoms to orthogonal(Cartesian) coordinates based on the current view of the molecule. If the period (i.e., ".") in the filename is left out it saves them to the .ort file, e.g.,
		orth 95ADH03C [ent]
		would save orthogonal(Cartesian) coordinates in 95ADH03C.ort . This is useful for transferring coordinates to other programs such as Chem3D.
'pack'	19-20	pack del2 del1 KEYWORDS [ent]
		This interactive utility is used to set up packing plots for the symmetry related molecules within the box generated by 'pbox', which defines its size. When you get a 'pack' view that looks good to you, click on the sgen/fmol key which will add these new atoms to the atom list (so that you can now see them in 'proj', 'telp', etc). [Note: these extra symmetry generated atoms can be removed with the 'fuse' and 'uniq' commands.]
'page'	19-21	page [ent]
		This command adds a blank page between the last file to be printed and the next one.
'pbox'	19-22	pbox width depth Xc Yc Zc [ent]
		This utility defines the size of the box used by 'pack' where the width and depth are in Å (default width is 20Å and depth is 8Å). The height is defined as 0.75 the width. It includes all molecules with at least one atom in the box. Xc Yc Zc is the center of the box in crystal coordinates (0.5 0.5 0.5 default). For example:
		pbox 10 5 0 0 0 [ent]
		would generate all molecules touching a box $10\text{\AA} \times 5\text{\AA} \times 7.5\text{\AA}$ centered at the origin.
		Each time you use 'pbox' it starts over from the unique portion of the cell even after you have used 'sgen'.

'pers'	19-22	This utility draws the molecule on the screen as a perspective ball and stick drawing, e.g.,				
		pers bondrad KEYWORD [ent]				
		where bondrad is the radii of bonds (default is 0.05 Å) and KEYWORD is most commonly CELL (to show the unit cell outline).				
'pgen'	19-23	This command is used to generate coordination polyhedra. If you need to use these, see Dr. Wagner for help.				
'pick/H'	19-24	pick/H [ent]				
		This utility labels all atoms on the screen including Hydrogens.				
'pick'	19-24	pick KEYWORDS [ent]				
		This interactive utility is used to assigns Q peaks, renames atoms, and changes their types, etc. Only non-Hydrogen atoms have their labels appear on screen. The space bar accepts the current name, [ent] deletes that peak if nothing was typed in or renames/assigns it to what you type in, and [/] saves what you've done in 'pick'.				
'polp'	19-25	This command is used for drawing coordination polyhedra. If you need to use these, see Dr. Wagner for help.				
'poly'	19-27	This command is used for drawing coordination polyhedra. If you need to use these, see Dr. Wagner for help.				
'post'	19-27	post plot file [ent]				
		This interactive utility combines text and graphics (e.g., for posters). It allows you to adjust the size and to annotate existing plot files.				
'prev'	19-29	prev [ent]				
		This command returns the molecule to the previous orientation.				
'print'	19-29	prin [ent] or print [ent]				
		This command sends the output that have been saved to the printer. Either 'print' or 'prin' may be used.				

'proj'	19-30	proj KEYWORDS [ent]
		This interactive utility is used to orient views.
		proj CELL [ent]
		would include a unit cell outline as well.
'prun'	19-30	prun nb KEYWORDS [ent] or prun d1 d2 KEYWORDS ent
		Here the term 'nb' refers to the maximum number of bonds allowed to an atom and the terms 'd1' and 'd2' refer to the minimum and maximum allowed bond distances. This command prunes the connectivity table (i.e., it removes bonds), e.g.
		prun Cr [ent]
		prun C1 to C6 [ent]
		prun \$O [ent]
		remove all bonds to Cr, to carbons C1 through C6, and to all oxygen atoms, respectively.
		prun 4 C14 [ent]
		would remove all but the four shortest bonds from C14.
		prun 1.35 1.55 C14 [ent]
		would remove all bonds shorter than 1.35 Å and longer than 1.55 Å from C14.
'push'	19-30	push dx dy dz sign [ent]
	1	This utility shifts all the atoms on the atom list. It first multiplies by sign (which must be $+1$ or -1) and then shifts coordinates by dx dy dz. For example:
		push 0 0 0 -1 [ent]
		would invert each atom's coordinates about the origin (i.e., as does 'invt). If coordinates are added, the 'push' command inverts the unit cell contents about this new point. This is particularly useful for a few unusual space groups.
'quit'	19-31	quit [ent]

		This command quits XP and kills any printer output.
'rast/c'	19-31	rast/c filename [ent]
		This command prints the specified filename in color.
'rast'	19-31	rast filename [ent]
		This command prints the specified filename in black and white.
'read'	19-31	read filename [ent]
		This command loads atoms, etc., from the specified filename.
		read 95ADH03A [ent] or
		read 95ADH03A.res [ent]
		reads them from the .res file
		read 95ADH03A.ins [ent]
		reads them from the .ins file.
'reap'	19-32	reap filename [ent]
		This command mimics 'read' except that it reads past one END instruction in the .res file to read the Q peaks.
'save'	19-33	save filename [ent]
		This utility saves the current structural parameters to the named file, 'next' returns them. Used to "backup" your work before trying "risky" operations on your data. This is used as a "temporary" save within XP .
ʻsfil'	19-34	sfil s d KEYWORDS [ent]
		This utility generates a <i>space filling molecular model</i> and writes it to a plot file. It asks you to name the plot file, use your compound's name.a, or .b or. c, etc. The character S is the stereo view angle and is used for stereo views. Its default is 0 for mono. For left-right stereo use 3 and use -3 for red-green stereo. The character d is the distance from eye to paper or screen and is normally left at the default of 50. You can use 'arad' and 'atyp' to change atomic radii and colors, respectively. It then asks you to interactively label atoms as in 'telp'.

'sgen'	19-34	sgen SYMCODES KEYWORDS [ent]
		This utility generates new atoms with the specified SYMCODES. These are often found from 'envi'. For example:
		sgen 6554 [ent]
		would generate the symmetry related molecule with SYMCODES 6554.
'sort/H'	19-33	sort/H atom 1 atom 2 atom n [ent]
		This utility is just like sort but it doesn't put Hs after their attached atoms.
'sort/N'	19-33	sort/N atom 1 atom 2 atom n [ent]
		This routine sorts the specified atoms by their numbers.
'sort'	19-36	sort atom 1 atom 2 atom n [ent]
		This utility sorts the atoms in the specified order. For example:
		sort Cr1 [ent]
		would make Cr1 the first atom in the list.
		sort O2 N3 C11 C12 [ent]
		would place C12 after C11 after N3 after O2 in the list. These commands place Hydrogens right after the atoms they are attached to.
		Sort \$Pt \$S \$P \$N \$C \$H [ent]
		Would put the atom types in the specified order (i.e., all of the Pt atoms in order, followed by all of the S atoms in order, followed by all of the P atoms in order, etc.).
'spix'	19-36	spix KEYWORDS [ent]
		This utility displays space filling molecules without generating a plot file. If you press the 'p' key while in the 'spix' view, a black and white copy of the view will be sent to the printer.
'telp'	19-39	telp s p b d KEYWORDS [ent]
		This interactive routine labels a plot and then saves it for later plotting by 'rast'

		or rast/C. The parameters are:				
		s which is the stereo angle given as 0 for a mono plot, 3 for a left-right stereo plot, and -3 for a red-green stereo plot. [add 10C to suppress the frame around stereo plots].				
		p is the % probability of the displacement ellipsoid, a <i>positive number</i> gives ball and stick plots, a <i>negative number</i> gives displacement ellipsoid plots. The default value for p is 50%, most people use 30% to 50% for p to see clearly what is going on, and using values for p to 75% to 100% often gives plots that are too crowded to see clearly.				
		b is the bond radius. The default value for b is 0.09 but a value of 0.04 or 0.05 gives thinner bonds and is generally preferred.				
		d is the stereo view distance (default is 50 (cm)).				
		The program will ask for the filename, you use filename.a, .b, etc. (e.g., 95ADH03A.b). The KEYWORD CELL adds a unit cell outline ('pack' may be used, previously, to generate other equivalent molecules in the cell). For example:				
		telp [ent]				
		would generate a standard ball and stick plot.				
		telp 3 50 0.08 50 CELL [ent]				
		would generate a stereo view on paper with 50% probability ball and stick figure, bond 0.08 Å wide at a view distance of 50 cm with a unit cell outline.				
		telp 0 -50 0.04 0 LESS \$H [ent]				
		would plot an 'displacement ellipsoid' diagram with full ellipsoids at 50% probability and 0.04Å bonds with no H atoms shown.				
		See the discussion of 'labl' command above to:				
		turn on/off the hydrogen atom labels,				
		turn on/off the brackets around the atoms numbers, and				
		to change the size of the atom labels.				
'title'	19-40	This command reads in a title of up to 76 characters to identify a structure.				

'tors/L'	19-40	tors/L KEYWORDS [ent] print [ent]					
		This utility calculates torsion angles for the specified atoms, e.g.:					
		tors/L Cl C7 C8 Br2 [ent] print [ent]					
		would calculate the torsion angle about the C7-C8 bond of the C7-Cl and C8-Br2 bonds and then send them <i>to the printer</i> .					
		tors/L C1 C2 C3 C4 N Cl2 S4 [ent] print [ent]					
		would calculate all of the torsion angles involving this set of seven atoms and send them <i>to the printer</i> .					
		tors/L [ent] print [ent] or					
		tors/L All [ent] print [ent] (i.e., the 'All' is not needed)					
		would calculate all of the torsion angles in the molecule and send them to the printer.					
		tors/L All less \$H [ent] print [ent]					
		would calculate all of the torsion angles in the molecule not involving H atoms and then send them <i>to the printer</i> .					
'tors'	19-40	tors KEYWORDS [ent]					
		This utility calculates torsion angles for the specified atoms, e.g.:					
		tors Cl C7 C8 Br2 [ent]					
		would calculate the torsion angle about the C7-C8 bond of the C7-Cl and C8-Br2 bonds and send them to the screen.					
		For details on more variations on using 'tors' see the entry on 'tors/L', above.					
'undo'	19-41	This command is used to remove bonds between atoms, e.g.:					
		undo \$H \$H [ent] or					
		undo Cr \$C [ent] or					
		undo C11 C12 [ent]					

		would remove all hydrogen-hydrogen, all chromium-carbon, and the C11 to C12 bonds, respectively.				
'uniq'	19-41	uniq l	KEYWORDS	[ent]		
		This utility prunes the FMOL list to leave only the unique (i.e., <u>not</u> symmetry related) atoms that form unique molecules. It's great for removing all symmetry equivalent molecules and fragments and inequivalent molecules or ions. [Note: this command is approximately the opposite of the 'grow' command. After using the 'fuse' command, one almost always uses the 'uniq' command as well.]				
'view'	19-39	view p	plotfile [ent]			
		Can be	e used to view a	any specified p	lot file.	
BONDTYPE	19-12	These	parameters are	used with 'lin	k' and 'join'.	
		1 is	solid			
		2 is	2 is open			
		3 is	3 is dashed solid			
		4 is	dashed open			
		5 is	5 is full line			
		6 is dashes				
		7 is	7 is dots			
		The de	efault is 6 for 'l	ink' and 1 for	ʻjoin'.	
COLOR		These	COLOR parar	neters are use	d to modify many XP instructions, they are:	
		code	monitor	inkjet	suggested use	
		0	brown	black	bonds	
		1	green	green	F, Al, Ni	
		2	dark red	red	Fe, Br, Pt	

	3	dark blue	blue	Со
	4	yellow	orange	S, Na, Fourier peaks
	5	purple	magenta	P, K, Mn
	6	white	light green	Н
	7	gray	gray	С
	8	blue	cyan	D, N, Ru, Ag
	9	dark green	green	Cl, others
	10	lilac	purple	Li, Cr, I
	11	orange	orange	B, Sn, Au
	12	turquoise	light blue	Cu, Si, Os
	13	brown	brown	Se, Sb, Mo
	14	dark gray	gray	As, Hg
	15	red	red	0
DELTA	This n thougl	nodifier is used ht of in contact	r is used to specify distances that atoms can be separated by but are contact (i.e., $r_1 + r_2 + DELTA$).	
KEYWORDS	These	parameters are	used to modi	fy many XP instructions, they are:
	ALL	means	all atoms in th	he list
	то	define	s a string of at	toms
	LESS	is use	d to omit subs	equent atoms
	TYPF	in means	s all atoms of S	SFAC type n
	PAR7	f n all ato	oms with part r	umber n
	\$E	all atoms of element E (E is the element symbol)		E (E is the element symbol)
	/L	sends	sends the output to the printer after you enter print [ent]	

		CELL used in 'pers', 'proj', etc. to add a cell outline						
SFAC		This is the code number assigned by SHELXTL to each element in the structure.						
TYPE	19-1	These TYPE parameters are used to modify many XP instructions, they are:						
		-4: Dotted ellipse (displacement ellipsoid boundary ellipse)						
		-3: Displacement ellipsoid boundary ellipse (normal lines)						
		-2: Displacement ellipsoid boundary ellipse and principal ellipses						
		-1: Full displacement ellipsoid with shaded segments						
		0: Nothing (useful for dummy atoms, e.g., in the middle of a C5H5 ring)						
		1: Shaded circle with highlight						
		2: Open circle						
		3: Circle with regular dot pattern						
		4: Circle shaded bottom left to top right						
		5: Cross-hatched circle						
		6: Circle shaded bottom right to top left						
		7: Circle with light random dot pattern and highlight						
		8: Circle with medium random dot pattern and highlight						
		9: Circle with heavy random dot pattern and highlight						
		10: Dotted circle (useful for minor component of a disordered atom)						

<u>CHAPTER VIII. GENERATING TABLES FOR PUBLICATION USING</u> <u>XCIF</u>

A. USING XCIF TO GENERATE TABLES

1. What is XCIF

The program **XCIF** is used to generate the Tables used in reports and publications. It is highly interactive with the user answering several questions about what they are looking for. **XCIF** does all of the rest and then depending on your instructions either saves the desired files to disc or prints them out directly.

2. Using XCIF

a) Starting XCIF and using the default settings

Typically for Chemistry 832, we take all of the default values except *we don't print out the structure factor table*.

To use **XCIF**, we type the following at the **DOS** prompt:

XCIF filename [ent]

For example use **XCIF Calctest [ent]** with our test data set. If you have forgotten to put in the filename, then XCIF will put you through "40 questions" to get all of the required information. For the novice it is just easier to type **[ent]** and then **Q** to quit the program and then restart with the filename in the command.

We then accept all of its choices by pushing the enter key for all question except when it asks us if we want to print out structure factor tables for which you say no. Typical **XCIF** output tables for the example **calctest** are found in chapter XI.

b) [S] Change Structure Code

One uses this menu item to change the name of the compound/structure that will appear in the final tables. You just type in the name of the compound you want to use (if it is different then the name of the file you loaded into **XCIF**).

[R] Use another CIF files to resolve '?' items **c**)

Unless you have done some very complicated stuff to you data, you can just accept the default values presented to you by XCIF (i.e., press [ent] four times).

d) [C] Set compound code number for tables (currently 1)

If the compound number that you want printed on the tables is not one, simply type in the correct number and press [ent]. For example, one would do this if the crystal structure was done on compound number 7 in a paper.

e) [N] Set next table number (currently 1)

If the table numbers that you want printed on the tables aren't to be started with one, simply type in the correct number and press [ent]. For example, one would do this if the crystal structure tables were to be numbered 4 and above in a paper because other data made up tables 1 to 3.

f) [T] Crystal/atom tables from .cif

At the start of this menu item you are asked several questions about where the data to make the tables is coming from. Unless you are doing something funny, you can accept the **XCIF** default suggestions for the name of the .cif file and that the data be selected from data_calctest in this file (i.e., press [ent] twice).

You are asked how you want the data written in the files

•	SHELXTL XTEXT format and Å	type ang [ent] or just [ent] since
	this is the default choice	
•	SHELXTL XTEXT format and metric	type met [ent]
•	SHELXTL XTEXT format German and metric	type ger [ent]

- type ger [ent] SHELXTL XTEXT format, German and metric type **def** [ent]
- ASCII format

You are then asked for the filename of the tables.

- The default setting prints the files directly to the printer without storing them. type [ent]
- Type in the filename to save the files to disk. I recommend:

- name.ang for 'ang' type files (if SHELXTL XTEXT format and Å units were chosen above)
- name.def for 'def' type files (if ASCII format was chosen above)

You are then asked to select which tables you want. The seven possibilities are shown in section 3 below. I typically take all of them except the selected bond lengths and angles.

[Note: the default for XCIF is to set the tables up for the longer European style paper. With longer tables, this can lead to the tables being split between several pages. To overcome this, save the file, exit XCIF and edit the name.ang file to change the first line to read "&L120" rather than "&L128".] Then reenter XCIF and use the [X] menu entry to print the name.ang table.

g) [F] Structure factor tables from .fcf

This menu item is used to print out the final table of observed and calculated structures factors. These are needed for publication but are very long and so are only printed out when absolutely required.

You are first asked to pick the name of the CIF structure factor table. Unless you have done something very funny, accept the **XCIF** default of **name.fcf**.

You are then asked for the filename of the structure factor tables.

- The default setting prints the files directly to the printer without storing them.
 - type [ent]
- Type in the filename to save the files to disk. I recommend that this file be named as the .sft table, i.e.,
 - type name.sft [ent]
- You are then asked whether you want to print to US or European size paper. In the US and Canada choose the former.

h) [X] Print from SHELXTL XTEXT format file

This menu item is used to print any SHELXTL XTEXT format file from within XCIF.

i) [Q] Quit

This menu item is self explanatory, it exits you from **XCIF**.

3. The Seven Standard Tables Which One Can Print From XCIF

Table 1Crystal Data and Structure Refinement Table 2Atomic Coordinates and Equivalent Isotropic Displacement Parameters Table 3Bond Lengths and Angles Table 4Anisotropic Displacement Parameters Table 5Hydrogen Coordinates and Isotropic Displacement Parameters Table 6Selected Bond Lengths and Angles (may be wanted) Table 7Structure Factors (wanted only just before publication)

Once one is in the **XCIF** program, one has a choice of printing files directly to the printer or saving them as a file. I routinely do both, however, I generally prefer to save the tables to a file in **SHELXTL** XTEXT format called **name.ang** if I plan on later printing those files with **XCIF** or in ASCII format called **name.asc** if I want the "word process" them later. The advantage of this is that one can then use a text editor to modify the contents of the files, especially the titles on the tables. In addition, for longer tables it is advisable to edit the first line of this file which always is "&L128" to change it to "&L120" since this results in tables that print out more smoothly on US standard paper sizes. One then restarts XCIF and prints out the revised tables.

B. USING XCIF TO PREPARE DATA FOR PUBLICATION IN ACTA CRYSTALLOGRAPHICA

1. What Are CIF Format Files

Almost all crystallographic journals and most inorganic journals now require the submission of all or part of the data in a special format called Crystallographic Information Format, CIF, that has been developed by the International Union of Crystallography, IUCr. This format substantially speeds the process of preparing this data for publication, archiving the data in databases such as the Cambridge Crystallographic Data Base, CCDB, and checking the data for internal consistency. This group is now developing an extension of CIF to better suit the needs of macromolecular crystallographers. When one adds the **ACTA** command to the **name.ins** file and edits the **BOND** line to read **BOND \$H** before one runs a **XL** calculation, a basic CIF formatted file, **name.cif**, is generated.

2. Some Useful Things That Any Chemist Can Do With a CIF File

These CIF files aren't just useful to journals and data bases. Once in the CIF format, many good inexpensive and even free programs are available to read the crystallographic data. I am particularly fond of using the WebLab Viewer (and its free WebLab Viewer Lite version) from Molecular Simulations (i.e., at <u>http://www.msi.com</u>) to open **name.cif** files and make high quality views and drawings of my molecules that can be rotated and viewed with different styles (e.g., space filling, ball and stick, ribbons) on any platform. Such programs can also input data from **name.ort** files having the data saved as orthogonal(Cartesian) coordinates (i.e., using the 'orth' command in XP).

3. Modifying CIF Files for Electronic Submission to Acta Crystallographica

The IUCr has put out detailed instructions on how to write CIF files appropriate for electronic submission to journals and even provides and automated check program to see that they are correctly formatted. However, writing these files from scratch is quite tedious. One can more easily modify the **name.cif** file produced by **XL** for this purpose. Qualitatively, this is done by adding the title, authors, abstract, and text for the paper to the beginning of the existing **name.cif** file. The general procedures for doing this are covered in section 17.3 (page 17-4) of the SHELXTL Version 5.1 manual.

Note to Readers: I have yet to do such an electronic submission myself, but expect to add a chapter to the Appendix on this topic in early 1999, especially if I get volunteers with experience to help.

<u>PART II: AN ANNOTATED EXAMPLE OF A STRUCTURE SOLUTION</u> <u>FOR (\mathbf{h}^{6} -1,2,3-(OMe)_{3}-5-(CO₂Me)C₆H₂)CR(CO)₃), (I.E. "CALCTEST" AND <u>"PLOTTEST") USING XS, XL, AND XP</u></u>

- CHAPTER IX A WORKED EXAMPLE OF STRUCTURE SOLUTION FOR A TYPICAL DATA SET, "CALCTEST", $(\eta^6-1,2,3-(OMe)_3-5-(CO_2Me)C_6H_2)CR(CO)_3)$, USING **XS**, **XL**, AND **XP**
- CHAPTER X EXAMPLES OF MOLECULAR PLOTS GENERATED USING **XP** FOR THE DATA ", $(\eta^6-1,2,3-(OMe)_3-5-(CO_2Me)C_6H_2)CR(CO)_3)$
- CHAPTER XI EXAMPLES OF TABLES GENERATED USING **XCIF** FOR THE TEST DATA SET "CALCTEST", $(\eta^6-1,2,3-(OMe)_3-5-(CO_2Me)C_6H_2)CR(CO)_3)$

CHAPTER IX.A WORKED EXAMPLE OF STRUCTURE SOLUTIONFOR A TYPICAL DATA SET, "CALCTEST", (h⁶-1,2,3-
(OMe)₃-5-(CO₂Me)C₆H₂)CR(CO)₃), USING XS, XL, AND
XP

There are an almost infinite number of ways that one could approach solving the structure of even a single crystalline sample. Examples of one such approach for one molecule (**95ADH06e** referred to as "calctest", (η^{6} -1,2,3-(OMe)₃-5-(CO₂Me)C₆H₂)Cr(CO)₃) are illustrated by the inclusions of the appropriate input (i.e., **calctest.ins**) and output (i.e., **calctest.res** and **calctest.lst**) files from each cycle in its refinement. [Note: This is the same sample illustrated in the **plottest.*** plots, in chapter X, below. Tables of data on the eventual solution are presented in chapter XI, below.] This molecule has the formula C₁₄H₁₄CrO₈ and crystallized in the P-1 (read P one bar) space group with 2 molecules per unit cell (all related by symmetry in this case). There were 5627 unique data used in the refinement with a R(int) value of 0.0226.

A. THE 1ST CYCLE: FINDING A TRIAL SOLUTION WITH XS AND DIRECT METHODS

In general, one would use *Direct methods* first to try to find a trial solution using **XS**. It requires the following **calctest.ins** input file and produces the following **calctest.res** and **calctest.lst** output files.

1. CALCTEST.INS Input File for 1st Cycle: XS with Direct Methods

TITL 95adh06e in P-1
CELL 0.71073 7.5265 10.0508 10.7429 97.271 108.116 99.782
ZERR 2.00 0.0003 0.0005 0.0005 0.004 0.004 0.004
LATT 1
SFAC C H O CR
UNIT 28 28 16 2
TEMP -50
TREF
HKLF 4
END

[Note: the 'TREF' card is what tells the XS program to run *Direct Methods*.] On a Gateway2000[®] Pentium computer running at 166 MHz and with 32 MB of RAM, this **XS** calculation look a total of 27 seconds.

2. CALCTEST.RES Output File for 1st Cycle: XS with Direct Methods

TITL 95adh06e in P-1
CELL 0.71073 7.5265 10.0508 10.7429 97.271 108.116 99.782
ZERR 2.00 0.0003 0.0005 0.0005 0.004 0.004 0.004
LATT 1
SFAC C H O CR
UNIT 28 28 16 2
TEMP -50
L.S. 4
BOND
FMAP 2
PLAN 20
MOLE 1
CR1 4 0.1500 0.2203 0.8268 11.000000 0.05
Q1 1 0.0212 0.4553 0.6493 11.000000 0.05 185.99
Q2 1-0.3111 0.0821 0.7628 11.000000 0.05 174.94
Q3 1 0.0992 0.3597 0.9790 11.000000 0.05 168.46
Q4 1-0.2432 0.2300 0.5786 11.000000 0.05 159.79
Q5 1 0.1269 0.4391 0.8824 11.000000 0.05 158.31

Q6	1 -0.0482	0.2375	0.9417	11.000000	0.05	158.12	
Q7	1 0.1841	0.3296	1.1967	11.000000	0.05	151.04	
Q8	1 -0.1356	0.2643	0.7067	11.000000	0.05	146.33	
Q9	1 0.3947	0.2368	0.9464	11.000000	0.05	141.50	
Q10	1 0.5452	0.2464	1.0189	11.000000	0.05	140.20	
Q11	1 0.0032	0.3880	0.7443	11.000000	0.05	138.38	
Q12	1 -0.1657	0.1934	0.8050	11.000000	0.05	134.25	
Q13	1 0.3643	0.5079	1.1548	11.000000	0.05	130.19	
Q14	1 0.1270	0.0348	0.8014	11.000000	0.05	128.32	
Q15	1 0.2315	0.4082	1.1185	11.000000	0.05	127.24	
Q16	1 0.1108	-0.0828	0.7820	11.000000	0.05	122.66	
Q17	1 0.2680	0.2359	0.6987	11.000000	0.05	116.18	
Q18	1 0.1756	0.5758	0.6821	11.000000	0.05	113.26	
Q19	1 0.3308	0.2400	0.6145	11.000000	0.05	109.72	
Q20	1 -0.3245	-0.0057	0.8538	11.000000	0.05	106.75	
Q22	1 -0.2419	0.1011	0.5046	11.000000	0.05	76.66	
Q23	1 0.3085	0.3707	1.3403	11.000000	0.05	76.31	
Q24	1 -0.2292	0.1984	0.6479	11.000000	0.05	51.92	
Q25	1 -0.1816	0.3027	0.6389	11.000000	0.05	42.61	
Q26	1 -0.0684	0.3292	0.7625	11.000000	0.05	42.50	
Q27	1 -0.3408	0.0986	0.6881	11.000000	0.05	40.27	
Q28	1 -0.2972	0.0064	0.9820	11.000000	0.05	38.22	
Q29	1 0.1359	0.3036	1.3205	11.000000	0.05	36.09	
Q30	1 -0.0746	0.2058	0.7158	11.000000	0.05	35.98	
Q31	1 0.0489	0.2764	0.9206	11.000000	0.05	35.42	
MOL	E 2						
Q21	1 0.4708	0.6713	0.4870	11.000000	0.05	81.69	
HKL	F 4						
END							

3. CALCTEST.LST Output File for 1st Cycle: XS with Direct Methods

```
+ XS - CRYSTAL STRUCTURE SOLUTION - SIEMENS SHELXTL - Ver. 5.03 +
+ Copyright(c) 1994 Siemens Analytical X-ray - All Rights Reserved +
+ calctest started at 18:59:31 on 23 Mar 1997 +
TITL 95adh06e in P-1
CELL 0.71073 7.5265 10.0508 10.7429 97.271 108.116 99.782
ZERR 2.00 0.0003 0.0005 0.0005 0.004 0.004 0.004
LATT 1
SFAC C H O CR
UNIT 28 28 16 2
V = 747.07 At vol = 16.2 F(000) = 372.0 mu = 0.81 mm-1
Max single Patterson vector = 179.2 cell wt = 724.50 rho = 1.610
TEMP -50
TREF
HKLF 4
 8074 Reflections read, of which 0 rejected
 Maximum h, k, l and 2-Theta = 11. 15. 16. 66.00
 5627 Unique reflections, of which 4360 observed
```

R(int) = 0.0226 R(sigma) = 0.0488 Friedel opposites merged NUMBER OF UNIQUE DATA AS A FUNCTION OF RESOLUTION IN ANGSTROMS Resolution Inf 5.00 3.50 2.50 2.00 1.70 1.50 1.40 1.30 1.20 1.10 1.00 0.90 0.80 N(observed) 11. 24. 59. 94. 121. 130. 103. 129. 181. 236. 345. 509. 729. N(measured) 11. 24. 61. 98. 127. 138. 114. 137. 192. 270. 390. 584. 924. N(theory) 11. 24. 61. 98. 127. 138. 114. 137. 192. 270. 390. 586. 924. Two-theta 0.0 8.2 11.7 16.3 20.5 24.1 27.4 29.4 31.7 34.5 37.7 41.6 46.5 52.7 Highest memory for sort/merge = 11708 / 28135 Observed E .GT. 1.000 1.100 1.200 1.300 1.400 1.500 1.600 1.700 1.800 1.900 2586 2199 1889 1590 1330 1093 886 710 549 435 Number Centric Acentric 0kl h0l hk0 Rest Mean Abs(E*E-1) 0.968 0.736 0.807 0.872 0.831 0.835 6.0 seconds elapsed time SUMMARY OF PARAMETERS FOR 95adh06e in P-1 ESEL Emin 1.000 Emax 5.000 DelU 0.005 renorm 0.700 axis 0 OMIT s 4.00 2theta(lim) 180.0 INIT nn 13 nf 8 s+ 0.800 s- 0.200 wr 0.200 PHAN steps 10 cool 0.900 Boltz 0.400 ns 202 mtpr 40 mnqr 10 TREF np 128. nE 345 kapscal -0.900 ntan 2 wn -0.950 FMAP code 8 PLAN npeaks -31 del1 0.500 del2 1.500 MORE verbosity 1 TIME t 99999999. 202 Reflections and 1607. unique TPR for phase annealing 345 Phases refined using 6594. unique TPR 534 Reflections and 13200. unique TPR for R(alpha) 1.2 seconds elapsed time 5635 Unique negative quartets found, 5635 used for phase refinement 1.5 seconds elapsed time Highest memory used to derive phase relations = 11778 / 83467 ONE-PHASE SEMINVARIANTS h k l E P+ Phi -4 4 2 3.568 1.00 6 0 2 3.111 0.43 $2 \ 4 \ 4 \ 2.665 \ 0.48$ $0 \ -4 \ 4 \ 2.367 \ 0.42$ 4 -8 2 2.507 0.39 2 0 2 1.984 0.40 -2 0 4 1.944 0.56 -4 0 2 1.765 0.48 -2 -4 4 1.998 0.56 -2 -6 4 1.954 0.39 0 4 0 1.823 0.55 0 6 0 2.147 0.41 0 -4 6 1.739 0.41 0 -2 8 2.014 0.73 -4 0 8 1.753 0.75 -6 -4 4 2.055 0.41 -6 -2 6 1.870 0.47 0 4 8 1.989 0.47 -2 4 4 1.814 0.71

0 0 2 1.492 0.52	
-6 -4 6 1.916 0.41 2 4 2 1.870 0.57 2 -2 8 1.859 0.63 2 -4 2 1.681 0.45 -4 6 6 2.066 0.51	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
-4 0 6 1.417 0.66 -2 -4 2 1.225 0.45 -2 2 10 1.553 0.53 -6 6 2 1.458 0.58 -2 2 4 1.334 0.44	
2 -6 2 1.361 0.42 -2 -8 6 1.587 0.47 -6 -4 2 1.527 0.57 -4 4 4 1.171 0.51	
Expected value of Sigma-1 = 0.516 Following phases held constant with unit weights for the initial 4 weighted tangent cycles (before phase annealing):	
h k l E Phase/Comment	
-4 4 2 3.568 0 sigma-1 = 1.000 -2 -1 3 2.286 random phase 0 -1 1 1.745 random phase 2 0 1 2.202 random phase -2 2 1 3.361 random phase -2 2 1 3.361 random phase -3 0 1 1.801 random phase -3 0 1 5.20 random phase -2 0 3 1.743 random phase -2 0 3 1.743 random phase -2 0 3 1.743 random phase -1 6 2 1.703 random phase -1 6 2 1.703 random phase -1 2 3 1.879 random phase -1 2 3 1.879 random phase 0 0 1.528 random phase 1.0	
All other phases random with initial weights of 0.200 replaced by 0.2*alpha (or 1 if less) during first 4 cycles - unit weights for all phases thereafter	
401 Unique NQR employed in phase annealing	
128 Parallel refinements, highest memory = 17031 / 98531	
0.6 seconds elapsed time	
STRUCTURE SOLUTION for 95adh06e in P-1	

Phase annealing cycle: 1 Beta = 0.05984Ralpha 0.211 0.193 0.596 0.029 0.157 0.612 0.332 0.200 0.388 0.186 0.458 0.286 0.365 0.448 0.032 0.219 0.625 0.229 0.238 0.618 -0.789 - 0.182 - 0.223 - 0.977 - 0.850 - 0.358 - 0.172 - 0.828 - 0.057 - 0.481 - 0.309 - 0.762 - 0.129 - 0.522 - 0.545 - 0.328 - 0.213 - 0.545 - 0.328 - 0.213 - 0.545 - 0.328 - 0.213 - 0.545 - 0.328 - 0.213 - 0.545 - 0.328 - 0.213 - 0.545 - 0.328 - 0.545 - 0.328 - 0.545 - 0.328 - 0.545 - 0.328 - 0.545 - 0.328 - 0.545 - 0.328 - 0.545 - 0.328 - 0.545 - 0.328 - 0.545 - 0.328 - 0.545 - 0.328 - 0.545 - 0.328 - 0.545 - 0.328 - 0.545 - 0.328 - 0.545 - 0.328 - 0.545 - 0.328 - 0.545 - 0.328 - 0.545 - 0.328 - 0.545 - 0.328 - 0.545 - 0.328 - 0.545 - 0.328 - 0.545 - 0.328 - 0.545 - 0.328 - 0.545 - 0.328 - 0.545 - 0.328 - 0.545 - 0.328 - 0.545 - 0.328 - 0.545 - 0.328 - 0.545 - 0.328 - 0.545 - 0.328 - 0.545 - 0.328 - 0.545 - 0.328 - 0.545 - 0.328 - 0.545 - 0.328 - 0.545 - 0.328 - 0.545 - 0.328 - 0.545 - 0.328 - 0.545 - 0.328 - 0.545 - 0.328 - 0.545 - 0.328 - 0.545 - 0.328 - 0.545 - 0.328 - 0.545 - 0.328 - 0.545 - 0.328 - 0.545 - 0.328 - 0.545 - 0.328 - 0.545 - 0.328 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.545 - 0.5Ngual 0.765-0.843-0.378 Mabs 0.792 0.796 0.589 1.148 0.851 0.581 0.688 0.793 0.659 0.814 0.637 0.726 0.684 0.642 1.131 0.774 0.582 0.776 0.761.0.580 Phase annealing cycle: 2 Beta = 0.06649Ralpha 0.228 0.225 0.406 0.045 0.129 0.675 0.224 0.108 0.549 0.253 0.455 0.198 0.235 0.217 0.042 0.190 0.536 0.206 0.151 0.737 Nqual -0.946 - 0.720 - 0.770 - 0.992 - 0.933 - 0.767 - 0.920 - 0.944 - 0.816 - 0.863 - 0.823 - 0.938 - 0.850 - 0.973 - 0.992 - 0.926 - 0.883 - 0.863 - 0.823 - 0.938 - 0.850 - 0.973 - 0.992 - 0.926 - 0.883 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.863 - 0.80.897-0.967-0.778 Mabs 0.793 0.775 0.659 1.263 0.894 0.567 0.771 0.926 0.602 0.757 0.645 0.821 0.764 0.775 1.249 0.829 0.611 0.796 0.871 0.551 Phase annealing cycle: 3 Beta = 0.07388Ralpha 0.175 0.218 0.317 0.045 0.137 0.600 0.209 0.081 0.518 0.279 0.438 0.192 0.179 0.134 0.045 0.190 0.362 0.204 0.138 0.664 -0.924 - 0.740 - 0.767 - 0.992 - 0.941 - 0.837 - 0.940 - 0.909 - 0.825 - 0.874 - 0.871 - 0.932 - 0.895 - 0.963 - 0.992 - 0.928 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.920 - 0.9Ngual 0.889-0.973-0.817 Mabs 0.851 0.781 0.715 1.263 0.886 0.592 0.799 0.985 0.612 0.743 0.654 0.836 0.830 0.897 1.263 0.825 0.682 0.800 0.898 0.570 Phase annealing cycle: 4 Beta = 0.08208Ralpha 0.168 0.210 0.265 0.045 0.143 0.543 0.201 0.080 0.472 0.204 0.435 0.188 0.185 0.136 0.045 0.187 0.311 0.212 0.143 0.514 -0.920 - 0.830 - 0.894 - 0.992 - 0.950 - 0.805 - 0.939 - 0.906 - 0.818 - 0.974 - 0.878 - 0.941 - 0.914 - 0.971 - 0.992 - 0.939 - 0.898 - 0.992 - 0.939 - 0.805 - 0.939 - 0.906 - 0.818 - 0.974 - 0.878 - 0.941 - 0.914 - 0.971 - 0.992 - 0.939 - 0.898 - 0.992 - 0.939 - 0.906 - 0.818 - 0.974 - 0.878 - 0.941 - 0.914 - 0.971 - 0.992 - 0.939 - 0.898 - 0.992 - 0.939 - 0.906 - 0.818 - 0.974 - 0.878 - 0.941 - 0.914 - 0.971 - 0.992 - 0.939 - 0.898 - 0.992 - 0.939 - 0.906 - 0.818 - 0.974 - 0.878 - 0.941 - 0.914 - 0.971 - 0.992 - 0.939 - 0.898 - 0.992 - 0.939 - 0.906 - 0.818 - 0.974 - 0.878 - 0.941 - 0.914 - 0.971 - 0.992 - 0.939 - 0.898 - 0.974 - 0.878 - 0.941 - 0.914 - 0.971 - 0.992 - 0.939 - 0.898 - 0.818 - 0.974 - 0.878 - 0.941 - 0.914 - 0.971 - 0.992 - 0.939 - 0.898 - 0.898 - 0.974 - 0.878 - 0.974 - 0.974 - 0.974 - 0.974 - 0.974 - 0.974 - 0.974 - 0.974 - 0.974 - 0.974 - 0.974 - 0.974 - 0.974 - 0.974 - 0.974 - 0.974 - 0.974 - 0.974 - 0.974 - 0.974 - 0.974 - 0.974 - 0.974 - 0.974 - 0.974 - 0.974 - 0.974 - 0.974 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.992 - 0.9Ngual 0.885-0.975-0.825 Mabs 0.861 0.815 0.751 1.263 0.877 0.614 0.811 0.996 0.629 0.814 0.655 0.841 0.823 0.901 1.263 0.825 0.719 0.788 0.892 0.615 Phase annealing cycle: 5 Beta = 0.09120Ralpha 0.167 0.201 0.249 0.045 0.140 0.612 0.198 0.077 0.465 0.131 0.412 0.190 0.185 0.137 0.045 0.197 0.227 0.221 0.142 0.462 Nqual -0.925 - 0.933 - 0.919 - 0.992 - 0.946 - 0.841 - 0.937 - 0.919 - 0.879 - 0.974 - 0.867 - 0.944 - 0.908 - 0.974 - 0.992 - 0.943 - 0.798 - 0.974 - 0.992 - 0.943 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.90.889-0.974-0.818 Mabs 0.863 0.823 0.772 1.263 0.879 0.589 0.810 0.992 0.630 0.903 0.666 0.832 0.824 0.898 1.263 0.812 0.778 0.779 0.893 0.634 Phase annealing cycle: 6 Beta = 0.10134Ralpha 0.161 0.208 0.230 0.045 0.143 0.595 0.202 0.080 0.426 0.115 0.380 0.192 0.183 0.143 0.045 0.193 0.190 0.213 $0.142\ 0.478$ -0.923 - 0.937 - 0.928 - 0.992 - 0.950 - 0.855 - 0.941 - 0.921 - 0.855 - 0.974 - 0.871 - 0.945 - 0.909 - 0.975 - 0.992 - 0.943 - 0.922 - 0.943 - 0.922 - 0.943 - 0.922 - 0.943 - 0.922 - 0.943 - 0.922 - 0.943 - 0.922 - 0.943 - 0.922 - 0.943 - 0.922 - 0.943 - 0.922 - 0.943 - 0.922 - 0.943 - 0.922 - 0.943 - 0.922 - 0.943 - 0.922 - 0.943 - 0.922 - 0.943 - 0.922 - 0.943 - 0.922 - 0.943 - 0.922 - 0.943 - 0.922 - 0.943 - 0.922 - 0.943 - 0.922 - 0.943 - 0.922 - 0.943 - 0.922 - 0.943 - 0.922 - 0.943 - 0.922 - 0.943 - 0.922 - 0.943 - 0.922 - 0.943 - 0.922 - 0.943 - 0.922 - 0.943 - 0.922 - 0.943 - 0.922 - 0.943 - 0.922 - 0.943 - 0.922 - 0.943 - 0.922 - 0.943 - 0.922 - 0.943 - 0.922 - 0.943 - 0.922 - 0.943 - 0.922 - 0.943 - 0.922 - 0.943 - 0.922 - 0.943 - 0.922 - 0.943 - 0.922 - 0.943 - 0.922 - 0.943 - 0.922 - 0.943 - 0.922 - 0.943 - 0.922 - 0.943 - 0.922 - 0.943 - 0.922 - 0.943 - 0.922 - 0.943 - 0.922 - 0.943 - 0.922 - 0.943 - 0.922 - 0.943 - 0.922 - 0.943 - 0.922 - 0.943 - 0.922 - 0.943 - 0.922 - 0.943 - 0.922 - 0.943 - 0.922 - 0.943 - 0.922 - 0.943 - 0.922 - 0.943 - 0.922 - 0.943 - 0.922 - 0.943 - 0.922 - 0.943 - 0.922 - 0.943 - 0.922 - 0.943 - 0.922 - 0.943 - 0.922 - 0.942 - 0.942 - 0.942 - 0.942 - 0.942 - 0.942 - 0.942 - 0.942 - 0.942 - 0.942 - 0.942 - 0.942 - 0.942 - 0.942 - 0.942 - 0.942 - 0.942 - 0.942 - 0.942 - 0.942 - 0.942 - 0.942 - 0.942 - 0.942 - 0.942 - 0.942 - 0.942 - 0.942 - 0.942 - 0.942 - 0.942 - 0.942 - 0.942 - 0.942 - 0.942 - 0.942 - 0.942 - 0.942 - 0.942 - 0.942 - 0.942 - 0.942 - 0.942 - 0.942 - 0.942 - 0.942 - 0.942 - 0.942 - 0.942 - 0.942 - 0.942 - 0.942 - 0.942 - 0.942 - 0.942 - 0.942 - 0.942 - 0.942 - 0.942 - 0.942 - 0.942 - 0.942 - 0.942 - 0.942 - 0.942 - 0.942 - 0.942 - 0.942 - 0.942 - 0.942 - 0.942 - 0.942 - 0.942 - 0.942 - 0.942 - 0.942 - 0.942 - 0.942 - 0.942 - 0.942 - 0.942 - 0.942 - 0.942 - 0.942 - 0.942 - 0.942 - 0.942 - 0.942 - 0.942 - 0.942 - 0.942 - 0.942 - 0.942 - 0.942 - 0.942 - 0.942 - 0.942 - 0.942 - 0.942 - 0.942 - 0.942 - 0.942 - 0.942 - 0.942 - 0.942 - 0.942 - 0.942 - 0.942 - 0.9Noual 0.894 - 0.973 - 0.852Mabs 0.860 0.810 0.794 1.263 0.877 0.595 0.807 0.997 0.645 0.939 0.675 0.835 0.826 0.891 1.263 0.817 0.818 0.788 $0.893\ 0.630$ Phase annealing cycle: 7 Beta = 0.11260Ralpha 0.165 0.206 0.229 0.045 0.140 0.604 0.201 0.080 0.426 0.115 0.365 0.200 0.183 0.140 0.045 0.194 0.201 0.210 0.140 0.490 -0.929 - 0.934 - 0.949 - 0.992 - 0.946 - 0.855 - 0.940 - 0.921 - 0.863 - 0.973 - 0.900 - 0.947 - 0.906 - 0.974 - 0.992 - 0.939 - 0.942 - 0.946 - 0.855 - 0.940 - 0.921 - 0.863 - 0.973 - 0.900 - 0.947 - 0.906 - 0.974 - 0.992 - 0.939 - 0.942 - 0.946 - 0.921 - 0.863 - 0.973 - 0.900 - 0.947 - 0.906 - 0.974 - 0.992 - 0.939 - 0.942 - 0.946 - 0.921 - 0.863 - 0.973 - 0.900 - 0.947 - 0.906 - 0.974 - 0.992 - 0.939 - 0.942 - 0.946 - 0.956 - 0.946 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.956 - 0.9Ngual 0.891-0.974-0.855 $Mabs \quad 0.855 \ 0.812 \ 0.797 \ 1.263 \ 0.879 \ 0.592 \ 0.807 \ 0.997 \ 0.644 \ 0.939 \ 0.686 \ 0.826 \ 0.825 \ 0.894 \ 1.263 \ 0.817 \ 0.817 \ 0.793 \ 0.696 \ 0.826 \ 0.826 \ 0.825 \ 0.894 \ 0.826 \ 0.817 \ 0.817 \ 0.793 \ 0.817 \ 0.817 \ 0.793 \ 0.817 \ 0.817 \ 0.817 \ 0.793 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817 \ 0.817$ 0.894 0.624 Phase annealing cycle: 8 Beta = 0.12511 $Ralpha\ 0.162\ 0.207\ 0.235\ 0.045\ 0.143\ 0.602\ 0.198\ 0.079\ 0.414\ 0.113\ 0.259\ 0.193\ 0.174\ 0.145\ 0.045\ 0.194\ 0.199\ 0.205$ 0.142 0.473 -0.931 - 0.951 - 0.949 - 0.992 - 0.950 - 0.843 - 0.937 - 0.919 - 0.852 - 0.971 - 0.868 - 0.942 - 0.903 - 0.975 - 0.992 - 0.939 - 0.937 - 0.919 - 0.852 - 0.971 - 0.868 - 0.942 - 0.903 - 0.975 - 0.992 - 0.939 - 0.937 - 0.919 - 0.852 - 0.971 - 0.868 - 0.942 - 0.903 - 0.975 - 0.992 - 0.939 - 0.937 - 0.919 - 0.852 - 0.971 - 0.868 - 0.942 - 0.903 - 0.975 - 0.992 - 0.939 - 0.937 - 0.919 - 0.852 - 0.971 - 0.868 - 0.942 - 0.903 - 0.975 - 0.992 - 0.939 - 0.937 - 0.919 - 0.852 - 0.971 - 0.868 - 0.942 - 0.903 - 0.975 - 0.992 - 0.939 - 0.937 - 0.919 - 0.852 - 0.971 - 0.868 - 0.942 - 0.903 - 0.975 - 0.992 - 0.939 - 0.937 - 0.919 - 0.852 - 0.971 - 0.868 - 0.942 - 0.903 - 0.975 - 0.992 - 0.939 - 0.937 - 0.919 - 0.937 - 0.919 - 0.937 - 0.919 - 0.937 - 0.919 - 0.937 - 0.919 - 0.937 - 0.919 - 0.937 - 0.919 - 0.937 - 0.919 - 0.937 - 0.919 - 0.937 - 0.919 - 0.937 - 0.919 - 0.937 - 0.919 - 0.937 - 0.919 - 0.937 - 0.919 - 0.937 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.919 - 0.9Nqual 0.893-0.973-0.859 Mabs 0.861 0.810 0.792 1.263 0.877 0.595 0.810 0.992 0.650 0.942 0.748 0.829 0.834 0.891 1.263 0.817 0.813 0.800 0.893 0.633 Phase annealing cycle: 9 Beta = 0.13901Ralpha 0.172 0.221 0.232 0.045 0.143 0.587 0.203 0.080 0.414 0.114 0.060 0.186 0.187 0.142 0.045 0.185 0.204 0.194 $0.140\ 0.474$ -0.951 - 0.946 - 0.957 - 0.992 - 0.950 - 0.845 - 0.942 - 0.929 - 0.856 - 0.972 - 0.974 - 0.943 - 0.916 - 0.974 - 0.992 - 0.940 - 0.931 - 0.916 - 0.974 - 0.992 - 0.940 - 0.931 - 0.916 - 0.974 - 0.992 - 0.940 - 0.931 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.916 - 0.9Ngual 0.878-0.974-0.878 Mabs 0.849 0.803 0.797 1.263 0.877 0.597 0.806 0.992 0.650 0.946 0.965 0.835 0.822 0.893 1.263 0.823 0.816 0.806

0.894 0.633
Phase annealing cycle: 10 Beta = 0.15445 Palaba 0 173 0 212 0 239 0 0/5 0 1/0 0 526 0 203 0 080 0 418 0 115 0 0/4 0 186 0 183 0 1/2 0 0/45 0 190 0 201 0 192
0.145 0.356
Nqual -0.955-0.947-0.955-0.992-0.946-0.856-0.942-0.921-0.853-0.973-0.992-0.932-0.914-0.974-0.992-0.941-0.945-
0.893-0.975-0.908
Mabs 0.847 0.807 0.792 1.263 0.879 0.619 0.806 0.997 0.649 0.937 1.256 0.841 0.824 0.893 1.263 0.820 0.819 0.805
0.891 0.693
Phase refinement cycle: 1
Ralpha 1.172 1.287 1.328 0.158 0.956 2.829 1.288 0.753 2.806 0.860 0.158 1.279 1.217 0.983 0.158 1.365 1.264 1.392
0.983 1.895
Nqual -0.823-0.845-0.897-0.901-0.922-0.734-0.878-0.888-0.578-0.910-0.901-0.871-0.772-0.926-0.901-0.861-0.841-
0.821-0.920-0.878 Mabs = 0.476 0.462 0.457 0.771 0.508 0.349 0.461 0.543 0.351 0.524 0.771 0.462 0.471 0.503 0.771 0.453 0.465 0.450
0.503 0.405
Try Ralpha Nqual Sigma-1 M(abs) CFOM Seminvariants
400517 0.027 0.010 0.077 0.757 0.020 · · · · · · · · · · · · · · · · · ·
422317.0.207-0.312.0.377-0.737-0.208 + ++++ ++++ ++ + +++++ ++ ++ ++++- +++- +++ +++ +++ +++ +++ +++ ++++- ++ ++++++
77165 0 295 -0 961 0 361 0 747 0 295 +++++ +++ ++++ +++-+ +++ +++-+ ++-++ +-+++- ++++-+ +-+++
385825. 0.081 -0.944 0.596 1.351 0.081 ++++++-+-+++++-+++++-++++++++++-+++++++++++++++++++++++++
1929125. 0.198 -0.966 0.194 0.844 0.198 +++++ ++ ++ +++ +++ +++ +++
1257017. 0.518 -0.891 0.246 0.619 0.521 ++++-+ +-++ ++ ++++- +-++- +-++- ++ ++
2090781. 0.291 -0.947 0.594 0.749 0.291 + +-++++ ++++- +-+++ -+-+- +-+++ -+++++-
2065297. 0.170 -0.920 0.361 0.852 0.171 +-++ +++ ++- +-++ ++ -+-++ ++++++
1937877. 0.669 -0.785 0.365 0.567 0.696 +++ +++ +++++-+ -++ ++ ++ ++ ++
1300777. 0.194 - 0.961 0.496 0.830 0.194 + -++ + ++++++ +++ ++ + +-++ +-++ +-++ +-++ +-++ +-++ +-++ +-++ +-+++ +-+++ +-++++++
212429. 0.081 -0.944 0.596 1.351 0.081 ++++++-+-+++++++++-++++++-+++
1062143. 0.31/ -0.905 0.403 0.728 0.31/ ++++++ -++++ -+-++ ++ +++- ++++ -++++ -++++ -++++ 1116421 0.267 0.808 0.553 0.768 0.270 +++ -+++++++++ -++++ -++++ -++++ -++++
1110421. 0.207 -0.898 0.333 0.708 0.270 + ++++ ++++ -+++ +-++ +-+++ ++++ ++++ ++++ ++++ ++++ ++++
647549 0.081 -0.944 0.596 1.351 0.081 + +++++ +-+++++- +++-+- ++++++ +++
1140593. 0.325 -0.935 0.487 0.720 0.325 ++++ ++++++ +++++ -+ ++-+ -+ +++++
1508661. 0.282 -0.935 0.258 0.748 0.282 +++++ +-+++ ++ + ++++- +++ +++
1251849. 0.359 -0.955 0.443 0.704 0.359 +++ ++++++ +-++++-+ -+++++ +-+++++ ++-
2064941. 0.210 -0.970 0.315 0.818 0.210 +++ +-+- ++++ +-++ -+++ ++++ ++++ +
1936097. 0.407 -0.952 0.389 0.668 0.407 ++++ +++++ +++++++++++++++++++++++++
1291877. 0.208 -0.932 0.295 0.820 0.208 ++++++++ +++++++++++++++++++++
16/929. U.513 -U.884 U.365 U.622 U.517 ++++++++ +++ +++ ++++++++++-
839043. 0.210 -0.034 0.309 0.779 0.298 +++ +++++ +++- ++++- +++- +++- ++++ ++ ++++ +++++ ++++ 3921 0 265 -0 262 0 280 0 260 0 273 + +++++ +++ +++ ++++- ++++ +++ ++++
19605 0 280 -0 894 0 476 0 752 0 283 +++++ ++++ +-++ +-++ +-++++++++++++++++-
98025. 0.209 -0.920 0.253 0.824 0.210 +++++ -+++ ++-++ +++ +++ ++-++ ++++++
490125. 0.170 -0.920 0.361 0.852 0.171 +++ +++ ++- ++- +-+++ +++ +-+++ ++-++ +
353473. 0.228 -0.943 0.464 0.799 0.228 + ++ ++-++ +++++ -++++ -++++ -+++ -+++ -+++ -+++++
1767365. 0.420 -0.639 0.368 0.651 0.516 + +++ +-++-+ +++ +++ +++-+ +-++-+
448217. 0.272 -0.953 0.264 0.750 0.272 ++++++ -++-+ ++ ++++- ++-++ +-+++ +-+++ ++++++
143933. 0.196 -0.922 0.362 0.839 0.197 +-++ +++++ + ++++ -+++- +++ ++++ ++ +++++ +
/19665. 0.1/0-0.920 0.361 0.852 0.1/1 +++ +++ ++- +-++ +++ +++ +-+++ +-++ ++ 1260201 0.242 0.051 0.224 0.775 0.242
1300801. 0.243 -0.931 0.234 0.773 0.243 ++++ + +++++ +-++ +-++ +-++
1030013. 0.323 -0.337 0.201 0.720 0.323 +++ ++++ +++++ ++++++- ++ +++++ ++++ -++-+
1576021. 0.198 -0.957 0.194 0.839 0.198 +++++ + ++ ++++ ++++ ++++ ++++ ++++
1762225. 0.292 -0.907 0.319 0.726 0.294 +++++ +++++ ++++ ++++ +++++ +++++ +++++
1512769. 0.200 -0.957 0.194 0.842 0.200 +++++ + ++ +++ +++ +++ +++ +++
1268857. 0.170 -0.920 0.361 0.852 0.171 +-++ +++ ++- +-++ ++ -+-++ +-++ ++++++
952729. 0.081 -0.944 0.596 1.351 0.081 + ++++- +-++++- ++++- +++- ++
1490557. 0.461 -0.862 0.388 0.637 0.469 +++++ +++ + + ++++ +++-+
1499689. 0.366 -0.883 0.390 0.689 0.371 +++++ +++++ +++++ +++++ +++++ ++++++++
0///09. 0.394 -0.734 0.300 0.008 0.432 +++++ ++-+ -+-+- ++++ +-++- ++-+ ++++ -++++ ++++ ++++ ++++ -++++ ++++ -++++ -++++ -++++ -++++ -++++ -++++ -++++ -++++ -++++ -++++ -+++++ -++++++
1310853 0 170 -0 920 0 361 0 852 0 171 +++ +++ ++- +-+++ -++++ +-+++ ++++++
1612341. 0.055 -0.617 0.372 1.161 0.166 +++++ +++++ +++++ +++++ +++++ +++++ ++++
1195533. 0.081 -0.944 0.596 1.351 0.081 + ++++- +-++++- ++++- +++- ++
$1012913.\ 0.064\ \text{-}0.753\ 0.280\ 1.110\ 0.103\ \text{+}++++\ \text{+}++++\ \text{+}+++++\ \text{+}+++++\ \text{+}+++++\ \text{+}+++++\ \text{+}+++++++++++++++++++++++++++++++++++$
$1787041.\ 0.282\ -0.952\ 0.262\ 0.742\ 0.282\ +++++\+++\ ++-++\ +++\ +++-+\ +++++\ +++++\ ++++++++$
331385. 0.346 -0.783 0.354 0.694 0.374 +++ ++ ++++ -+++++ -+++ -+++ -++++ -++++

597109. 0.170 -0.936 0.358 0.853 0.171 +-++ +++-- +-+- +-+- +-++ -+-+ +-++ -+-+ +-+++ -+-++ -+-+ 1238305. 0.205 -0.968 0.337 0.823 0.205 +++-- +-+- ++++ +-+- --++ ++-+- +-++ +++- +-++- +++- ++-+-1656925. 0.081 -0.944 0.596 1.351 0.081 +---- ++++- +-+++ --+-+ +++-- +++-- +++-- +++-- +++--657725, 0.200 -0.957 0.194 0.842 0.200 +++++ +---- ++-- +++-- +++-- +++-- +++-- +++-- +++--1754165. 0.316 -0.959 0.574 0.727 0.316 +--+- -++- +++++ --+-- ++--+ ++--+ ++--- +++++ 768177. 0.261 -0.847 0.320 0.755 0.272 +---+ +--+ +---+ +++++ +-+--+ +++++ ---++ -++++ ---++ 1668333. 0.198 -0.966 0.194 0.844 0.198 +++++ +--- ++--- ++--- +++-- +++-- +++-- +++-- +++--911789. 0.081 -0.944 0.596 1.351 0.081 +---- ++++- +-+++ ---+- +++-- +++-- +++-- +++--1959969. 0.081 -0.944 0.596 1.351 0.081 +---- ++++- +-+++ ---+- +++-- +++-- +++-- +++-- +++-- +++--1304217. 0.081 -0.944 0.596 1.351 0.081 +---- ++++- +-+++ --+-+ +++-- --++ +++-- --++ +++--84941. 0.081 -0.944 0.596 1.351 0.081 +---- +++++ +-++++ --++ +++-- --++ +++-- --++ +++--561829. 0.081 -0.944 0.596 1.351 0.081 +---- +++++ +-+++ +-+++ ++++- ++++- ++++- ++++- ++++-1458705. 0.081 -0.944 0.596 1.351 0.081 +---- ++++- +-+++ --+-+ +++-- --+-+ ++--- --+- +++-- $1022609.\ 0.064 - 0.759\ 0.319\ 1.153\ 0.100$ 1429461. 0.081 -0.944 0.596 1.351 0.081 +---- ++++- +-+++ ---+- +++-- +++-- --+- +++--26373. 0.081 -0.944 0.596 1.351 0.081 +---- ++++- +-+++ ---+- +++-- --++- +++-- --++- +++--942601. 0.081 -0.944 0.596 1.351 0.081 +---- +++++ +-+++ +-+++ ++++- ++++- ++++- ++++- ++++-1572017. 0.081 -0.944 0.596 1.351 0.081 +---- ++++- +-+++ --+-+ +++-- +++-- +++-- +++-- +++--395769, 0.081 -0.944 0.596 1.351 0.081 +---- ++++- +-+++ --+-+ +++-- -++-+ +++-- -+++ -+++--1978845. 0.081 -0.944 0.596 1.351 0.081 +---- ++++- +-+++ --+-+ +++-- +++-- +++-- -++-+ +++--1269393. 0.198 -0.966 0.194 0.844 0.198 +++++ +--- ++--- ++--- +++-- +++-- +++-- +++-- +++--601621. 0.194 -0.961 0.496 0.830 0.194 +--++ -+--- --+++ ---+ +---+ +---+ +---+ +---+ +--++ +--++ +--+ 1574417. 0.081 -0.944 0.596 1.351 0.081 +---- ++++- +-+++ ---+- +++-- +++-- +++-- +++-- +++-- +++--277545. 0.081 -0.944 0.596 1.351 0.081 +---- +++++ +-+++ +-+++ ++++- ++++- ++++- ++++-1561953. 0.081 -0.944 0.596 1.351 0.081 +---- ++++- +-+++ ---+- +++-- +++-- --+- +++--910953. 0.081 -0.944 0.596 1.351 0.081 +---- +++++ +-+++ +-+++ ++++- ++++- ++++- ++++- ++++-344949. 0.198 -0.966 0.194 0.844 0.198 +++++ +---- ++--- +++-- +++-- +++-- +++-- +++--235117. 0.081 -0.944 0.596 1.351 0.081 +---- +++++ +-+++ +-+++ ++++- -+++ +++-- -+++ +++--1522673. 0.081 -0.944 0.596 1.351 0.081 +---- ++++- +-+++ ---+- +++-- +++-- +++-- +++-- +++-- +++--

[Note added to the XS output by ADH: The Direct methods calculations in XS does not just find one solution, it finds a large number that are listed near the middle of the name.lst output file for XS (i.e., in this spot in the file). XS chooses the "best" solution number (indicated by a * after its CFOM value, in the case of the above example # 1155913 with a CFOM = 0.0806) for its subsequent analyses (i.e., it chooses the one with the best CFOM and semi-invariants). [Note: here this is the last solution shown above and is shaded in dark.] However, typically several other solutions have almost as good of CFOM values (e.g., solutions 602457, 1522673, and 235117 shaded in light, above). One can often use one of these other solutions to get a better initial model.]

CFOM Range	Frequency			
0.000 - 0.020	0			
0.020 - 0.040	0			
0.040 - 0.060	0			
0.060 - 0.080	0			
0.080 - 0.100	34			
0.100 - 0.120	16			
0.120 - 0.140	1			
0.140 - 0.160	0			
0.160 - 0.180	10			
0.180 - 0.200	14			
0.200 - 0.220	11			
0.220 - 0.240	2			
0.240 - 0.260	1			
0.260 - 0.280	11			
0.280 - 0.300	10			
0.300 - 0.320	2			
0.320 - 0.340	4			
0.340 - 0.360	3			
0.360 - 0.380	2			
0.380 - 0.400	0			
0.400 - 0.420	1			
0.420 - 0.440	1			
0.440 - 0.460	0			
0.460 - 0.480	1			
0.480 - 0.500	0			
0.500 - 0.520	2			
0.520 - 0.540	1			
0.540 - 0.560	0			
0.560 - 0.580	0			
0.580 - 0.600	0			
0.600 - 9.999	1			
128. Phase s	sets refined - best is code 1155913. with CFOM = 0.0806			
9.7 seconds	9.7 seconds elapsed time			
Tangent expand Highest memor	ded to 2586 out of 2586 E greater than 1.000 ry used = 10458 / 7639			

3.5 seconds elapsed time

```
FMAP and GRID set by program
FMAP 8 1 23
GRID -2.500 -2 -2 2.500 2 2
E-Fourier for 95adh06e in P-1
Maximum = 738.91, minimum = -114.20 highest memory used = 8798 / 18472
   0.8 seconds elapsed time
Heavy-atom assignments:
    x y z s.o.f. Height
CR1 0.1500 0.2203 0.8268 1.0000 738.9
Peak list optimization
RE = 0.168 for 23 surviving atoms and 2586 E-values Highest memory used = 1613 / 23274
   1.0 seconds elapsed time
E-Fourier for 95adh06e in P-1
Maximum = 733.45, minimum = -139.47 highest memory used = 8806 / 18472
   0.8 seconds elapsed time
Peak list optimization
RE = 0.166 for 23 surviving atoms and 2586 E-values Highest memory used = 1621 / 23274
   1.0 seconds elapsed time
E-Fourier for 95adh06e in P-1
Maximum = 730.81, minimum = -88.13 highest memory used = 8806 / 18472
   0.8 seconds elapsed time
Molecule 1 scale 0.870 inches = 2.209 cm per Angstrom
                                 18
                                        1
                                             19
                                     11
                                               25
                          5
                                         17
                                                      4
                                      26
```


03 2.184 81.6 81.4 04 3.337 46.1 48.5 95.8 05 2.254 47.0 95.4 37.6 79.4 0 6 2.226 95.6 46.7 37.7 80.8 67.5 08 2.286 44.9 44.3 79.1 16.9 66.6 66.2 09 1.855 123.9 143.3 87.8 168.1 97.1 108.5 163.7 0 10 2.993 123.9 143.4 88.0 168.0 97.2 108.7 163.8 0.2 0 11 2.291 17.7 77.6 66.8 43.9 37.3 77.8 35.7 129.4 129.5 0 12 2.279 78.2 17.5 66.7 46.2 78.0 36.8 35.7 144.4 144.6 64.0 $0\ 14 \quad 1.820\ 138.5\ 73.7\ 130.5\ 98.5\ 166.4\ 99.0\ 108.3\ 87.6\ 87.4\ 142.4\ 90.8$ 0 15 3.267 96.5 97.5 21.8 117.6 49.5 50.8 100.9 66.2 66.4 84.7 85.3 0 16 2.972 137.9 73.6 131.0 98.0 166.7 99.3 108.0 88.0 87.9 141.8 90.8 0 17 1.864 67.4 125.2 136.9 83.9 101.3 162.4 97.2 85.7 85.6 85.1 129.8 0 19 3.008 67.3 123.6 138.0 82.7 102.1 161.8 96.2 87.0 86.9 85.0 128.5 0 24 2.856 56.0 36.0 90.8 12.6 82.0 70.2 15.4 178.6 178.8 50.1 34.4 0 25 2.997 35.4 54.4 84.1 14.4 65.0 76.2 11.0 158.7 158.8 29.9 46.7 0 26 2.115 36.4 57.4 62.4 35.1 46.2 61.2 20.5 143.2 143.3 20.8 43.1 0 27 3.456 78.2 13.5 87.9 35.4 93.5 56.8 33.9 156.4 156.5 69.1 21.3 $0 \ 30 \ 1.709 \ 55.7 \ 37.2 \ 92.4 \ 11.4 \ 82.9 \ 71.9 \ 16.3 \ 179.5 \ 179.3 \ 50.4 \ 36.0$ 0 31 1.546 87.4 61.4 20.8 85.7 52.0 17.1 69.3 101.1 101.4 70.1 48.1 2 28 3.356 177.3 92.9 96.9 136.5 130.9 84.5 137.2 53.6 53.6 162.0 103.4 1 186. 0.0212 0.4553 0.6493 1.000 0.98 0 CR1 3.305 0 11 1.322 31.8 0 18 1.450 111.8 119.2 0 25 1.936 63.6 51.7 169.6 0 26 2.037 38.1 13.7 132.5 38.1 2 175.-0.3111 0.0821 0.7628 1.000 0.19 0 CR1 3.329 0 12 1.342 30.7 0 20 1.412 108.5 117.6 0 24 1.965 58.8 54.6 166.3 0 27 0.810 92.2 90.2 151.6 36.1 3 168. 0.0992 0.3597 0.9790 1.000 0.97 0 CR1 2.184 0 5 1.431 73.9 0 6 1.427 72.7 121.1 0 15 1.482 124.9 117.3 121.5 $0\ 31 \quad 0.921 \ 36.6 \ 96.2 \ 36.4 \ 136.1$ 4 160. -0.2432 0.2300 0.5786 1.000 0.49 0 CR1 3.337 08 1.327 30.0 0 22 1.435 92.0 118.2 0 24 0.830 48.5 41.2 92.0 0 25 0.864 59.8 40.3 149.1 78.7 0 26 2.016 37.1 14.2 128.9 54.9 26.3 0 30 1.695 11.4 27.5 90.9 37.2 64.0 38.7 5 158. 0.1269 0.4391 0.8824 1.000 1.07 0 CR1 2.254 03 1.431 68.6 0 11 1.455 72.7 117.4 $0\ 26\ \ 1.718\ \ 62.6\ \ 89.6\ \ 28.2$ 0 31 1.783 43.1 30.9 89.2 63.5 6 158.-0.0482 0.2375 0.9417 1.000 0.68 0 CR1 2.226 03 1.427 69.6 0 12 1.424 73.6 118.8 $0\ 31 \ \ 0.876 \ \ 31.3 \ \ 38.6 \ \ 92.0$ $7 \quad 151. \ 0.1841 \ 0.3296 \ 1.1967 \ 1.000 \ 1.03 \ \ 0 \ 15 \ \ 1.310$ 0 23 1.495 114.8 0 29 1.524 153.8 50.9 8 146. -0.1356 0.2643 0.7067 1.000 0.66 0 CR1 2.286 04 1.327 133.2 0 11 1.403 72.3 116.0 0 12 1.400 71.9 124.2 119.4 0 24 0.890 121.7 37.9 153.9 86.6 $0\ 25 \quad 0.871\ 138.9\ 39.9\ 80.5\ 149.2\ 75.2$ 0 26 0.800 67.7 141.7 30.0 90.8 168.7 102.0

 $0\ 27\ \ 2.012\ 106.9\ \ 73.2\ 168.5\ \ 51.0\ \ 36.1\ 105.7\ 138.7$ 0 30 0.803 36.6 102.7 104.4 69.5 85.3 131.8 104.2 79.0 9 141. 0.3947 0.2368 0.9464 1.000 3.40 0 CR1 1.855 0 10 1.138 179.4 10 140. 0.5452 0.2464 1.0189 1.000 4.10 0 CR1 2.993 09 1.138 0.4 11 138. 0.0032 0.3880 0.7443 1.000 0.90 0 CR1 2.291 0 1 1.322 130.4 0.5 1.455 70.0 120.908 1.403 72.0 117.7 121.5 0 25 1.524 101.7 85.4 151.8 34.3 0 26 0.815 67.3 143.7 94.1 29.4 58.5 0 30 1.781 47.6 122.9 109.8 25.9 54.4 39.6 12 134. -0.1657 0.1934 0.8050 1.000 0.51 0 CR1 2.279 0 2 1.342 131.9 0.6 1.424 69.6 122.3 08 1.400 72.4 116.1 121.6 0 24 1.615 92.7 82.7 154.9 33.4 $0\ 26 \ 1.623\ 63.0\ 144.2\ 92.9\ 29.5\ 62.6$ 0 27 1.570 126.8 31.1 153.2 85.1 51.9 113.3 $0\ 30\ \ 1.348\ \ 48.2\ 111.3\ 115.8\ \ 33.9\ \ 44.5\ \ 49.4\ \ 87.3$ 0 31 1.697 42.7 147.8 31.0 93.3 124.9 67.4 168.8 85.3 13 130. 0.3643 0.5079 1.1548 1.000 1.51 0 15 1.214 14 128. 0.1270 0.0348 0.8014 1.000 2.99 0 CR1 1.820 0 16 1.152 178.3 15 127. 0.2315 0.4082 1.1185 1.000 1.21 0 CR1 3.267 0.3 1.482 33.307 1.310 109.3 110.7 $0\ 13\ \ 1.214\ 116.4\ 124.4\ 125.0$ 16 123. 0.1108 -0.0828 0.7820 1.000 3.44 0 CR1 2.972 $0\ 14\ 1.152\ 1.0$ 17 116. 0.2680 0.2359 0.6987 1.000 3.30 0 CR1 1.864 0 19 1.146 175.8 18 113. 0.1756 0.5758 0.6821 1.000 1.34 01 1.450 19 110. 0.3308 0.2400 0.6145 1.000 3.90 0 CR1 3.008 017 1.146 2.6 $20 \quad 107. \ \textbf{-}0.3245 \ \textbf{-}0.0057 \ \ \textbf{0.8538} \ \ \textbf{1.000} \ \ \textbf{0.23} \ \ \textbf{0.2} \ \ \textbf{1.412}$ 0 28 1.315 137.7 22 77.-0.2419 0.1011 0.5046 1.000 1.24 0.4 1.435 0 24 1.683 29.5 23 76. 0.3085 0.3707 1.3403 1.000 1.24 0 7 1.495 0 29 1.297 65.7 24 52.-0.2292 0.1984 0.6479 1.000 0.52 0 CR1 2.856 0 2 1.965 85.2 04 0.830 118.9 154.7 08 0.890 42.9 102.5 100.8 $0\ 12 \ \ 1.615 \ \ 52.9 \ \ 42.6 \ \ 159.6 \ \ 60.0$ $0\ 22 \quad 1.683\ 105.3\ 110.4\ 58.4\ 131.7\ 138.6$ $0\ 25\ \ 1.075\ \ 86.9\ 144.4\ \ 52.0\ \ 51.5\ \ 107.6\ \ 105.1$ 0 26 1.682 47.3 101.1 101.3 5.4 58.9 136.4 50.6 0 27 1.395 103.4 20.0 134.8 121.8 62.4 97.1 152.1 119.8 0 30 1.149 2.6 86.9 116.9 44.2 55.3 102.8 86.8 48.7 104.7 25 43.-0.1816 0.3027 0.6389 1.000 0.40 0 CR1 2.997

0 1 1.936 81.0

04 0.864 105.7 132.5 08 0.871 30.1 106.0 99.8 0 11 1.524 48.5 42.9 150.5 65.2 0 24 1.075 72.1 150.7 49.2 53.2 117.8 $0\ 26 \ \ 1.300\ \ 37.3\ \ 75.1\ \ 136.6\ \ 37.0\ \ 32.3\ \ 89.7$ 0 30 1.528 23.5 103.6 85.5 23.1 71.4 48.6 52.4 26 43.-0.0684 0.3292 0.7625 1.000 0.65 0 CR1 2.115 0 1 2.037 105.5 04 2.016 107.7 79.8 05 1.718 71.2 79.6 158.1 08 0.800 91.9 101.5 24.1 162.5 0 11 0.815 91.8 22.6 101.1 57.6 120.6 $0 \ 12 \ \ 1.623 \ \ 73.8 \ 160.8 \ \ 82.2 \ 117.2 \ \ 59.6 \ 165.5$ 0 24 1.682 96.9 103.1 23.8 168.0 6.0 123.4 58.5 0 25 1.300 120.9 66.8 17.1 146.1 40.9 89.2 96.7 39.7 0 30 1.265 53.9 109.6 56.8 125.0 38.0 116.1 53.9 43.1 73.1 $0\ 31 \quad 1.844 \ 45.3\ 134.8\ 135.2\ 59.9\ 111.3\ 112.7\ 58.2\ 112.7\ 152.2\ 81.6$ 27 40. -0.3408 0.0986 0.6881 1.000 0.14 0 CR1 3.456 0 2 0.810 74.3 08 2.012 39.3 102.6 0 12 1.570 31.9 58.8 43.9 0 24 1.395 53.5 123.8 22.1 65.7 $0 \ 30 \ \ 2.020 \ \ 20.2 \ \ 93.5 \ \ 23.0 \ \ 41.8 \ \ 33.4$ 28 38.-0.2972 0.0064 0.9820 1.000 0.00 0 20 1.315 29 36. 0.1359 0.3036 1.3205 1.000 0.51 07 1.524 0 23 1.297 63.4 30 36.-0.0746 0.2058 0.7158 1.000 1.26 0 CR1 1.709 04 1.695 157.2 08 0.803 127.2 49.8 0 11 1.781 82.0 83.5 49.7 0 12 1.348 95.7 104.2 76.6 100.4 0 24 1.149 175.6 25.9 50.6 97.2 80.2 $0\ 25\ \ 1.528\ 135.5\ \ 30.5\ \ 25.1\ \ 54.2\ \ 99.2\ \ 44.6$ 0 26 1.265 89.4 84.5 37.8 24.3 76.7 88.2 54.5 0 27 2.020 135.8 66.9 78.0 126.7 50.9 41.9 83.8 106.2 31 35. 0.0489 0.2764 0.9206 1.000 1.17 0 CR1 1.546 03 0.921 122.6 05 1.783 84.9 52.9 $0\ 6 \quad 0.876\ 131.6\ 105.1\ 135.9$ 0 12 1.697 89.2 137.1 110.0 57.0 $0\ 26\ \ 1.844\ \ 76.6\ 102.1\ \ 56.5\ 103.0\ \ 54.4$ Atom Code x y z Height Symmetry transformation CR1 1-0.1500-0.2203 1.1732 1.34 0.0000-X 0.0000-Y 2.0000-Z 28 2 0.2972 -0.0064 1.0180 3.63 0.0000-X 0.0000-Y 2.0000-Z Molecule 2 Atom Peak x y z SOF Height Distances and Angles 21 82. 0.4708 0.6713 0.4870 1.000 0.0 seconds elapsed time + calctest finished at 18:59:56 Total elapsed time: 26.8 secs + Using **XP** after this cycle allowed me to assign all 23 non-Hydrogen atoms (i.e., they were 23 of the 24 strongest Q peaks generated by XS) with confidence for use in the subsequent **XL** cycle. Note: In this particular case both *Direct methods* and the *Patterson method* could have been used as the starting point for **XL** with equal success. For the purposes of this manual (i.e., to make both *Direct methods* and the *Patterson method* solutions give rise to the same files in the next stage), I chose to only assign the Cr atom. In any case, this type of conservative assignment strategy, while slower, is more reliable as it is both more likely to lead you to a global minimum solution and to not lead you to incorrectly assigning any garbage peaks as real atoms.

B. THE 2ND CYCLE: FINDING A TRIAL SOLUTION WITH XS AND THE PATTERSON METHOD

In general, one would use the *Patterson method* to find a trial solution via **XS** only if the *Direct methods* route fails. It requires the following **calctest.ins** input file and produces the following **calctest.res** and **calctest.lst** output files.

1. CALCTEST.INS Input File for 2^{nd} Cycle: XS with the Patterson Method

TITL 95adh06e in P-1
CELL 0.71073 7.5265 10.0508 10.7429 97.271 108.116 99.782
ZERR 2.00 0.0003 0.0005 0.0005 0.004 0.004 0.004
LATT 1
SFAC C H O CR
UNIT 28 28 16 2
TEMP -50
PATT
HKLF 4
END

[Note: the 'Patt' card is what tells the XS program to run *Patterson Methods*.] On a Gateway2000[®] Pentium computer running at 166 MHz and with 32 MB of RAM, this **XS** calculation look a total of 10 seconds.

TITL 95adh06e i	n P-1
CELL 0.71073	1.5265 10.0508 10.7429 97.271 108.116 99.782
ZERR 2.00 0.	0003 0.0005 0.0005 0.004 0.004 0.004
LATT 1	
SFAC C H O CR	
UNIT 28 28 16 2	
TEMP -50	
L.S. 4	
BOND	
FMAP 2	
PLAN 20	
CR1 4 0.64993	0.72080 0.82771 11.00000 0.04
O2 3 0.59938	0.86042 0.97906 11.00000 0.04
O3 3 0.62753	0.93893 0.88188 11.00000 0.04
O4 3 0.52284	0.95461 0.64941 11.00000 0.04
O5 3 0.18878	0.58080 0.76327 11.00000 0.04
O6 3 0.25629	0.73048 0.57824 11.00000 0.04
07 3 0.45116	0.73817 0.94133 11.00000 0.04
07 3 0.45116	0.73817 0.94133 11.00000 0.04

2. CALCTEST.RES Output File for 2^{nd} Cycle: XS with the Patterson Method

```
O8 3 0.36393 0.76364 0.70582 11.00000 0.04
HKLF 4
END
```

3. CALCTEST.LST Output File for 2^{nd} Cycle: XS with the Patterson Method

 +	
TTTL 95adh06e in P-1 CELL 0.71073 7.5265 10.05008 10.7429 97.271 108.116 99.782 ZERR 2.00 0.0003 0.0005 0.0004 0.004 0.004 LATT 1 SFAC CH O CR UNIT 28 28 162 V = 747.07 At vol = 16.2 F(000) = 372.0 mu = 0.81 mm-1 Max single Patterson vector = 179.2 cell wt = 724.50 rho = 1.610 TEMP -50 PATT HKLF 4 8074 Reflections read, of which 0 rejected Maximum h, k, l and 2-Theta = 11. 15. 16. 66.00 5627 Unique reflections, of which 4360 observed R(int) = 0.0226 R(sigma) = 0.0488 Friedel opposites merged NUMBER OF UNIQUE DATA AS A FUNCTION OF RESOLUTION IN ANGSTROMS Resolution Inf 5.00 3.50 2.50 2.00 1.70 1.50 1.40 1.30 1.20 1.10 1.00 0.90 0.80 Nobserved 11. 24, 59. 94. 121. 130, 103, 129. 181. 236. 345. 509. 729. N(measured) 11. 24, 61. 98. 127. 138. 114. 137. 192. 270. 390. 584. 924. N(theory) 11. 24, 61. 98. 127. 138. 114. 137. 192. 270. 390. 586. 924. Two-theta 0.0 8.2 11.7 16.3 20.5 2.41 27.4 29.4 31.7 34.5 37.7 41.6 46.5 52.7 Highest memory for sort/merge = 11708 / 28135 Observed E. GT. 1.000 1.100 1.200 1.300 1.400 1.500 1.600 1.700 1.800 1.900 Number 2586 2199 1889 1590 1330 1093 886 710 549 435 Centric Acentric 0 kl h01 hk0 Rest Mean Abs(E*E-1) 0.968 0.736 0.807 0.872 0.831 0.835 5.7 seconds elapsed time SUMMARY OF PARAMETERS FOR 95adh06e in P-1 ESEL Emin 1.000 Emax 5.000 DelU.0005 renorm 0.700 axis 0 OMIT s 4.00 2 theta(im) 1800 PAT modeak 80 del1 0.500 del2 1.500 MOKE verbosity 1 MAN peaks 80 del1 0.500 del2 1.500 MOKE verbosity 1 <td>++++++++++++++++++++++++++++++++++++++</td>	++++++++++++++++++++++++++++++++++++++
 V = 747.07 At vol = 16.2 F(000) = 372.0 mu = 0.81 mm-1 Max single Patterson vector = 179.2 cell wt = 724.50 fb = 1.610 TEMP -50 PATT HKLF 4 8074 Reflections read, of which 0 rejected Maximum h, k1 and 2-Theta = 11. 15. 16. 66.00 5627 Unique reflections, of which 4360 observed R(int) = 0.0226 R(sigma) = 0.0488 Friedel opposites merged R(int) = 0.0226 R(sigma) = 0.0488 Friedel opposites merged R(int) = 0.0226 R(sigma) = 0.0488 Friedel opposites merged NUMBER OF UNIQUE DATA AS A FUNCTION OF RESOLUTION IN ANGSTROMS Resolution Inf 5.00 3.50 2.50 2.00 1.70 1.50 1.40 1.30 1.20 1.10 1.00 0.90 0.80 N(observed) 11. 24. 59. 94. 121. 130. 103. 129. 181. 236. 345. 509. 729. N(measured) 11. 24. 61. 98. 127. 138. 114. 137. 192. 270. 390. 584. 924. N(theory) 11. 24. 61. 98. 127. 138. 114. 137. 192. 270. 390. 586. 924. Two-theta 0.0 8.2 11.7 16.3 20.5 24.1 27.4 29.4 31.7 34.5 37.7 41.6 46.5 52.7 Highest memory for sort/merge = 11708/28135 Observed E. GT. 1.000 1.100 1.200 1.300 1.400 1.500 1.600 1.700 1.800 1.900 Number 2586 2199 1889 1590 1330 1093 886 710 549 435 Centric Acentric 0kl h0l hk0 Rest Mean Abs(E*E-1) 0.968 0.736 0.807 0.872 0.831 0.835 5.7 seconds elapsed time SUMMARY OF PARAMETERS FOR 95adh06e in P-1 ESEL Emin 1.000 Emax 5.000 DelU 0.005 renorm 0.700 axis 0 OMT 54.00 2theta(lim) 1800 PATT nv 1 dmin 1.80 resl 0.65 Nsup 111 Zmin 4.80 maxat 8 FMAP code 6 PLAN nepeaks 80 del10.500 del2 1.500 MORE verbosity 1 TIME t 9999999. FMAP and GRID set by program 	TITL 95adh06e in P-1 CELL 0.71073 7.5265 10.0508 10.7429 97.271 108.116 99.782 ZERR 2.00 0.0003 0.0005 0.0005 0.004 0.004 0.004 LATT 1 SFAC C H O CR UNIT 28 28 16 2
TEMP -50 PATT HKLF 4 8074 Reflections read, of which 0 rejected Maximum h, k, land 2-Theta = 11. 15. 16. 66.00 5627 Unique reflections, of which 4360 observed R(int) = 0.0226 R(sigma) = 0.0488 Friedel opposites merged NUMBER OF UNIQUE DATA AS A FUNCTION OF RESOLUTION IN ANGSTROMS Resolution Inf 5.00 3.50 2.50 2.00 1.70 1.50 1.40 1.30 1.20 1.10 1.00 0.90 0.80 Nobserved) 11. 24. 59. 94. 121. 130. 103. 129. 181. 236. 345. 509. 729. N(measured) 11. 24. 61. 98. 127. 138. 114. 137. 192. 270. 390. 586. 924. N(rhoery) 11. 24. 61. 98. 127. 138. 114. 137. 192. 270. 390. 586 924. Two-theta 0.0 8.2 11.7 16.3 20.5 24.1 27.4 29.4 31.7 34.5 37.7 41.6 46.5 52.7 Highest memory for sort/merge = 11708 / 28135 Observed E.GT. 1.000 1.100 1.200 1.300 1.400 1.500 1.600 1.700 1.800 1.900 Number 2586 2199 1889 1590 1330 1093 886 710 549 435 Centric Acentric 0kl h0l hk0 Rest Mean Abs(E*E-1) 0.968 0.736 0.807 0.872 0.831 0.835 5.7 seconds elapsed time SUMMARY OF PARAMETERS FOR 95adh06e in P-1 ESEL Emin 1.000 Emax 5.000 DelU0.005 renorm 0.700 axis 0 OMIT s 4.00 2.501 0.501 0.501 Nup 111 Zmin 4.80 maxat 8 FMAP code 6 PLAT med GRID set by program	V = 747.07 At vol = 16.2 F(000) = 372.0 mu = 0.81 mm-1 Max single Patterson vector = 179.2 cell wt = 724.50 rho = 1.610
PATT HKLF 4 8074 Reflections read, of which 0 rejected Maximum h, k, land 2-Theta = 11. 15. 16. 66.00 527 Unique reflections, of which 4360 observed R(int) = 0.0226 R(sigma) = 0.0488 Friedel opposites merged NUMBER OF UNQUE DATA AS A FUNCTION OF RESOLUTION IN ANGSTROMS Resolution Inf 5.00 3.50 2.50 2.00 1.70 1.50 1.40 1.30 1.20 1.10 1.00 0.90 0.80 N(observed) 11. 24, 59. 94, 121. 130. 103. 129. 181. 236. 345. 509. 729. N(measured) 11. 24, 61. 98. 127. 138. 114. 137. 192. 270. 390. 586. 924. N(theory) 11. 24. 61. 98. 127. 138. 114. 137. 192. 270. 390. 586. 924. Two-theta 0.0 8.2 11.7 16.3 20.5 2.41. 27.4 29.4 31.7 34.5 37.7 41.6 46.5 52.7 Highest memory for sort/merge = 11708 / 28135 Observed E.GT. 1.000 1.100 1.200 1.300 1.400 1.500 1.600 1.700 1.800 1.900 Number 2586 2199 1889 1590 1330 1093 886 710 549 435 Centric Acentric 0kl h0l hk0 Rest Mean Abs(E*E-1) 0.968 0.736 0.807 0.872 0.831 0.835 5.7 seconds elapsed time SUMMARY OF PARAMETERS FOR 95adh06e in P-1 ESEL Emin 1.000 Emax 5.000 DelU 0.005 renorm 0.700 axis 0 OMT s 4.00 2theta(tim) 180. PATT nv 1 dmin 1.80 resl 0.65 Nsup 111 Zmin 4.80 maxat 8 FMAP code 6 PLAN npeaks 80 del10.500 del21.500 MORE verbosiy 1 <	TEMP -50
Intel 4 8074 Reflections read, of which 0 rejected Maximum h, I and 2-Theta = 11. 15. 16. 66.00 5627 Unique reflections, of which 4360 observed R(in) = 0.0226 R(sigma) = 0.0488 Friedel opposites merged NUMBER OF UNIQUE DATA AS A FUNCTION OF RESOLUTION IN ANGSTROMS Resolution Inf 5.00 3.50 2.50 2.00 1.70 1.50 1.40 1.30 1.20 1.10 1.00 0.90 0.80 N(observed) 11. 24. 59, 94, 121. 130. 103. 129, 181. 236. 345. 509. 729. N(measured) 11. 24. 61. 98. 127. 138. 114. 137. 192. 270. 390. 584. 924. N(theory) 11. 24. 61. 98. 127. 138. 114. 137. 192. 270. 390. 586. 924. Two-theta 0.0 8.2 11.7 16.3 20.5 24.1 27.4 29.4 31.7 34.5 37.7 41.6 46.5 52.7 Highest memory for sort/merge = 11708 / 28135 Observed E.GT. 1.000 1.100 1.200 1.300 1.400 1.500 1.600 1.700 1.800 1.900 Number 2586 2199 1889 1590 1330 1093 886 710 549 435 Centric Acentric 0kl h0l hk0 Rest Mean Abs(E*E-1) 0.968 0.736 0.807 0.872 0.831 0.835 5.7 seconds elapsed time SUMMARY OF PARAMETERS FOR 95adh06e in P-1 ESEL Emin 1.000 Emax 5.000 DelU0.005 renorm 0.700 axis 0 OMTT s 4.00 2theta(tim) 18.0 PATT nv 1 dmin 1.80 resl 0.65 Nsup 111 Zmin 4.80 maxat 8 FMAP end GRID set by program	PATT HKLE 4
NUMBER OF UNIQUE DATA AS A FUNCTION OF RESOLUTION IN ANGSTROMS Resolution Inf 5.00 3.50 2.50 2.00 1.70 1.50 1.40 1.30 1.20 1.10 1.00 0.90 0.80 N(observed) 11. 24. 59. 94. 121. 130. 131. 129. 181. 236. 345. 509. 729. N(measured) 11. 24. 61. 98. 127. 138. 114. 137. 192. 270. 390. 586. 924. Two-theta 0.0 8.2 11.7 16.3 20.5 24.1 27.4 29.4 31.7 34.5 37.7 41.6 46.5 52.7 Highest memory for sort/merge = 11708 / 28135 Observed E.GT. 1.000 1.100 1.200 1.300 1.400 1.500 1.600 1.700 1.800 1.900 Number 2586 2199 1889 1590 1330 1093 886 710 549 435 Centric Acentric 0kl h0l hk0 Rest Mean Abs(E*E-1) 0.968 0.736 0.807 0.872 0.831 0.835 5.7 seconds elapsed time SUMMARY OF PARAMETERS FOR 95adh06e in P-1 ESEL Emin 1.000 Emax 5.000 DelU 0.005 renorm 0.700 axis 0 OMIT s 4.00 2theta(lim) 180.0 PATT nv 1 dmin 1.80 resl 0.65 Nsup 111 Zmin 4.80 maxat 8 FMAP code 6 PLAN npeaks 80 del1 0.500 del2 1.500 MORE verbosity 1 TIME t 9999999. FMAP and GRID set by program	RKLF 4 8074 Reflections read, of which0 rejectedMaximum h, k, l and 2-Theta = 11.15. $16.$ 66.00 5627 Unique reflections, of which 4360 observed $R(int) = 0.0226$ $R(sigma) = 0.0488$ Friedel opposites merged
Resolution Inf 5.00 3.50 2.50 2.00 1.70 1.50 1.40 1.30 1.20 1.10 1.00 0.90 0.80 N(observed) 11. 24, 59. 94, 121. 130. 103. 129. 181. 236. 345. 509. 729. N(measured) 11. 24, 61. 98. 127. 138. 114. 137. 192. 270. 390. 586. 924. Two-theta 0.0 8.2 11.7 16.3 20.5 24.1 27.4 29.4 31.7 34.5 37.7 41.6 46.5 52.7 Highest memory for sort/merge = 11708 / 28135 Observed E. GT. 1.000 1.100 1.200 1.300 1.400 1.500 1.600 1.700 1.800 1.900 Number 2586 2199 1889 1590 1330 1093 886 710 549 435 Centric Acentric 0kl h0l hk0 Rest Mean Abs(E*E-1) 0.968 0.736 0.807 0.872 0.831 0.835 5.7 seconds elapsed time SUMMARY OF PARAMETERS FOR 95adh06e in P-1 ESEL Emin 1.000 Emax 5.000 DelU 0.005 renorm 0.700 axis 0 OMIT s 4.00 2theta(im) 180.0 PATT nv 1 dmin 1.80 resl 0.65 Nsup 111 Zmin 4.80 maxat 8 FMAP code 6 PLAN npeaks 80 del10.500 del2 1.500 MORE verbosity 1 TIME t 9999999. FMAP and GRID set by program	NUMBER OF UNIQUE DATA AS A FUNCTION OF RESOLUTION IN ANGSTROMS
 Highest memory for sort/merge = 11708 / 28135 Observed E. GT. 1.000 1.100 1.200 1.300 1.400 1.500 1.600 1.700 1.800 1.900 Number 2586 2199 1889 1590 1330 1093 886 710 549 435 Centric Acentric 0kl h0l hk0 Rest Mean Abs(E*E-1) 0.968 0.736 0.807 0.872 0.831 0.835 5.7 seconds elapsed time SUMMARY OF PARAMETERS FOR 95adh06e in P-1 ESEL Emin 1.000 Emax 5.000 DelU 0.005 renorm 0.700 axis 0 OMIT s 4.00 2theta(lim) 180.0 PATT nv 1 dmin 1.80 resl 0.65 Nsup 111 Zmin 4.80 maxat 8 FMAP code 6 PLAN npeaks 80 del1 0.500 del2 1.500 MORE verbosity 1 TIME t 9999999. FMAP and GRID set by program 	$ \begin{array}{llllllllllllllllllllllllllllllllllll$
Observed E. GT. 1.000 1.100 1.200 1.300 1.400 1.500 1.600 1.700 1.800 1.900 Number 2586 2199 1889 1590 1330 1093 886 710 549 435 Centric Acentric 0kl h0l hk0 Rest Mean Abs(E*E-1) 0.968 0.736 0.807 0.872 0.831 0.835 5.7 seconds elapsed time SUMMARY OF PARAMETERS FOR 95adh06e in P-1 ESEL Emin 1.000 Emax 5.000 DelU 0.005 renorm 0.700 axis 0 OMIT s 4.00 2theta(lim) 180.0 PATT nv 1 dmin 1.80 resl 0.65 Nsup 111 Zmin 4.80 maxat 8 FMAP code 6 PLAN npeaks 80 del1 0.500 del2 1.500 MORE verbosity 1 TIME t 9999999. FMAP and GRID set by program	Highest memory for sort/merge = 11708 / 28135
 Number 2586 2199 1889 1590 1330 1093 886 710 549 435 Centric Acentric 0kl h0l hk0 Rest Mean Abs(E*E-1) 0.968 0.736 0.807 0.872 0.831 0.835 5.7 seconds elapsed time SUMMARY OF PARAMETERS FOR 95adh06e in P-1 ESEL Emin 1.000 Emax 5.000 DelU 0.005 renorm 0.700 axis 0 OMIT s 4.00 2theta(lim) 180.0 PATT nv 1 dmin 1.80 resl 0.65 Nsup 111 Zmin 4.80 maxat 8 FMAP code 6 PLAN npeaks 80 del1 0.500 del2 1.500 MORE verbosity 1 TIME t 9999999. FMAP and GRID set by program 	Observed E .GT. 1.000 1.100 1.200 1.300 1.400 1.500 1.600 1.700 1.800 1.900
Centric Acentric 0kl h0l hk0 Rest Mean Abs(E*E-1) 0.968 0.736 0.807 0.872 0.831 0.835 5.7 seconds elapsed time SUMMARY OF PARAMETERS FOR 95adh06e in P-1 ESEL Emin 1.000 Emax 5.000 DelU 0.005 renorm 0.700 axis 0 OMIT s 4.00 2theta(lim) 180.0 PATT nv 1 dmin 1.80 resl 0.65 Nsup 111 Zmin 4.80 maxat 8 FMAP code 6 PLAN npeaks 80 del1 0.500 del2 1.500 MORE verbosity 1 TIME t 9999999. FMAP and GRID set by program	Number 2586 2199 1889 1590 1330 1093 886 710 549 435
Mean Abs(E*E-1) 0.968 0.736 0.807 0.872 0.831 0.835 5.7 seconds elapsed time SUMMARY OF PARAMETERS FOR 95adh06e in P-1 ESEL Emin 1.000 Emax 5.000 DelU 0.005 renorm 0.700 axis 0 OMIT s 4.00 2theta(lim) 180.0 PATT nv 1 dmin 1.80 resl 0.65 Nsup 111 Zmin 4.80 maxat 8 FMAP code 6 PLAN npeaks 80 del1 0.500 del2 1.500 MORE verbosity 1 TIME t 9999999. FMAP and GRID set by program	Centric Acentric 0kl h0l hk0 Rest
5.7 seconds elapsed time SUMMARY OF PARAMETERS FOR 95adh06e in P-1 ESEL Emin 1.000 Emax 5.000 DelU 0.005 renorm 0.700 axis 0 OMIT s 4.00 2theta(lim) 180.0 PATT nv 1 dmin 1.80 resl 0.65 Nsup 111 Zmin 4.80 maxat 8 FMAP code 6 PLAN npeaks 80 del1 0.500 del2 1.500 MORE verbosity 1 TIME t 9999999. FMAP and GRID set by program	Mean Abs(E*E-1) 0.968 0.736 0.807 0.872 0.831 0.835
SUMMARY OF PARAMETERS FOR 95adh06e in P-1 ESEL Emin 1.000 Emax 5.000 DelU 0.005 renorm 0.700 axis 0 OMIT s 4.00 2theta(lim) 180.0 PATT nv 1 dmin 1.80 resl 0.65 Nsup 111 Zmin 4.80 maxat 8 FMAP code 6 PLAN npeaks 80 del1 0.500 del2 1.500 MORE verbosity 1 TIME t 99999999. FMAP and GRID set by program	5.7 seconds elapsed time
ESEL Emin 1.000 Emax 5.000 DelU 0.005 renorm 0.700 axis 0 OMIT s 4.00 2theta(lim) 180.0 PATT nv 1 dmin 1.80 resl 0.65 Nsup 111 Zmin 4.80 maxat 8 FMAP code 6 PLAN npeaks 80 del1 0.500 del2 1.500 MORE verbosity 1 TIME t 9999999. FMAP and GRID set by program	SUMMARY OF PARAMETERS FOR 95adh06e in P-1
FMAP and GRID set by program	ESEL Emin 1.000 Emax 5.000 DelU 0.005 renorm 0.700 axis 0 OMIT s 4.00 2theta(lim) 180.0 PATT nv 1 dmin 1.80 resl 0.65 Nsup 111 Zmin 4.80 maxat 8 FMAP code 6 PLAN npeaks 80 del1 0.500 del2 1.500 MORE verbosity 1 TIME t 99999999.
	FMAP and GRID set by program

FMAP 6 1 23 GRID -2.500 -2 -2 2.500 2 2				
Super-sharp Patterson for 95adh06e in P-1				
Maximum = 999.10, minim	um =	-89.7	highest memory used = 9198 / 18566	
1.0 seconds elapsed time				
X Y Z Weight	Pea	k Len	gth	
1 0.0000 0.0000 0.0000	2.	999.	0.00	
2 0.3095 0.4437 0.6555	1.	261.	6.71	
3 0.1813 0.6784 0.4781	1.	99.	6.33	
4 0.1305 0.7645 0.1785	1.	94. 00	3.32 2.25	
6 0.0237 0.7812 0.9443	1.	88	2.26	
7 0.1525 0.6948 0.4069	1.	87.	5.60	
8 0.2512 0.5803 0.8055	1.	87.	5.35	
9 0.0229 0.4861 0.5352	1.	87.	7.43	
10 0.4045 0.9939 0.2538	1.	86.	3.41	
11 0.0935 0.5506 0.5985	1.	86.	6.13	
12 0.0503 0.8604 0.8473	1.	84. 82	2.19	
14 0 1986 0 9819 0 8845	1.	82 82	2 24	
15 0.2780 0.6587 0.7087	1.	82.	5.45	
16 0.1496 0.8331 0.0826	1.	80.	2.29	
17 0.9941 0.4192 0.6370	1.	80.	6.09	
18 0.0986 0.9767 0.2322	1.	80.	2.43	
19 0.1019 0.4573 0.7683	1.	79. 70	5.55 2.31	
20 0.2888 0.9578 0.1229	1.	75	2.51	
22 0.1692 0.1908 0.9454	1.	75.	2.36	
23 0.2362 0.0151 0.1142	1.	75.	1.79	
24 0.3471 0.5568 0.0301	1.	74.	5.53	
25 0.3156 0.0291 0.0212	1.	74.	2.28	
26 0.4839 0.2338 0.0074 27 0.4453 0.5384 0.2250	1.	74.	4.00 6.46	
28 0.0367 0.3017 0.0400	1.	73.	2.96	
29 0.0236 0.1035 0.3685	1.	72.	3.90	
30 0.3036 0.5342 0.1541	1.	72.	5.76	
31 0.2617 0.1608 0.1731	1.	71. 60	2.41	
33 0.0728 0.1841 0.2886	1.	68	3.89	
34 0.2722 0.1417 0.6154	1.	66.	5.39	
35 0.3819 0.6285 0.9447	1.	65.	5.17	
36 0.0254 0.1811 0.0249	1.	65.	1.77	
37 0.0529 0.5970 0.9177	1.	63. 62	4.15	
39 0.2765 0.2560 0.6297	1.	62.	5.72	
40 0.4805 0.4601 0.4390	1.	60.	5.91	
41 0.0933 0.0073 0.8673	1.	59.	1.78	
42 0.1267 0.3362 0.5446	1.	59.	6.50	
43 0.1686 0.0157 0.7883	1.	59. 58	2.94	
45 0.0270 0.3584 0.8544	1.	57.	4.10	
46 0.3554 0.1312 0.4017	1.	57.	4.21	
47 0.1746 0.7872 0.3195	1.	56.	4.25	
48 0.0336 0.0809 0.8975	1.	55.	1.51	
49 0.3284 0.7980 0.5083	1. 1	54. 54	0./3 3.66	
51 0.0217 0.0017 0.9173	1.	53.	0.95	
52 0.0786 0.6754 0.6620	1.	53.	4.81	
53 0.1518 0.1270 0.0381	1.	52.	1.48	
54 0.2955 0.5347 0.4853	1. 1	50.	7.52	
56 0.2193 0.7896 0.879	1. 1	49. 49	3.39	
57 0.0282 0.3634 0.3067	1.	46.	4.53	
58 0.0163 0.0981 0.0057	1.	44.	0.96	
59 0.1485 0.1438 0.5088	1.	43.	6.02	

```
60 0.4577 0.5859 0.1631 1. 43. 5.94
61 0.0553 0.1447 0.8022 1. 43. 2.82
62 0.0601 0.0838 0.0649 1. 42. 0.96
63 0.1288 0.0237 0.0597
                          1. 42. 0.95
64 0.2833 0.4729 0.5806 1. 41. 7.44
65 0.1266 0.8244 0.6263 1. 40. 4.62
66 \quad 0.1431 \ 0.4082 \ 0.4407 \quad 1. \quad 38. \quad 5.55
67 0.0720 0.0051 0.9402 1.
                              37.
                                   0.96
68 0.3186 0.7686 0.0930 1. 37. 3.63
69 0.0207 0.3021 0.4011 1. 37. 4.89
700.18670.93840.45811.37.4.83710.20280.00440.36241.36.3.70
72 0.1066 0.0864 0.0275 1. 35. 1.02
73 0.0748 0.9420 0.9869 1. 34. 0.90
740.04660.02110.09711.34.0.97750.43060.36040.11661.34.4.19
76 0.2118 0.5645 0.2552 1. 34. 5.65
                          1. 33. 4.17
77 0.0685 0.2193 0.7077
78 0.0925 0.0511 0.9876
                          1.
                              32. 0.85
79 0.2829 0.2408 0.0782 1. 32. 2.78
80 0.2314 0.0829 0.2678 1. 31. 2.79
Vectors selected for Patterson superposition:
Vector X Y Z Weight Peak Length
1 0.3095 0.4437 0.6555 1. 261. 6.71
FMAP and GRID set by program
FMAP 6 1 23
GRID -2.500 -2 -2 2.500 2 2
Patterson vector superposition minimum function for 95adh06e in P-1
Patt. sup. on vector 1 0.3095 0.4437 0.6555 Height 261. Length 6.71
Maximum = 256.33, minimum = -88.93 highest memory used = 12247 / 36736
   1.7 seconds elapsed time
 75 Superposition peaks employed, maximum height 35.4 and minimum height 1.9 on atomic number scale
Heavy-Atom Location for 95adh06e in P-1
 4360 reflections used for structure factor sums
Solution 1 CFOM = 39.10 PATFOM = 99.9 Corr. Coeff. = 62.5 SYMFOM = 99.9
Shift to be added to superposition coordinates: 0.5000 0.5000 0.5000
Name At.No. x y z s.o.f. Minimum distances / PATSMF (self first)
CR1 25.6 0.6499 0.7208 0.8277 1.0000 6.67
                       315.5
O2 11.0 0.5994 0.8604 0.9791 1.0000 3.44 2.18
                       32.7 91.9
O3 10.8 0.6275 0.9389 0.8819 1.0000 3.83 2.24 1.43
                       20.3 92.1 58.9
O4 10.7 0.5228 0.9546 0.6494 1.0000 3.38 3.30 3.68 2.41
                        25.7 108.7 30.4 28.3
O5 10.6 0.1888 0.5808 0.7633 1.0000 6.79 3.33 3.71 4.20 4.67
                        9.2 103.8 31.0 33.3 30.6
O6 10.4 0.2563 0.7305 0.5782 1.0000 6.74 3.35 4.18 3.67 2.60 2.76
                        6.9 105.1 47.6 27.2 25.6 36.1
07 10.3 0.4512 0.7382 0.9413 1.0000 5.22 2.22 1.43 2.49 4.15 2.43 3.70
                        24.1 87.4 57.5 30.6 37.5 21.3 41.5
08
     9.6 0.3639 0.7636 0.7058 1.0000 7.35 2.29 2.86 2.50 2.33 2.34 1.32 2.47
                        41.5 89.5 32.1 36.0 2.9 15.8 22.8 35.5
```

Using **XP** after this cycle allowed me to assign the Cr atom as the only non-Hydrogen atom (out of a total of 23) with confidence for use in the subsequent **XL** cycle. Note: As stated above, in this particular case both *Direct methods* and the *Patterson method* could have been used as the starting point for **XL** with success. However, as is usual for most small molecules, *Direct methods* gets you off to a quicker start. For the purposes of this manual (i.e., to make both the both *Direct methods* and the *Patterson method* solutions give rise to the same files in the next stage), I chose to only assign the Cr atom with both methods..
C. THE 3RD CYCLE: USING XL AND FINDING MOST NON-HYDROGEN ATOMS WITH XP

This sections involves the first refinement cycle by **XL**. This takes the preliminary atom position(s) and isotropic displacement parameters derived from **XS/XP** and uses least squares refinement to improve them. It then calculates a residual electron density map (i.e., the Q peaks) which one uses **XP** to either confidently assign as atoms or delete from the list. It requires the following **calctest.ins** input file and produces the following **calctest.res** and **calctest.lst** output files.

1. CALCTEST.INS Input File for 3rd Cycle: Using XL to Find Most Non-Hydrogen Atoms

TITL 95adh06e in P-1
CELL 0.71073 7.5265 10.0508 10.7429 97.271 108.116 99.782
ZERR 2.00 0.0003 0.0005 0.0005 0.004 0.004 0.004
LATT 1
SFAC C H O CR
UNIT 28 28 16 2
TEMP -50
L.S4
BOND
FMAP 2
PLAN 20
FVAR 1.00000
CR 4 0.64993 0.72080 0.82771 11.00000 0.04000
HKLF 4
END

[Note: the **LS** program is being asked to do 4 least squares cycles, the **LS** program is being asked to generate 20 Q peaks, and only the Cr atom is assigned and being fed into the **LS** program to generate trial phases at this stage.] On a Gateway2000[®] Pentium computer running at 166 MHz and with 32 MB of RAM, this **XL** calculation look a total of 15 seconds for 5 parameters.

After the refinement, the R factor for the 4360 reflections having Fo > 4 sigma (Fo) (i.e., the first R that **XL** lists) was 0.460, the observed R and wR factors for all of the data were 0.505 and 0.810, respectively, and the GOOF value was 7.694. In the final cycle, the largest shift for any atom (in this case Cr) was 0.003Å.

2. CALCTEST.RES Output File for 3rd Cycle: Using XL to Find Most Non-Hydrogen Atoms

TITL 95adh06e in P-1
CELL 0 71073 7 5265 10 0508 10 7429 97 271 108 116 99 782
ZERR 2.00 0.0003 0.0005 0.0005 0.004 0.004 0.004
LATT 1
SFAC C H O CR
UNIT 28 28 16 2
TEMP -50
L.S. 4
BOND
FMAP 2
PLAN 20
WGHT 0.100000
FVAR 0.41077
CR 4 0.65424 0.72253 0.82907 11.00000 0.01023
HKLF 4
END
WGHT 0.8584 43.7763
Q1 1 0.6508 0.7206 0.7795 11.00000 0.05 25.23
Q2 1 0.1867 0.5834 0.7879 11.00000 0.05 12.85
Q3 1 0.5216 0.9552 0.5655 11.00000 0.05 12.83
Q4 1 0.2601 0.7302 0.6092 11.00000 0.05 12.37
Q5 1 1.0451 0.7449 1.0200 11.00000 0.05 11.91
Q6 1 0.6861 0.8332 1.1658 11.00000 0.05 10.83
Q/ 1 0.6146 0.41/3 0./32/ 11.00000 0.05 10.81
Q8 1 0.89/3 0.7380 0.9294 11.00000 0.05 10.79
Q9 = 1 = 0.8000 = 1.0101 = 1.1445 = 11.00000 = 0.05 = 10.21
Q10 = 1 = 0.8557 = 0.7412 = 0.0054 = 11.00000 = 0.05 = 10.21
Q11 = 1 = 0.0285 = 0.3345 = 0.7360 = 11.00000 = 0.05 = 9.95 Q12 = 1 = 0.7668 = 0.7246 = 0.6715 = 11.00000 = 0.05 = 0.68
Q_{12} 1 0.7000 0.7540 0.0715 11.00000 0.05 9.08 Q_{12} 1 0.5004 0.8585 0.0301 11.00000 0.05 9.47
$Q_{13} = 0.3777 0.0303 0.7501 11.00000 0.03 7.47$ $Q_{14} = 0.3664 0.7613 0.7417 11.00000 0.05 0.22$
$Q_{14} = 1 + 0.5004 + 0.7015 + 0.7417 + 11.00000 + 0.05 + 9.55$ $Q_{15} = 1 + 0.6284 + 0.9380 + 0.8361 + 11.00000 + 0.05 + 0.10$
$0.16 \ 1 \ 0.8325 \ 0.5194 \ 1.1425 \ 11 \ 00000 \ 0.05 \ 9.10$
0.05 1 0.0525 0.5194 1.1425 11.00000 0.05 9.05
0.18 + 0.7401 + 0.121 + 1.0017 + 11.00000 + 0.05 + 0.7401 + 0.0121 + 1.00000 + 0.05 + 0.7401 + 0.0121 + 1.00000 + 0.05 + 0.7401 + 0.0000 + 0.05 + 0.7401 + 0.0000 + 0.05 + 0.7401 + 0.0000 + 0.05 + 0.7401 + 0.0000 + 0.05 + 0.7401 + 0.0000 + 0.05 + 0.7401 + 0.0000 + 0.05 + 0.7401 + 0.0000 + 0.05 + 0.7401 + 0.0000 + 0.05 + 0.7401 + 0.0000 + 0.05 + 0.7401 + 0.0000 + 0.05 + 0.7401 + 0.0000 + 0.05 + 0.7401 + 0.0000 + 0.05 + 0.0000 + 0.05 + 0.0000 + 0.05 + 0.0000 + 0.05 + 0.0000 + 0.05 + 0.0000 + 0.0000 + 0.05 + 0.00000 + 0.0000 + 0.0000 + 0.0000 + 0.00000 + 0.00000 + 0.00000 + 0.00000 + 0.00000 + 0.0000 + 0.00000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.000
$019 \ 1 \ 0.3321 \ 0.6918 \ 0.8384 \ 11 \ 00000 \ 0.05 \ 8.07$
0.02 1 0.0321 0.0316 0.0304 11.00000 0.03 0.02
 220 1 0.3037 0.8874 0.0033 11.00000 0.03 7.08

3. CALCTEST.LST Output File for 3rd Cycle: Using XL to Find Most Non-Hydrogen Atoms

After this 3rd cycle this calctest.lst file is six pages long and is shown below for you to become familiar with the format for the listing of XL results. For subsequent cycles these files are typically much longer and for space reason they are not included in this manual (except for that for the 8th cycle). However, they are available on disk if you want to view them.

```
+ XL - CRYSTAL STRUCTURE REFINEMENT - SIEMENS SHELXTL - Ver. 5.03 +
+ Copyright(c) 1994 Siemens Analytical Xray - All Rights Reserved +
+ calctest started at 19:17:50 on 23-Mar-1997 +
```

```
IX-147
```

```
TITL 95adh06e in P-1
CELL 0.71073 7.5265 10.0508 10.7429 97.271 108.116 99.782
ZERR 2.00 0.0003 0.0005 0.0005 0.004 0.004 0.004
LATT 1
SFAC C H O CR
UNIT 28 28 16 2
V = 747.07 F(000) = 372.0 Mu = 0.81 mm-1 Cell Wt = 724.50 Rho = 1.610
TEMP -50
L.S. 4
BOND
FMAP 2
PLAN 20
FVAR
        1.00000
CR 4 0.64993 0.72080 0.82771 11.00000 0.04000
HKLF 4
Covalent radii and connectivity table for 95adh06e in P-1
C 0.770
H 0.320
O 0.660
CR 1.240
Cr - no bonds found
 8074 Reflections read, of which 0 rejected
-1 = < h = < 11, -15 = < k = < 15, -16 = < 1 = < 16, Max. 2-theta = 66.00
   0 Systematic absence violations
   0 Inconsistent equivalents
 5627 Unique reflections, of which 0 suppressed
R(int) = 0.0231 R(sigma) = 0.0490 Friedel opposites merged
Maximum memory for data reduction = 318 / 56289
 ** Cell contents from UNIT instruction and atom list do not agree **
Unit-cell contents from UNIT instruction and atom list resp.
С
     28.00
             0.00
Η
     28.00
             0.00
0
     16.00
             0.00
CR
      2.00
             2.00
   6.1 seconds elapsed time
Least-squares cycle 1 Maximum vector length = 511 Memory required = 328 / 27619
wR2 = 0.8229 before cycle 1 for 5627 data and 5 / 5 parameters
GooF = S = 9.534; Restrained GooF = 9.534 for 0 restraints
Weight = 1 / [sigma^2(Fo^2) + (0.1000 * P)^2 + 0.00 * P] where P = (Max (Fo^2, 0) + 2 * Fc^2) / 3
```

```
Shifts scaled down to reduce maximum shift/esd from 18.13 to 15.00
 Ν
     value
             esd shift/esd parameter
     0.58999 0.01667 -24.594 OSF
  1
  2 0.65157 0.00036 4.553 x Cr
  5
     0.02470 0.00102 -15.000 U11 Cr
Mean shift/esd = 9.761 Maximum = -24.594 for OSF
Max. shift = 0.013 A for Cr Max. dU =-0.015 for Cr
  0.3 seconds elapsed time
Least-squares cycle 2 Maximum vector length = 511 Memory required = 328 / 27619
wR2 = 0.8098 before cycle 2 for 5627 data and 5 / 5 parameters
GooF = S = 7.774; Restrained GooF = 7.774 for 0 restraints
Weight = 1 / [sigma^2(Fo^2) + (0.1000 * P)^2 + 0.00 * P] where P = (Max (Fo^2, 0) + 2 * Fc^2) / 3
 Ν
     value
             esd shift/esd parameter
    0.45449 0.01079 -12.563 OSF
  1
  2 0.65302 0.00038 3.784 x Cr
  5
     0.01457
              0.00089 -11.356 U11 Cr
Mean shift/esd = 6.279 Maximum = -12.563 for OSF
Max. shift = 0.011 A for Cr Max. dU =-0.010 for Cr
  0.4 seconds elapsed time
Least-squares cycle 3 Maximum vector length = 511 Memory required = 328 / 27619
wR2 = 0.8082 before cycle 3 for 5627 data and 5 / 5 parameters
GooF = S = 7.567; Restrained GooF = 7.567 for 0 restraints
Weight = 1 / [sigma^2(Fo^2) + (0.1000 * P)^2 + 0.00 * P] where P = (Max (Fo^2, 0) + 2 * Fc^2) / 3
     value
             esd shift/esd parameter
  Ν
     0.42149 0.00869 -3.800 OSF
  1
  5 0.01119 0.00081 -4.151 U11 Cr
Mean shift/esd = 2.393 Maximum = -4.151 for U11 Cr
Max. shift = 0.006 A for Cr Max. dU =-0.003 for Cr
  0.4 seconds elapsed time
Least-squares cycle 4 Maximum vector length = 511 Memory required = 328 / 27619
wR2 = 0.8096 before cycle 4 for 5627 data and 5 / 5 parameters
GooF = S = 7.682; Restrained GooF = 7.682 for 0 restraints
Weight = 1 / [sigma^2(Fo^2) + (0.1000 * P)^2 + 0.00 * P] where P = (Max (Fo^2, 0) + 2 * Fc^2) / 3
             esd shift/esd parameter
  N value
```

0.41077 0.00819 -1.308 OSF 2 0.65424 0.00039 1.039 x Cr 5 0.01023 0.00080 -1.206 U11 Cr Mean shift/esd = 0.883 Maximum = -1.308 for OSF Max. shift = 0.003 A for Cr Max. dU =-0.001 for Cr Largest correlation matrix elements 0.882 U11 Cr / OSF 0.3 seconds elapsed time 95adh06e in P-1 U22 U33 U23 U13 U12 ATOM U11 Ueq х z sof y Cr 0.65424 0.72253 0.82907 1.00000 0.01023 $0.00039 \ \ 0.00029 \ \ 0.00029 \ \ 0.00000 \ \ 0.00080$ Final Structure Factor Calculation for 95adh06e in P-1 Total number of l.s. parameters = 5 Maximum vector length = 511 Memory required = 323 / 22484 wR2 = 0.8104 before cycle 5 for 5627 data and 0 / 5 parameters GooF = S = 7.694; Restrained GooF = 7.694 for 0 restraints Weight = $1 / [\text{sigma}^2(\text{Fo}^2) + (0.1000 * \text{P})^2 + 0.00 * \text{P}]$ where $\text{P} = (\text{Max}(\text{Fo}^2, 0) + 2 * \text{Fc}^2) / 3$ $R1=\,0.4597\; for\;\; 4360\; Fo>4.sigma(Fo)\;\;$) . and $0.5048\; for\; all\;\; 5627\; data$ wR2 = 0.8104, GooF = S = 7.694, Restrained GooF = 7.694 for all data 0.6 seconds elapsed time Analysis of variance for reflections employed in refinement $K = Mean[Fo^{2}] / Mean[Fc^{2}]$ for group 0.000 0.051 0.098 0.142 0.182 0.215 0.239 0.271 0.321 0.416 1.000 Fc/Fc(max) 573. 555. 568. 556. 579. 542. 562. 569. 556. 567. Number in group 6.604 7.024 6.604 6.949 6.046 6.087 6.944 8.002 9.417 11.237 GooF 48.611 10.521 3.774 3.123 1.921 1.700 1.939 2.133 2.512 3.052 Κ Resolution(A) 0.65 0.68 0.70 0.74 0.77 0.82 0.89 0.97 1.12 1.41 inf 570. 569. 557. 555. 564. 566. 563. 560. 558. 565. Number in group GooF 3.136 3.555 3.880 4.729 5.688 6.029 7.766 10.010 10.861 13.393 Κ 1.246 1.345 1.424 1.576 1.646 1.635 2.148 2.544 2.680 3.978 $0.397 \quad 0.421 \quad 0.389 \quad 0.419 \quad 0.440 \quad 0.421 \quad 0.437 \quad 0.515 \quad 0.526 \quad 0.601$ R1 Recommended weighting scheme: WGHT 0.8584 43.7763 Most Disagreeable Reflections (* if suppressed)

hkl	Fo^2	Fc^2 Delta	(F^2)/eso	d Fc/Fc(m	ax) Resolution(A)	
0 -1 3	8784.70	13.64	3.69	0.084	3.36		
-1 2 3	10563.09	42.85	3.65	0.150	2.73		
-1 2 0	6705.29	118.91	3.52	0.249	4.48		
-2 2 1	43725.24	1490.57	3.49	0.882	3.22		
2 0 1	16190.28	628.33	3.39	0.573	2.99		
-4 4 2	17493.97	631.84	3.32	0.574	1.61		
-2 1 4	3765.24	18.80	3.30	0.099	2.38		
3 4 4	3359.93	94.68	3.27	0.222	1.14		
0 7 5	1905.99	28.19	3.26	0.121	1.05		
2 0 0	8156.41	211.46	3.24	0.332	3.49		
0 -3 1	8843.23	440.01	3.23	0.479	3.27		
0 - 10 3	1119.03	1.61	3.21	0.029	0.99		
0 0 0	3774.79	201.51	3.19	0.324	1.02		
-2 5 6	4/82.00	109.84	5.17 2.16	0.298	1.49		
-7 -2 7	1250.15	8 55	3.10	0.347	0.95		
-2 0 3	9957 32	277.80	3.10	0.381	2.97		
$-2 \ 0 \ 3$ -5 2 11	1727 32	16 44	3.14	0.093	0.90		
-2 1 1	1813.53	3.14	3.14	0.040	3.67		
-2 -2 3	2426.19	13.62	3.12	0.084	2.51		
-2 -8 4	1395.46	7.34	3.11	0.062	1.10		
7 -1 1	1416.83	42.63	3.11	0.149	0.98		
0 -5 1	2818.70	44.70	3.10	0.153	1.98		
-1 4 0	2449.45	10.10	3.10	0.073	2.47		
3 -6 7	4072.43	251.22	3.10	0.362	1.01		
-2 2 2	3384.27	113.48	3.09	0.243	2.95		
-3 -7 5	3365.03	190.39	3.06	0.315	1.11		
1-11 3	997.61	27.73	3.05	0.120	0.91		
-4 6 6	1787.01	46.50	3.05	0.156	1.10		
-3 0 1	8609.34	569.17	3.05	0.545	2.46		
1 - 1 - 4	4884.29	0.18	3.04	0.010	2.20		
-2 -0 4	3114.86	127.97	3.04	0.238	1.38		
-3 -0 5	3708.11	90.41	3.03	0.284	1.22		
-2 3 1	5178 15	196.41	3.02	0.217	2.67		
2 -1 5	1926.64	10.12	3.02	0.073	1.57		
4 -1 7	1066.09	28.91	3.01	0.123	0.98		
-3 -6 6	2089.76	84.72	2.99	0.210	1.17		
-4 -1 2	3766.65	154.17	2.99	0.284	1.77		
0 -4 4	10255.42	795.91	2.99	0.644	1.94		
-1 1 5	2560.62	53.61	2.97	0.167	2.02		
1 0 0	10369.17	675.73	2.97	0.594	6.97		
3 -5 6	1889.99	81.96	2.97	0.207	1.14		
$1 \ 0 \ 2$	3705.98	241.13	2.97	0.355	3.54		
-2 -1 3	15305.87	1324.96	2.96	0.831	2.82		
-3 4 2	9007.45	138 70	2.95	0.005	1.80		
6 0 2	3710.79	252 35	2.95	0.209	1.00		
3 -1 3	1733.26	16.86	2.92	0.094	1.00		
0 5 1	9539.74	812.90	2.91	0.651	1.84		
5.4 seconds elapsed time							
FMAP and O	GRID set by	program					
FMAP 2 1 24 GRID -2.381 -2 -2 2.381 2 2							
R1 = 0.5054 for 5627 unique reflections after merging							
Electron den	sity synthes	is with coeffi	cients Fo	-Fc			
Maximum = Mean = 0.0	25.23, 1 00, Rms d	Minimum = eviation fron	-4.12 e/. n mean =	A^3, Hi 1.31 e/A	ghest memory u: \^3	sed = 995 / 273	387

Fourier peaks appended to .res file						
x y z sof U Peak Distances to nearest atoms (including symmetry equivalents)						
O1 1 0.6508 0.7206 0.7795 1.00000 0.05 25.23 0.52 CR 7.07 CR						
O2 1 0.1867 0.5834 0.7879 1.00000 0.05 12.85 3.43 CR 5.40 CR						
Q3 1 0.5216 0.9552 0.5655 1.00000 0.05 12.83 3.90 CR 5.63 CR						
Q4 1 0.2601 0.7302 0.6092 1.00000 0.05 12.37 3.19 CR 6.38 CR						
Q5 1 1.0451 0.7449 1.0200 1.00000 0.05 11.91 2.97 CR 5.75 CR						
Q6 1 0.6861 0.8332 1.1658 1.00000 0.05 10.83 3.57 CR 5.52 CR						
Q7 1 0.6146 0.4173 0.7327 1.00000 0.05 10.81 3.04 CR 5.90 CR						
Q8 1 0.8973 0.7380 0.9294 1.00000 0.05 10.79 1.78 CR 6.52 CR						
Q9 1 0.8606 1.0101 1.1445 1.00000 0.05 10.77 3.87 CR 4.06 CR						
Q10 1 0.8337 0.7412 0.6034 1.00000 0.05 10.21 3.13 CR 5.91 CR						
Q11 1 0.6283 0.5345 0.7560 1.00000 0.05 9.93 1.90 CR 6.17 CR						
Q12 1 0.7668 0.7346 0.6715 1.00000 0.05 9.68 2.12 CR 8.47 CR						
Q13 1 0.5994 0.8585 0.9301 1.00000 0.05 9.47 1.82 CR 5.58 CR						
Q14 1 0.3664 0.7613 0.7417 1.00000 0.05 9.33 2.20 CR 7.13 CR						
Q15 1 0.6284 0.9380 0.8361 1.00000 0.05 9.10 2.20 CR 5.76 CR						
Q16 1 0.8325 0.5194 1.1425 1.00000 0.05 9.05 4.14 CR 4.16 CR						
Q17 1 0.4534 0.7359 1.0013 1.00000 0.05 8.91 2.73 CR 5.19 CR						
Q18 1 0.7401 0.9121 1.0907 1.00000 0.05 8.87 3.01 CR 5.25 CR						
Q19 1 0.3321 0.6918 0.8384 1.00000 0.05 8.02 2.43 CR 5.81 CR						
Q20 1 0.5039 0.8874 0.6655 1.00000 0.05 7.68 2.69 CR 6.92 CR						
Shortest distances between peaks (including symmetry equivalents)						
10 12 1 01 7 11 1 15 9 18 1 16 5 8 1 21 6 18 1 30 2 19 1 32 2 16 1 36						
4 14 1.36 3 20 1.37 14 19 1.39 13 15 1.41 1 12 1.66 17 19 1.66 13 18 1.68						
15 20 1.74 3 3 1.74 1 11 1.83 13 17 1.90 14 20 1.92 1 8 2.01 6 17 2.05						
4 20 2.08 6 9 2.11 1 13 2.17 1 14 2.17 13 14 2.20 1 15 2.24 13 19 2.24						
2 14 2.26 14 15 2.28 16 19 2.34 17 18 2.39 1 20 2.42 4 19 2.45 6 13 2.47						
11 12 2.51 9 13 2.60 2 17 2.61 8 12 2.63 1 19 2.64 8 11 2.65 15 18 2.66						
1 10 2.67 12 20 2.69 2 4 2.70 14 17 2.71 8 13 2.73 13 20 2.77 3 15 2.80						
3 4 2.92 16 17 2.94 8 18 2.95 1 4 2.97 1 7 2.98						
1.4 seconds elapsed time						
+++++++++++++++++++++++++++++++++++++++						
+ calctest finished at 19:18:04 Total elapsed time: 14.9 secs +						
· · · · · · · · · · · · · · · · · · ·						

Using **XP** after this cycle allowed me to assign 18 additional non-Hydrogen atoms (for a total of 19 out of 23) with confidence for use in isotropic refinement during the following **XL** cycle. [Note: these were 18 of the 20 strongest Q peaks.] A displacement ellipsoid plot (Note: this is still isotropic) of this molecule at this stage of refinement is shown on the following page. For this and the subsequent five plots in this chapter the plotting parameters are:

telp 0 -75 0.04 0 [ent]

4. Plot calctest.3, After The 3rd Cycle

(i.e., When Most Non-Hydrogen Atoms Have Been Found.)

[Note: Made with graphics file CALCTEST.3hc.GIF]

D. THE 4TH CYCLE: USING XL AND FINDING THE REMAINING NON-HYDROGEN ATOMS WITH XP

This sections involves the second refinement cycle by **XL**. This takes the atom positions and isotropic displacement parameters from the first **XL** cycle (i.e., which produced most non-Hydrogen atoms) and uses least squares refinement to improve them. It then calculates a residual electron density map (i.e., the Q peaks) which one uses **XP** to either confidently assign as atoms or delete from the list. It requires the following **calctest.ins** input file and produces the following **calctest.res** and **calctest.lst** output files.

1. CALCTEST.INS Input File for 4th Cycle: Using XL to Find the Remaining Non-Hydrogen Atoms

TITL 95adh06e in P-1								
CELL 0.71073 7.5265 10.0508 10.7429 97.271 108.116 99.782								
ZERR 2.00 0.0003 0.0005 0.0005 0.004 0.004 0.004								
LATT 1								
SFA	C C	H O CR						
UNI	Г 28	8 28 16 2						
TEM	P -	50						
	-							
L.S.	4							
BON	D							
FMA	- P 2	2						
PLA	N 2	0						
WGF	ΗT	0.10000	0					
FVA	R	0.4107	7					
CR	4	0.65424	0.72253	0.82907	11.00000	0.01023		
09	3	0.18670	0.58340	0.78790	11.00000	0.05000		
O 7	3	0.52160	0.95520	0.56550	11.00000	0.05000		
08	3	0.26010	0.73020	0.60920	11.00000	0.05000		
O14	3	1.04510	0.74490	1.02000	11.00000	0.05000		
011	3	0.68610	0.83320	1.16580	11.00000	0.05000		
013	3	0.61460	0.41730	0.73270	11.00000	0.05000		
C14	1	0.89730	0.73800	0.92940	11.00000	0.05000		
O10	3	0.86060	1.01010	1.14450	11.00000	0.05000		
012	3	0.83370	0.74120	0.60340	11.00000	0.05000		
C13	1	0.62830	0.53450	0.75600	11.00000	0.05000		
C12	1	0.76680	0.73460	0.67150	11.00000	0.05000		
C5	1	0.59940	0.85850	0.93010	11.00000	0.05000		
C2	1	0.36640	0.76130	0.74170	11.00000	0.05000		
C6	1	0.62840	0.93800	0.83610	11.00000	0.05000		
C4	1	0.45340	0.73590	1.00130	11.00000	0.05000		
C10	1	0.74010	0.91210	1.09070	11.00000	0.05000		
C3	1	0.33210	0.69180	0.83840	11.00000	0.05000		
C1	1	0.50390	0.88740	0.66550	11.00000	0.05000		

HKLF 4		
END		

[Note: the **LS** program is still being asked to do 4 least squares cycles, the **LS** program is still being asked to generate 20 Q peaks, but now 19 atoms from Cr on the top of the list to C1 on the bottom of the list are assigned and being fed into the **LS** program to generate trial phases.] On a Gateway2000[®] Pentium computer running at 166 MHz and with 32 MB of RAM, this **XL** calculation look a total of 22 seconds for 77 parameters.

After the refinement, the R factor for the 4360 reflections having Fo > 4 sigma (Fo) (i.e., the first R that **XL** lists) was 0.242, the observed R and wR factors for all of the data were 0.279 and 0.582, respectively, and the GOOF value was 4.434. In the final cycle, the largest shift for any atom (in this case O7) was 0.333Å.

2. CALCTEST.RES Output File for 4th Cycle: Using XL to Find the Remaining Non-Hydrogen Atoms

TITL 95adh06e in P-1
CELL 0.71073 7.5265 10.0508 10.7429 97.271 108.116
99.782
ZERR 2.00 0.0003 0.0005 0.0005 0.004 0.004 0.004
LATT 1
SFAC C H O CR
UNIT 28 28 16 2
TEMP -50
L.S. 4
BOND
FMAP 2
PLAN 20
WGHT 0.100000
FVAR 0.56033
CR 4 0.65426 0.72247 0.82856 11.00000 0.01807
09 3 0.18990 0.58074 0.76094 11.00000 0.03472
07 3 0.53819 0.96543 0.64061 11.00000 0.16682
08 3 0.25828 0.73191 0.57773 11.00000 0.03555
014 3 1.04713 0.74591 1.02038 11.00000 0.03616
011 3 0.68319 0.82822 1.20140 11.00000 0.03887
013 3 0.61346 0.41352 0.78450 11.00000 0.05001
C14 1 0.89672 0.73739 0.94578 11.00000 0.02270
010 3 0.86008 1.00396 1.15422 11.00000 0.04363
012 3 0.82670 0.74237 0.61502 11.00000 0.04687
C13 1 0.62919 0.53717 0.80128 11.00000 0.02503
C12 1 0.76117 0.73130 0.69436 11.00000 0.02955
C5 1 0 59873 0 85801 0 97874 11 00000 0 02331
$C_2 = 1 0.37152 0.76542 0.70561 11.00000 0.02701$
C6 1 0.62901 0.93834 0.88163 11.00000 0.02886
C4 1 0.45896 0.73211 0.94420 11.00000 0.04435
$C_{10} = 1 + 0.73534 + 0.91033 + 1.2162 + 11.00000 + 0.02739$
$C_3 = 1 + 0.33417 + 0.69133 + 0.80758 + 11.00000 + 0.02690$
C1 1 0 49573 0 93760 0 66294 11 00000 0 10842
HKLF 4
END
WGHT 0.4592 16.5984
O1 1 0.5037 0.8878 0.7295 11.00000 0.05 10.10
O2 1 0.1641 0.4874 0.8463 11.00000 0.05 8.54
Q3 1 0.6778 1.0770 0.6708 11.00000 0.05 8.38

Q4	1	0.8083	0.8707	1.3330	11.00000 0.05	7.58	
Q5	1	0.2540	0.6007	0.5079	11.00000 0.05	6.90	
Q6	1	0.6837	0.7245	0.8111	11.00000 0.05	5.60	
Q7	1	0.3536	0.7644	0.7296	11.00000 0.05	2.29	
Q8	1	0.8956	0.9922	1.1362	11.00000 0.05	2.22	
Q9	1	0.8416	1.0331	1.1537	11.00000 0.05	2.12	
Q10	1	0.7701	0.7210	0.5722	11.00000 0.05	1.96	
Q11	1	0.1721	0.6000	0.7058	11.00000 0.05	1.77	
Q12	1	0.1819	0.6639	0.6067	11.00000 0.05	1.46	
Q13	1	1.0769	0.7472	1.0029	11.00000 0.05	1.33	
Q14	1	0.7965	0.4955	1.0123	11.00000 0.05	1.30	
Q15	1	0.7244	0.9437	0.5317	11.00000 0.05	1.24	
Q16	1	0.6276	0.8785	0.9499	11.00000 0.05	1.18	
Q17	1	0.2111	0.9346	0.6274	11.00000 0.05	1.18	
Q18	1	0.7929	0.5484	0.8927	11.00000 0.05	1.15	
Q19	1	0.4941	0.4214	0.6910	11.00000 0.05	1.15	
Q20	1	1.0468	0.8487	1.1612	11.00000 0.05	1.10	

3. CALCTEST.LST Output File for 4th Cycle: Using XL to Find the Remaining Non-Hydrogen Atoms

15 pages of text. See the computer copies of these files.

Using **XP** after this cycle allowed me to assign the remaining 5 additional non-Hydrogen atoms (i.e., the last 4 that were previously unassigned out of a total of 23).

Note: inspection of these tables and the graphical data often indicates problems with the model. In this case, one atom, C1, had moved to a bad position (i.e., out of the aromatic ring to a point only 0.5Å away from O7, an obvious chemical impossibility) and both C1 and O7 had bad displacement parameters (i.e., in the table above one can see that they are five times larger than those of their neighbors and in the plot **calctest.4** they are also obviously outsized). As was described in chapter VI(B), above, in such cases one has several good options. For this particular example, we chose the first suggested "fix." Thus, the "bad" C1 was deleted and Q1 (which was where C1 was expected to be) was successfully assigned as C1 (see the next section).

A displacement ellipsoid plot (Note: this is still isotropic) of this molecule at this stage of refinement is shown on the following page.

4. Plot calctest.4, After The 4th Cycle

(i.e., When all Remaining Non-Hydrogen Atoms Have Been Found.)

[Note: Made with graphics file CALCTEST.4hc.GIF]

E. THE 5TH CYCLE: USING XL AND REFINING ALL NON-HYDROGEN ATOMS TO THEIR BEST ISOTROPIC VALUES

This sections involves the third refinement cycle by **XL**. This takes the atom positions and isotropic displacement parameters from the second **XL** cycle just described above (i.e., which produced all of the non-Hydrogen atoms) and uses least squares refinement to improve them to the best values that could be found with this limited model (i.e., it unrealistically assumes *spherical* displacement parameters). It then calculates a residual electron density map (i.e., the Q peaks) which one uses **XP** to ensure that no non-Hydrogen atom assignments are bad. Note: at this point one can typically identify at least some of the Hydrogen atoms amongst the Q peaks but these should not be assigned until the non-Hydrogen atoms have been given an anisotropic refinement. It requires the following **calctest.ins** input file and produces the following **calctest.res** and **calctest.lst** output files.

1. CALCTEST.INS Input File for 5th Cycle: Using XL to Obtain the Best Isotropic displacement Parameters

TITL	, 95	adh06e in	1 P-1					
CELI	CELL 0.71073 7.5265 10.0508 10.7429 97.271 108.116 99.782							
ZERI	ZERR 2.00 0.0003 0.0005 0.0005 0.004 0.004 0.004							
LAT	T 1	1						
SFAG	CC	C H O CR						
UNI	Γ28	8 28 16 2						
TEM	P -	50						
L.S. 4	4							
BON	D							
FMA	P 2	2						
PLA	N 2	20						
WGF	łΤ	0.10000	0					
FVA	R	0.5603	3					
CR	4	0.65426	0.72247	0.82856	11.00000	0.01807		
O 7	3	0.53819	0.96543	0.64061	11.00000	0.16682		
08	3	0.25828	0.73191	0.57773	11.00000	0.03555		
O9	3	0.18990	0.58074	0.76094	11.00000	0.03472		
O10	3	0.86008	1.00396	1.15422	11.00000	0.04363		
O11	3	0.68319	0.82822	1.20140	11.00000	0.03887		
O12	3	0.82670	0.74237	0.61502	11.00000	0.04687		
O13	3	0.61346	0.41352	0.78450	11.00000	0.05001		
O14	3	1.04713	0.74591	1.02038	11.00000	0.03616		
C1	1	0.50370	0.88780	0.72950	11.00000	0.05000		
C2	1	0.37152	0.76542	0.70561	11.00000	0.02701		
C3	1	0.33417	0.69133	0.80758	11.00000	0.02690		
C4	1	0.45896	0.73211	0.94420	11.00000	0.04435		
C5	1	0.59873	0.85801	0.97874	11.00000	0.02331		
C6	1	0.62901	0.93834	0.88163	11.00000	0.02886		

C7	1	0.67780	1.07700	0.67080	11.00000	0.05000	
C8	1	0.25400	0.60070	0.50790	11.00000	0.05000	
C9	1	0.16410	0.48740	0.84630	11.00000	0.05000	
C10	1	0.73534	0.91033	1.12162	11.00000	0.02739	
C11	1	0.80830	0.87070	1.33300	11.00000	0.05000	
C12	1	0.76117	0.73130	0.69436	11.00000	0.02955	
C13	1	0.62919	0.53717	0.80128	11.00000	0.02503	
C14	1	0.89672	0.73739	0.94578	11.00000	0.02270	
HKL	F 4						
END							

[Note: the small changes/improvements in values for the atomic coordinates and isotropic displacement parameters compared to those in the last section.] On a Gateway2000[®] Pentium computer running at 166 MHz and with 32 MB of RAM, this **XL** calculation look a total of 26 seconds for 93 parameters.

After the refinement, the R factor for the 4360 reflections having Fo > 4 sigma (Fo) (i.e., the first R that **XL** lists) was 0.0984, the observed R and wR factors for all of the data were 0.120 and 0.277, respectively, and the GOOF value was 1.853. In the final cycle, the largest shift for any atom (in this case O12) was 0.003Å and the largest shift/standard uncertainty for any parameter was less than 0.01.

Remember from the last section (where the "bad" C1 was deleted and Q1 (which was where C1 was expected to be) was assigned as C1. After the 5th cycle, both C1 and O7 are in reasonable positions and in the calctest.res file, below, it can be seen that they both have small and reasonable displacement parameters (these have been shaded).

2. CALCTEST.RES Output File for 5th Cycle: Using XL to Obtain the Best Isotropic displacement Parameters

TITL 95adh06e in P-1
CELL 0.71073 7.5265 10.0508 10.7429 97.271 108.116 99.782
ZERR 2.00 0.0003 0.0005 0.0005 0.004 0.004 0.004
LATT 1
UNII 28 28 16 2
TEMP-50
L.S. 4
BOND
FMAP 2
PLAN 20
WGHT 0 100000
FVAR 0.61864
CR 4 0.65442 0.72257 0.82861 11.00000 0.02089
07 3 0 52392 0 95672 0 64835 11 00000 0 02992
08 3 0 2556 0 72934 0 57790 11 00000 0 03320
09 5 0.18829 0.38205 0.76054 11.00000 0.05199
010 3 0.86333 1.00651 1.15356 11.00000 0.04120
011 3 0.68465 0.82987 1.19973 11.00000 0.03747

O12 3 0.82541 0.73869 0.61191 11.00000 0.05086 O13 3 0.61189 0.41788 0.78577 11.00000 0.04656 014 3 1.04726 0.74434 1.02053 11.00000 0.04038 C1 1 0.51006 0.89160 0.74837 11.00000 0.02489 1 0.36919 0.76592 0.70811 11.00000 0.02504 C^2 C3 1 0.33457 0.69407 0.80677 11.00000 0.02548 1 0.45278 0.73789 0.94165 11.00000 0.02462 C4 C5 1 0.59849 0.85894 0.97813 11.00000 0.02282 1 0.62715 0.93760 0.88191 11.00000 0.02473 C6 C7 1 0.67748 1.07612 0.68055 11.00000 0.03852 C8 1 0.25526 0.60042 0.50569 11.00000 0.05106 C9 1 0.17061 0.48972 0.85023 11.00000 0.03428 C10 1 0.73205 0.90838 1.11880 11.00000 0.02751 C11 1 0.80670 0.86844 1.33980 11.00000 0.04568 1 0.76067 0.73183 0.69516 11.00000 0.03044 C12 C13 1 0.62656 0.53544 0.80118 11.00000 0.02931 C14 1 0.89508 0.73681 0.94554 11.00000 0.02707 HKLF 4 END WGHT 0.1434 2.7443 Q1 1 0.5954 0.7142 0.8121 11.00000 0.05 2.92 Q2 1 0.7189 0.7327 0.8339 11.00000 0.05 2.75Q3 1 0.9068 0.9804 1.1381 11.00000 0.05 1.49 Q4 1 0.3147 0.6163 0.5070 11.00000 0.05 1.27 Q5 1 0.6723 0.4214 0.7925 11.00000 0.05 1.21 Q6 1 0.8120 1.0246 1.1566 11.00000 0.05 1.21 Q7 1 0.6405 1.1059 0.6924 11.00000 0.05 1.20 Q8 1 0.6485 0.8549 1.1922 11.00000 0.05 1.18 Q9 1 0.7326 1.0587 0.6750 11.00000 0.05 1.15 Q10 1 0.3054 0.7254 0.5673 11.00000 0.05 1.14 Q11 1 0.5720 0.9435 0.6319 11.00000 0.05 1.13 Q12 1 0.8125 0.9183 1.3370 11.00000 0.05 1.08 $Q13 \ 1 \ 0.4736 \ 0.9676 \ 0.6692 \ 11.00000 \ 0.05$ 1.07 Q14 1 0.5447 0.4139 0.7517 11.00000 0.05 1.06 Q15 1 0.1473 0.6038 0.7821 11.00000 0.05 1.02 Q16 1 0.8877 0.7681 0.6381 11.00000 0.05 1.02 Q17 1 0.7578 0.7095 0.5752 11.00000 0.05 1.01 Q18 1 0.7426 0.8108 1.1947 11.00000 0.05 1.01 Q19 1 0.7960 0.8223 1.3364 11.00000 0.05 0.98

Q20 1 1.0854 0.7591 1.0018 11.00000 0.05

3. CALCTEST.LST Output File for 5th Cycle: Using XL to Obtain the Best Isotropic displacement Parameters

0.92

14	$\mathbf{C} = \mathbf{C} + 1$	· · · · · · · · · · · · · · · · · · ·
14 pages of text.	See the computer	copies of these files.

Using **XP** after this cycle allowed me to test the assignment of all of the non-Hydrogen atoms which have now been assigned for use in the next anisotropic refinement **XL** cycle that follows. In this case no Hydrogen atoms were apparent in the 'proj' view of **XP**. A displacement ellipsoid plot (Note: this is still isotropic) of this molecule at this stage of refinement is shown on the following page.

4. Plot calctest.5, After The 5th Cycle

(i.e., When all Non-Hydrogen Atoms Have Been Refined to Their Best Isotropic Values.)

[[]Note: Made with graphics file CALCTEST.5hc.GIF]

F. THE 6TH CYCLE: USING XL AND REFINING ALL NON-HYDROGEN ATOMS USING ANISOTROPIC DISPLACEMENT PARAMETERS

This sections involves the fourth refinement cycle by **XL**. This takes the atom positions and isotropic displacement parameters from the third **XL**, converts them to anisotropic values, and then uses least squares refinement to improve the atomic positions and give more realistic anisotropic displacement parameters (i.e., these are shaped like footballs or pancakes). It then calculates a residual electron density map (i.e., the Q peaks) which one uses **XP** to assign as many Hydrogen atoms as possible. It requires the following **calctest.ins** input file and produces the following **calctest.res** and **calctest.lst** output files.

To convert the assigned non-Hydrogen atoms to anisotropic displacement parameters one must edit the **name.ins** file and add a line that reads 'ANIS' after the line containing the command 'PLAN', e.g.

edit calctest.ins [ent] (this is done in DOS)

Then, add the line **ANIS** as outlined below and save the result and exit from this **calctest.ins** file. [Note: it is very critical that you add this line in here!!! If you put it in earlier in this file then **XL** will almost always crash.]

1. CALCTEST.INS Input File for 6th Cycle: Using XL to Refine Anisotropic displacement Parameters and Assign Most of the Hydrogen Atoms

TITL 95adh06e in P-1
CELL 0.71073 7.5265 10.0508 10.7429 97.271 108.116 99.782
ZERR 2.00 0.0003 0.0005 0.0005 0.004 0.004 0.004
LATT 1
SFAC C H O CR
UNIT 28 28 16 2
TEMP -50
L.S. 4
BOND
FMAP 2
PLAN 20
ANIS
WGHT 0.100000
FVAR 0.61864
CR 4 0.65442 0.72257 0.82861 11.00000 0.02089
O7 3 0.52392 0.95672 0.64835 11.00000 0.02992
O8 3 0.25566 0.72934 0.57790 11.00000 0.03320
O9 3 0.18829 0.58203 0.76054 11.00000 0.03199

O10	3	0.86333	1.00651	1.15356	11.00000	0.04120	
011	3	0.68465	0.82987	1.19973	11.00000	0.03747	
O12	3	0.82541	0.73869	0.61191	11.00000	0.05086	
O13	3	0.61189	0.41788	0.78577	11.00000	0.04656	
014	3	1.04726	0.74434	1.02053	11.00000	0.04038	
C1	1	0.51006	0.89160	0.74837	11.00000	0.02489	
C2	1	0.36919	0.76592	0.70811	11.00000	0.02504	
C3	1	0.33457	0.69407	0.80677	11.00000	0.02548	
C4	1	0.45278	0.73789	0.94165	11.00000	0.02462	
C5	1	0.59849	0.85894	0.97813	11.00000	0.02282	
C6	1	0.62715	0.93760	0.88191	11.00000	0.02473	
C7	1	0.67748	1.07612	0.68055	11.00000	0.03852	
C8	1	0.25526	0.60042	0.50569	11.00000	0.05106	
C9	1	0.17061	0.48972	0.85023	11.00000	0.03428	
C10	1	0.73205	0.90838	1.11880	11.00000	0.02751	
C11	1	0.80670	0.86844	1.33980	11.00000	0.04568	
C12	1	0.76067	0.73183	0.69516	11.00000	0.03044	
C13	1	0.62656	0.53544	0.80118	11.00000	0.02931	
C14	1	0.89508	0.73681	0.94554	11.00000	0.02707	
HKL	F 4	Ļ					
END)						
	010 011 012 013 014 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 HKL END	O10 3 O11 3 O12 3 O13 3 O14 3 C1 1 C2 1 C3 1 C4 1 C5 1 C6 1 C7 1 C8 1 C10 1 C11 1 C12 1 C14 1 C15 1 C7 1 C10 1 C12 1 C13 1 C14 1 HKLF 4 END	O10 3 0.86333 O11 3 0.68465 O12 3 0.82541 O13 3 0.61189 O14 3 1.04726 C1 1 0.51006 C2 1 0.36919 C3 1 0.33457 C4 1 0.45278 C5 1 0.59849 C6 1 0.62715 C7 1 0.67748 C8 1 0.25526 C9 1 0.17061 C10 1 0.73205 C11 1 0.80670 C12 1 0.76067 C13 1 0.62656 C14 1 0.89508	O10 3 0.86333 1.00651 O11 3 0.68465 0.82987 O12 3 0.61189 0.41788 O14 3 1.04726 0.74434 C1 1 0.51006 0.89160 C2 1 0.36919 0.76592 C3 1 0.45278 0.73789 C4 1 0.45278 0.73789 C5 1 0.59849 0.85894 C6 1 0.62715 0.93760 C7 1 0.67748 1.07612 C8 1 0.25526 0.60042 C9 1 0.17061 0.48972 C10 1 0.73205 0.90838 C11 1 0.80670 0.86844 C12 1 0.76067 0.73183 C13 1 0.62656 0.53544 C14 1 0.89508 0.73681	O10 3 0.86333 1.00651 1.15356 O11 3 0.68465 0.82987 1.19973 O12 3 0.82541 0.73869 0.61191 O13 3 0.61189 0.41788 0.78577 O14 3 1.04726 0.74434 1.02053 C1 1 0.51006 0.89160 0.74837 C2 1 0.36919 0.76592 0.70811 C3 1 0.33457 0.69407 0.80677 C4 1 0.45278 0.73789 0.94165 C5 1 0.59849 0.85894 0.97813 C6 1 0.62715 0.93760 0.88191 C7 1 0.67748 1.07612 0.68055 C8 1 0.25526 0.60042 0.50569 C9 1 0.17061 0.48972 0.85023 C10 1 0.73205 0.90838 1.11880 C11 1	O10 3 0.86333 1.00651 1.15356 11.00000 O11 3 0.68465 0.82987 1.19973 11.00000 O12 3 0.82541 0.73869 0.61191 11.00000 O13 3 0.61189 0.41788 0.78577 11.00000 O14 3 1.04726 0.74434 1.02053 11.00000 C1 1 0.51006 0.89160 0.74837 11.00000 C2 1 0.36919 0.76592 0.70811 11.00000 C3 1 0.33457 0.69407 0.80677 11.00000 C4 1 0.45278 0.73789 0.94165 11.00000 C5 1 0.59849 0.85894 0.97813 11.00000 C6 1 0.62715 0.93760 0.88191 11.00000 C7 1 0.67748 1.07612 0.68055 11.00000 C8 1 0.25526 0.60042 0.50569 11.00000 C9 1 0.17061 0.48972 0.85023	O10 3 0.86333 1.00651 1.15356 11.00000 0.04120 O11 3 0.68465 0.82987 1.19973 11.00000 0.03747 O12 3 0.82541 0.73869 0.61191 11.00000 0.05086 O13 3 0.61189 0.41788 0.78577 11.00000 0.04656 O14 3 1.04726 0.74434 1.02053 11.00000 0.04038 C1 1 0.51006 0.89160 0.74837 11.00000 0.02489 C2 1 0.36919 0.76592 0.70811 11.00000 0.02504 C3 1 0.33457 0.69407 0.80677 11.00000 0.02462 C5 1 0.59849 0.85894 0.97813 11.00000 0.02462 C5 1 0.62715 0.93760 0.88191 11.00000 0.02473 C7 1 0.67748 1.07612 0.68055 11.00000 0.02473 C8 1 0.25526 0.60042 0.50569 11.00000 0.02751

On a Gateway2000[®] Pentium computer running at 166 MHz and with 32 MB of RAM, this **XL** calculation look a total of 58 seconds for 208 parameters.

After the refinement, the R factor for the 4360 reflections having Fo > 4 sigma (Fo) (i.e., the first R that **XL** lists) was 0.052, the observed R and wR factors for all of the data were 0.073 and 0.174, respectively, and the GOOF value was 1.153. In the final cycle, the largest shift for any atom (in this case C11) was 0.000 and the largest shift/standard uncertainty for any parameter was substantially less than 0.01.

[Note: that the single number representing the isotropic displacement parameters in the previous calctest.res file or in the calctest.ins file to start this cycle has now been converted to a set of six numbers for each atom, the anisotropic displacement parameters.]

2.	CALCTEST.RES	Output File	e for 6 th	Cycle:	Using	XL	to R	Refine	Anisotropic
	displacement Para	ameters and .	Assign M	lost of th	he Hyd	rogei	n Ato	ms	

TITL 95adh06e in P-1
CELL 0.71073 7.5265 10.0508 10.7429 97.271 108.116 99.782
ZERR 2.00 0.0003 0.0005 0.0005 0.004 0.004 0.004
LATT 1
SFAC C H O CR
UNIT 28 28 16 2
TEMP -50
L.3. 4
BOND
FMAP 2
PLAN 20

WGHT 0.100000		
FVAR 0.62287		
CR 4 0.65442 0.72256 0.82864 11.00000	0.02633	0.01993 =
0.01661 0.00344 0.00673 0.00556		
07 3 0.52384 0.95653 0.64844 11.00000	0.03778	0.02878 =
0.02116 0.01126 0.00462 0.00389		
08 3 0.25569 0.72944 0.57773 11.00000	0.03788	0.03530 =
0.01928 0.00543 -0.00179 0.00552		
09 3 0.18846 0.58229 0.76086 11.00000	0.03031	0.03181 =
0.02869 0.00767 0.00485 -0.00192		
O10 3 0.86349 1.00645 1.15330 11.00000	0.04752	0.04101 =
0.02393 0.00237 0.00134 -0.00721		
O11 3 0.68441 0.82987 1.20000 11.00000	0.04498	0.04672 =
0.01874 0.01030 0.00698 0.00329		
O12 3 0.82539 0.73856 0.61165 11.00000	0.07345	0.06393 =
0.04246 0.02005 0.03871 0.02571		
O13 3 0.61228 0.41766 0.78574 11.00000	0.07264	0.02423 =
0.05677 0.00725 0.03156 0.01135		
O14 3 1.04740 0.74466 1.02050 11.00000	0.03245	0.04439 =
0.04057 0.00516 -0.00009 0.01111		
C1 1 0.51004 0.89173 0.74838 11.00000	0.03203	0.02408 =
0.01938 0.00672 0.00700 0.00886		
C2 1 0.36909 0.76565 0.70800 11.00000	0.02795	0.02566 =
0.01854 0.00420 0.00368 0.00642		
C3 1 0.33472 0.69419 0.80682 11.00000	0.02626	0.02496 =
0.02379 0.00471 0.00656 0.00579		
C4 1 0.45282 0.73796 0.94143 11.00000	0.02749	0.02591 =
0.02186 0.00636 0.00898 0.00692		
C5 1 0.59841 0.85917 0.97811 11.00000	0.02949	0.02294 =
0.01660 0.00258 0.00723 0.00679		
C6 1 0.62741 0.93762 0.88216 11.00000	0.03249	0.02243 =
0.01874 0.00502 0.00825 0.00783		
C7 1 0.67809 1.07595 0.68080 11.00000	0.04379	0.04004 =
0.03032 0.01584 0.00634 -0.00416		
C8 1 0.25718 0.60033 0.50581 11.00000	0.06373	0.05306 =
0.02630 -0.00853 0.00181 0.01117	0.00007	0.02151
C9 1 0.1/02/ 0.48996 0.85013 11.00000	0.03837	0.03151 =
0.03555 0.01152 0.01067 0.00160	0.02170	0.02025
	0.03179	0.02935 =
$0.01877 \ 0.00420 \ 0.00758 \ 0.00802$	0.04078	0.07211 -
	0.04978	0.07211 -
$C_{12} = 1 + 0.76155 + 0.73223 + 0.69527 + 11.00000$	0.04125	0.03205 -
0.02601 - 0.00808 - 0.01422 - 0.01225	0.04123	0.03203 -
$C_{12} = 1 - 0.62657 - 0.52566 - 0.80107 - 11.00000$	0.02204	0.02682 -
	0.03394	0.02085 -
$C_{14} = 1 - 0.89536 - 0.73641 - 0.94589 - 11.00000$	0.03261	0 02320 -
0.02650 0.00297 0.00909 0.00734	0.05201	0.02520 =
HKIF4		
END		
WGHT 0.0911 0.4011		
01 1 0.2819 0.4555 0.8822 11.00000 0.05	0.85	
02 1 0.7203 1.0132 0.8980 11.00000 0.05	0.82	
03 1 0.6661 1.1058 0.5975 11.00000 0.05	0.73	
Q4 1 0.4336 0.6853 1.0033 11.00000 0.05	0.72	
Q5 1 0.1396 0.5425 0.9414 11.00000 0.05	0.70	
Q6 1 0.6556 1.1481 0.7376 11.00000 0.05	0.68	
Q7 1 0.7910 1.0560 0.7184 11.00000 0.05	0.67	
Q8 1 0.9262 0.8458 1.3589 11.00000 0.05	0.64	
Q9 1 0.0635 0.4170 0.8012 11.00000 0.05	0.59	
Q10 1 0.2181 0.6015 0.4216 11.00000 0.05	0.59	
Q11 1 0.8123 0.9473 1.3785 11.00000 0.05	0.54	
Q12 1 0.7301 0.8242 1.3781 11.00000 0.05	0.51	
Q13 1 0.2807 0.5359 0.5620 11.00000 0.05	0.50	
Q14 1 0.2160 0.5165 0.5416 11.00000 0.05	0.50	
Q15 1 0.3822 0.5839 0.5229 11.00000 0.05	0.47	
Q16 1 0.3485 0.6342 0.5026 11.00000 0.05	0.45	
Q17 1 0.6202 0.9044 0.9374 11.00000 0.05	0.44	
Q18 1 0.7645 0.8607 1.3182 11.00000 0.05	0.39	

Q19	1	0.6633	0.8814	1.0374	11.00000	0.05	0.39		
Q20	1	0.3321	0.7323	0.7625	11.00000	0.05	0.34		

3. CALCTEST.LST Output File for 6th Cycle: Using XL to Refine Anisotropic Displacement Parameters and Assign Most of the Hydrogen Atoms

17 pages of text. See the computer copies of these files.

Using **XP** after this cycle allowed me to assign all 14 Hydrogen atoms. For many samples, the rest will need to be assigned in the next cycle. A displacement ellipsoid plot (**telp 0 -75 0.04 0** [ent] calctest.6 [ent]) (Note: this plot is now anisotropic of this molecule at this stage of refinement is included in the following page.

Note: The extra H-H "bonds" between the methyl hydrogens are typical for cases when hydrogen atoms that have just been assigned on the same CH_2 or CH_3 group but have not yet been refined. These extra "bonds" will disappear upon refinement. They are due the default values used by XP for recognizing contacts being chosen for non-hydrogen atoms. If one desires to do so, one can use the 'undo' command to remove these "ghost" bonds.

4. Plot calctest.6, After The 6th Cycle

(i.e., When All Non-Hydrogen Atoms Have Been Refined Using Anisotropic Displacement Parameters.)

[Note: Made with graphics file CALCTEST.6hc.GIF]

G. THE 7TH CYCLE: USING XL AND REFINING ANISOTROPIC NON-HYDROGEN ATOMS AND THE FIRST SET OF ISOTROPIC HYDROGEN ATOMS

This sections involves the fifth refinement cycle by **XL**. This takes the atom positions and anisotropic displacement parameters for non-Hydrogen atoms and the first set of isotropic Hydrogen atoms from the fourth **XL** and then uses least squares refinement to improve the atomic positions and displacement parameters. It then calculates a residual electron density map (i.e., the Q peaks) which one uses **XP** to assign as many of the remaining Hydrogen atoms as possible (in this example all of them). It requires the following **calctest.ins** input file and produces the following **calctest.res** and **calctest.lst** output files.

[Note: the 'ANIS' command you added in the calctest.ins file in the previous cycle has disappeared (i.e., leaving the blank line shown shaded below) because its function (to convert any atoms after it to the anisotropic form) is complete.]

[Further note: As described in the earlier chapter on **XL**, I do not routinely use the powerful **AFIX** or **HFIX** commands (these are edited into the name.ins file). Their purpose is to fix the positional and/or displacement parameters of the specified atoms to idealized values (often with respect to the heavier atoms to which they are bonded). Because of the excellent data quality obtained from this crystal, leaving the hydrogen parameters free to refine eventually gave a quality solution, see below.]

1. CALCTEST.INS Input File for 7th Cycle: Using XL to do an Anisotropic Refinement of all Non-Hydrogen Atoms and the Isotropic Refinement of the First Set of Hydrogen Atoms

TITL 95adh06e in P-1
CELL 0.71073 7.5265 10.0508 10.7429 97.271 108.116 99.782
ZERR 2.00 0.0003 0.0005 0.0005 0.004 0.004 0.004
LATT 1
SFAC C H O CR
UNIT 28 28 16 2
TEMP -50
L.S. 4
BOND
FMAP 2
PLAN 20
WGHT 0.100000
FVAR 0.62287
CR 4 0.65442 0.72256 0.82864 11.00000 0.02633 $0.01993 =$
0.01661 0.00344 0.00673 0.00556

$\begin{array}{llllllllllllllllllllllllllllllllllll$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{llllllllllllllllllllllllllllllllllll$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{l} 0.000000 & 0.000000 & 0.000000 & 0.00000 & 0.00000 & 0.000000 & 0.000000 & 0.000000 & 0.00000000$
$\begin{array}{c} 0.02869 & 0.00767 & 0.00485 & -0.00192 \\ 0.02869 & 0.00767 & 0.00485 & -0.00192 \\ 0.02393 & 0.00237 & 0.00134 & -0.00721 \\ 0.013 & 0.68441 & 0.82987 & 1.20000 & 11.00000 & 0.04498 & 0.04672 = \\ & 0.01874 & 0.01030 & 0.00698 & 0.00329 \\ 0.02393 & 0.023539 & 0.73856 & 0.61165 & 11.00000 & 0.07345 & 0.06393 = \\ & 0.04246 & 0.02005 & 0.03871 & 0.02571 \\ 0.03 & 0.61228 & 0.41766 & 0.78574 & 11.00000 & 0.07264 & 0.02423 = \\ & 0.05677 & 0.00725 & 0.03156 & 0.01135 \\ \end{array}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c} 0.017 & 5 & 0.00441 & 0.32567 & 1.20000 & 11.00000 & 0.04476 & 0.04072 = \\ 0.01874 & 0.01030 & 0.00698 & 0.00329 \\ 0.12 & 3 & 0.82539 & 0.73856 & 0.61165 & 11.00000 & 0.07345 & 0.06393 = \\ 0.04246 & 0.02005 & 0.03871 & 0.02571 \\ 0.13 & 3 & 0.61228 & 0.41766 & 0.78574 & 11.00000 & 0.07264 & 0.02423 = \\ 0.05677 & 0.00725 & 0.03156 & 0.01135 \\ \end{array}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
O13 3 0.61228 0.41766 0.78574 11.00000 0.07264 $0.02423 = 0.05677$ 0.00725 0.03156 0.01135
0.05677 0.00725 0.03156 0.01135
0.05077 0.00725 0.05156 0.01155
$014 \ 3 \ 1.04/40 \ 0.74466 \ 1.02050 \ 11.00000 \ 0.03245 \ 0.04439 =$
0.04057 0.00516 -0.00009 0.01111
C1 1 0.51004 0.89173 0.74838 11.00000 0.03203 $0.02408 =$
$0.01758 \ 0.00072 \ 0.00700 \ 0.00880$
$C_2 = 1 = 0.36909 = 0.76565 = 0.70800 = 11.00000 = 0.02795 = 0.02566 =$
0.01854 0.00420 0.00368 0.00642
C3 1 0.33472 0.69419 0.80682 11.00000 0.02626 $0.02496 =$
0.02379 0.00471 0.00656 0.00579
(0.0257) (0.00471) (0.00050) (0.0057)
$(4 \ 1 \ 0.45282 \ 0.73796 \ 0.94143 \ 11.00000 \ 0.02749 \ 0.02591 =$
0.02186 0.00636 0.00898 0.00692
H4 2 0.43360 0.68530 1.00330 11.00000 0.05000
C5 1 0 59841 0 85917 0 97811 11 00000 0 02949 0 02294 =
C6 I 0.62741 0.93762 0.88216 I1.00000 0.03249 0.02243 =
0.01874 0.00502 0.00825 0.00783
H6 2 0.72030 1.01320 0.89800 11.00000 0.05000
C7 1 0.67809 1.07595 0.68080 11.00000 0.04379 0.04004 =
H/C 2 0.66610 1.10580 0.59750 11.00000 0.05000
H7B 2 0.65560 1.14810 0.73760 11.00000 0.05000
H7A 2 0.79100 1.05600 0.71840 11.00000 0.05000
$C_8 = 1 - 0.25718 - 0.60033 - 0.50581 - 11.00000 - 0.06373 - 0.05306 - 0.05006 - 0.05506 - 0.05006 - 0.05306 - 0.0$
0.02630 -0.00853 0.00181 0.01117
H8C 2 0.21810 0.60150 0.42160 11.00000 0.05000
H8B 2 0.28070 0.53590 0.56200 11.00000 0.05000
H8A 2 0 21600 0 51650 0 54160 11 00000 0 05000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
0.03555 0.01152 0.01067 0.00160
H9C 2 0.28190 0.45550 0.88220 11.00000 0.05000
H9B 2 0.13960 0.54250 0.94140 11.00000 0.05000
H9A 2 0.06350 0.41700 0.80120 11.00000 0.05000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$(10 \ 1 \ 0.75194 \ 0.90819 \ 1.11809 \ 11.00000 \ 0.03179 \ 0.02935 =$
0.01877 0.00426 0.00738 0.00862
C11 1 0.80745 0.86813 1.33983 11.00000 0.04978 0.07211 =
0.01835 0.01318 0.00478 0.01466
$H_{11}C_{-2} = 0.92620 = 0.84580 = 1.35800 = 11.00000 = 0.05000$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
H11B 2 0.81230 0.94730 1.37850 11.00000 0.05000
H11A 2 0.73010 0.82420 1.37810 11.00000 0.05000
C12 1 0.76155 0.73223 0.69527 11.00000 0.04125 0.03205 =

0.02601 0.00898 0.01422 0.01225
C13 1 0.62657 0.53566 0.80107 11.00000 0.03394 0.02683 =
0.02840 0.00603 0.01256 0.00728
C14 1 0.89536 0.73641 0.94589 11.00000 0.03261 0.02320 =
0.02650 0.00297 0.00909 0.00734
HKLF 4
END

On a Gateway2000[®] Pentium computer running at 166 MHz and with 32 MB of RAM, this **XL** calculation look a total of 86 seconds for 264 parameters.

After the refinement, the R factor for the 4360 reflections having Fo > 4 sigma (Fo) (i.e., the first R that **XL** lists) was 0.0417, the observed R and wR factors for all of the data were 0.0623 and 0.139, respectively, and the GOOF value was 0.920. In the final cycle, the largest shift for any atom (in this case H8B) was 0.210Å and the largest shift/standard uncertainty for any parameter was substantially more than 0.1 for several hydrogen atoms (they were substantially smaller for all non-hydrogen atoms).

[Note: in the following calctest.res output file you can clearly see in the darkened text the distinction between the non-Hydrogen atoms that are anisotropic and the isotropic Hydrogen atoms as the latter each have many fewer displacement parameters.]

2. CALCTEST.RES Output File for 7th Cycle: Using XL to do an Anisotropic Refinement of all Non-Hydrogen Atoms and the Isotropic Refinement of the First Set of Hydrogen Atoms

TITL 95adh06e in P-1
CELL 0.71073 7.5265 10.0508 10.7429 97.271 108.116 99.782
ZERR 2.00 0.0003 0.0005 0.0005 0.004 0.004 0.004
LATT 1
SEACCHOCR
UNIT 29 29 16 2
TEMD 50
IEMP-30
L.S. 4
BOND
FMAP 2
PLAN 20
WGHT 0.100000
FVAR 0.62761
CR = 4 + 0.65440 + 0.72254 + 0.82867 + 11.00000 + 0.02659 + 0.02019 =
0.01688 0.00352 0.00683 0.00563
$0.01000 \ 0.000002 \ 0.0000000 \ 0.0000000 \ 0.0000000 \ 0.0000000 \ 0.00000000$
0.02152 + 0.01117 + 0.00512 + 0.00400
0.02135 0.01117 0.00312 0.00400
08 3 0.25581 0.72953 0.57765 11.00000 0.03865 0.03619 =
0.01938 0.00492 -0.00155 0.00605
09 3 0.18823 0.58253 0.76081 11.00000 0.03108 0.03206 =
0.02837 0.00759 0.00467 -0.00190
010 3 0.86343 1.00617 1.15328 11.00000 0.04806 0.04149 =
0.02468 0.00248 0.00183 -0.00674
O11 3 0.68509 0.83015 1.20028 11.00000 0.04485 0.04710 =
0.01854 0.01023 0.00677 0.00347
0.012 = 3 = 0.82505 = 0.73845 = 0.61180 = 11.00000 = 0.07314 = 0.06383 = -0.0000000000000000000000000000000000
012 5 0.02505 0.75045 0.01100 11.00000 0.07514 0.00505 -

$\begin{array}{cccccccccccccccccccccccccccccccccccc$
0.05807 0.00665 0.05182 $0.01110O14 3 1.04761 0.74487 1.02005 11.00000 0.03273 0.04390 =$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
C2 1 0.36916 0.76568 0.70792 11.00000 0.02798 $0.02611 = 0.01837$ 0.00420 0.00350 0.00659
C3 1 0.33493 0.69422 0.80665 11.00000 0.02663 0.02485 = 0.02417 0.00482 0.00668 0.00593
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
H4 2 0 44605 0 68617 1 01092 11 00000 0 02263
C5 1 0.59867 0.85880 0.97806 11.00000 0.02994 $0.02323 = 0.01645$ 0.00244 0.00716 0.00740
C6 1 0.62711 0.93742 0.88225 11.00000 0.03194 $0.02128 = 0.01918$ 0.00437 0.00790 0.00639
110 - 2 = 0.72001 + 0.1200 = 0.00559 + 1.00000 = 0.02575
H6 2 0.72001 1.01290 0.90558 11.00000 0.02575
C7 1 0.67793 1.07571 0.68083 11.00000 0.04413 $0.03904 = 0.02888$ 0.01453 0.00689 -0.00102
H7C 2 0.67300 1.09880 0.59829 11.00000 0.03254 H7B 2 0.65551 1.14752 0.74090 11.00000 0.04051
H7A 2 0.78986 1.05269 0.71452 11.00000 0.04687
C8 = 1 + 0.25741 + 0.60036 + 0.50591 + 11.00000 + 0.04087 = 0.05310 = 0.05000 + 0.05000 + 0.05000 = 0.05000 + 0.05000 = 0.050000 = 0.05000 = 0.05000 = 0.05000 = 0.05000 = 0.050000 = 0.05000 = 0.050000 = 0.05000 = 0.050000 = 0.05000000 = 0.05000000 = 0.05000000 = 0.050000000000
0.02544 -0.00593 0.00116 0.01225
H8C = 2 - 0.19469 - 0.58906 - 0.41479 - 11.00000 - 0.10224
H8B 2 0.35402 0.56250 0.52043 11 00000 0.10224
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$H_{0}A = 2 \ 0.21005 \ 0.32164 \ 0.34450 \ 11.00000 \ 0.11119$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
H9C 2 0.28780 0.45769 0.87892 11.00000 0.03267
H9B 2 0.13681 0.54024 0.92725 11.00000 0.07106
H9A 2 0.07112 0.41509 0.80792 11.00000 0.04563
C10 1 0.73262 0.90843 1.11884 11.00000 0.03202 0.02908 = 0.01912 0.00402 0.00760 0.00846
C11 1 0.80566 0.86740 1.33914 11.00000 0.04885 0.07198 = 0.0116 0.01251 0.02510 0.01450
0.01916 0.01251 0.00518 0.01459
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
HIID 2 0.85570 0.90005 1.30015 11.00000 0.07090
HIIA 2 0.72594 0.81729 1.38245 11.00000 0.07281
C12 = 1 = 0.76103 = 0.73192 = 0.69507 = 11.00000 = 0.04194 = 0.03217 = 0.025500 = 0.00055 = 0.01421 = 0.01221
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
0.02914 0.00577 0.01327 0.00712
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
HKLF 4
WGHT 0.0440 0.2400
Q1 1 0.6187 0.9038 0.9379 11.00000 0.05 0.42
Q2 1 0.6621 0.8812 1.0379 11.00000 0.05 0.41
Q3 1 0.3319 0.7351 0.7621 11.00000 0.05 0.37
Q4 1 0.3986 0.6385 0.4821 11.00000 0.05 0.37
Q5 1 0.5633 0.9255 0.8179 11.00000 0.05 0.33
O6 1 0.5480 0.7846 0.9378 11.00000 0.05 0.29
07 1 0.6861 0.7454 0.7380 11.00000 0.05 0.28
O8 1 0.4508 0.8211 0.7422 11.00000 0.05 0.28
09 1 0 7503 0 7238 0 7581 11 00000 0 05 0 28
010 1 0.2626 0.6145 0.4419 11.00000 0.05 0.20
O11 1 0.6716 0.8628 1.1779 11 00000 0.05 0.26
$012 \ 1 \ 0.8144 \ 0.7633 \ 0.8982 \ 11 \ 00000 \ 0.05 \ 0.25$
0.12 + 0.0177 + 0.7033 + 0.0702 + 11.00000 + 0.03 + 0.23 0.13 + 1 + 0.8969 + 0.9594 + 1.384 + 11.00000 + 0.05 + 0.25
$0.14 \ 1 \ 0.7091 \ 0.9020 \ 1.3980 \ 11 \ 00000 \ 0.05 \ 0.25$
$0.15 \pm 0.0350 + 0.020 \pm 0.3000 \pm 0.0000 + 0.05 \pm 0.24$
Q15 1 0.7537 0.7177 1.3303 11.00000 0.03 0.24 Q16 1 0.9209 0.7640 1.2792 11.00000 0.05 0.22
Q_{10} 1 0.0376 0.7040 1.3763 11.00000 0.05 0.23
Q1/ 1 0.23// 0.0405 0.8019 11.00000 0.05 0.23
Q16 1 0.3492 0.0709 0.8178 11.00000 0.05 0.23
Q19 1 0.7514 0.9801 1.0981 11.00000 0.05 0.23

Q20 1 0.8456 0.9808 0.6383 11.00000 0.05 0.22

3. CALCTEST.LST Output File for 7th Cycle: Using XL to do an Anisotropic Refinement of all Non-Hydrogen Atoms and the Isotropic Refinement of the First Set of Hydrogen Atoms

17 pages of text. See the computer copies of these files.

Using **XP** after this cycle allowed me to check to assignments of the 14 Hydrogen atoms using 'proj' and 'bang'. A displacement ellipsoid plot (**telp 0 -75 0.04 0 [ent] calctest.7 [ent]**) (Note: this plot is now anisotropic) of this molecule at this stage of refinement is included in the following section: Displacement Ellipsoid Plots of the Output from the Various Stages in the refinement of calctest, $(\eta^6-1,2,3-(OMe)_3-5-(CO_2Me)C_6H_2)Cr(CO)_3$.

4. Plot calctest.7, After The 7th Cycle

(i.e., When all Non-Hydrogen Atoms Have Been Refined Using Anisotropic Displacement Parameters and the First Set of Hydrogen Atoms Have Been Refined Using Isotropic Displacement Parameters.)

[Note: Made with graphics file CALCTEST.7hc.GIF]

H. THE 8TH CYCLE: USING XL AND DOING THE FINAL REFINEMENT OF ALL ATOMS INCLUDING REFINEMENT OF EXTINCTION AND THE USE OF THE WEIGHTING FUNCTION

This sections involves the sixth refinement cycle by **XL**. This takes the atom positions and anisotropic displacement parameters for non-Hydrogen atoms and the isotropic displacement parameters for Hydrogen atoms from the fifth **XL** and then uses least squares refinement to improve the atomic positions and displacement parameters and to refine a few additional parameters such as extinction and the weighting function. It then calculates a residual electron density map (i.e., the Q peaks) which one uses **XP** to check the results and prepare the final plots and then uses **XCIF** to prepare the tables. It requires the following **calctest.ins** input file and produces the following **calctest.res** and **calctest.lst** output files.

The various things you have to do to the **calctest.ins** file (by editing it in **DOS**) are outlined below (save the result and exit from this **calctest.ins** file when you are done). The numbers put into the WGHT command line were taken from the calctest.res file.

[Note: again it is very important that the two new lines added go in the specified positions (i.e., to prevent XL from crashing) and that the \$H is added in the 'BOND' line (i.e., so that the software will save the details on the Hydrogen atom positions).]

1. CALCTEST.INS Input File for 8th Cycle: Using XL to do the Final Refinement Cycles

TITL 95adh06e in P-1
CELL 0.71073 7.5265 10.0508 10.7429 97.271 108.116 99.782
ZERR 2.00 0.0003 0.0005 0.0005 0.004 0.004 0.004
LATT 1
SFAC C H O CR
UNIT 28 28 16 2
TEMP -50
L.S. 4
BOND \$H
FMAP 2
PLAN 20
ACTA
EXTI
WGHT 0.0440 0.2400
FVAR 0.62761
CR 4 0.65440 0.72254 0.82867 11.00000 0.02659 0.02019 =
0.01688 0.00352 0.00683 0.00563
07 3 0.52391 0.95662 0.64835 11.00000 0.03841 0.02887 =
0.02153 0.01117 0.00512 0.00400

O8 3 0.25581 0.72953 0.57765 11.00000 0.03865 0.03619 =
0.01938 0.00492 -0.00155 0.00605
O9 3 0.18823 0.58253 0.76081 11.00000 0.03108 0.03206 =
0.02837 0.00759 0.00467 -0.00190
O10 3 0.86343 1.00617 1.15328 11.00000 0.04806 0.04149 =
0.02468 0.00248 0.00183 -0.00674
O11 3 0.68509 0.83015 1.20028 11.00000 0.04485 0.04710 =
0.01854 0.01023 0.00677 0.00347
O12 3 0.82505 0.73845 0.61180 11.00000 0.07314 0.06383 =
0.04186 0.01911 0.03844 0.02436
013 3 0.61300 0.41786 0.78536 11.00000 0.07202 0.02400 =
0.05807 0.00665 0.03182 0.01110
014 3 1.04761 0.74487 1.02005 11.00000 0.03273 0.04390 =
0.04098 0.00584 0.00020 0.01046
C1 1 0.50999 0.89148 0.74815 11.00000 0.03269 $0.02471 =$
0.01956 0.00691 0.00735 0.00919
C2 1 0.36916 0.76568 0.70792 11.00000 0.02798 $0.02611 =$
0.01837 0.00420 0.00350 0.00659
$C_3 = 1 + 0.33493 + 0.69422 + 0.80665 + 11.00000 + 0.02663 + 0.02485 = 0.02447 + 0.00492 + 0.00669 + 0.00502$
0.02417 0.00482 0.00668 0.00593
$(4 \ 1 \ 0.45293 \ 0.73826 \ 0.94123 \ 11.00000 \ 0.02857 \ 0.02583 =$
$0.02204 \ 0.00092 \ 0.00905 \ 0.00710$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
C_{5} I 0.59807 0.85880 0.97800 II.00000 0.02994 0.02525 – 0.01645 0.00244 0.00716 0.00740
$C_{6} = 1 + 0.62711 + 0.93772 + 0.88225 + 11.00000 + 0.03197 + 0.02128 - 0.02128$
0.01918 0.00437 0.00790 0.00639
$H_{6} = 2 + 0.72001 + 1.01290 + 0.90558 + 11.00000 + 0.02575$
C7 = 1 = 0.67793 = 1.07571 = 0.68083 = 11.00000 = 0.02979 = 0.03904 = 0.03904
0.02888 0.01453 0.00689 -0.00102
H7C 2 0.67300 1.09880 0.59829 11.00000 0.03254
H7B 2 0.65551 1.14752 0.74090 11.00000 0.04051
H7A 2 0.78986 1.05269 0.71452 11.00000 0.04687
C8 1 0.25741 0.60036 0.50591 11.00000 0.06612 0.05310 =
0.02544 -0.00593 0.00116 0.01225
H8C 2 0.19469 0.58906 0.41479 11.00000 0.10224
H8B 2 0.35402 0.56250 0.52043 11.00000 0.15001
H8A 2 0.21005 0.52184 0.54436 11.00000 0.11119
C9 1 0.17013 0.48995 0.84946 11.00000 0.03779 0.03119 =
0.03693 0.01068 0.01106 0.00158
H9C 2 0.28780 0.45769 0.87892 11.00000 0.03267
H9B 2 0.13681 0.54024 0.92725 11.00000 0.07106
H9A 2 0.07112 0.41509 0.80792 11.00000 0.04563
C10 = 1 = 0.73262 = 0.90843 = 1.11884 = 11.00000 = 0.03202 = 0.02908 = 0.001012 = 0.00102 = 0.002762 = 0.00016
0.01912 0.00402 0.00/60 0.00846
$(11 \ 1 \ 0.80500 \ 0.80/40 \ 1.55914 \ 11.00000 \ 0.04885 \ 0.07198 =$
0.01910 0.01251 0.00518 0.01459
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
H116 2 0.65570 0.90005 1.50015 11.00000 0.07090 H116 2 0.72304 0.81720 1.38242 11.00000 0.07281
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
0.02588 - 0.0855 - 0.01/31 - 0.01221
$C13 \ 1 \ 0.62647 \ 0.53558 \ 0.80079 \ 11.00000 \ 0.03440 \ 0.02704 =$

0.02914 0.00577 0.01327 0.00712	
C14 1 0.89604 0.73694 0.94599 11.00000 0.03315 0.02323 =	
0.02638 0.00324 0.00912 0.00712	
HKLF 4	
END	

On a Gateway2000[®] Pentium computer running at 166 MHz and with 32 MB of RAM, this **XL** calculation look a total of 87 seconds for 265 parameters.

After the refinement, the R factor for the 4360 reflections having Fo > 4 sigma (Fo) (i.e., the first R that **XL** lists) was 0.0.0404, the observed R and wR factors for all of the data were 0.0611 and 0.106, respectively, and the GOOF value was 1.028. In the final cycle, the largest shift for any atom (in this case H8B) was 0.062 and the largest shift/standard uncertainty for any parameter was still greater than 0.1 for several hydrogen atoms (they were substantially smaller values for all non-hydrogen atoms).

[Note: that the 'EXTI' command moves after it starts being refined.]

2. CALCTEST.RES Output File for 8th Cycle: Using XL to do the Final Refinement Cycles

TITL 95adh06e in P-1 CELL 0.71073 7.5265 10.0508 10.7429 97.271 108.116 99.782 ZERR 2.00 0.0003 0.0005 0.0005 0.004 0.004 0.004 LATT 1 SFAC C H O CR UNIT 28 28 16 2 TEMP -50 L.S. 4 BOND \$H FMAP 2
PLAN 20
ACIA
WGHT 0.044000 0.240000 EXTI 0.006399
FVAR 0.62922 CR 4 0.65437 0.72254 0.82866 11.00000 0.02686 0.02032 = 0.01698 0.00354 0.00689 0.00573
O7 3 0.52386 0.95642 0.64831 11.00000 0.03809 $0.02893 = 0.02133$ 0.01097 0.00482 0.00394
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c} 0.01557 & 0.00406 & 0.0010 & 0.00001 \\ 0.000 & 3 & 0.18826 & 0.58267 & 0.76084 & 11.00000 & 0.03140 & 0.03220 \\ 0.02845 & 0.00737 & 0.00476 & -0.00208 \end{array}$
O10 3 0.86346 1.00601 1.15333 11.00000 0.04785 0.04182 = 0.02479 0.00247 0.00242 -0.00658
O11 3 0.68504 0.83020 1.20010 11.00000 0.04469 $0.04742 = 0.01855$ 0.01029 0.00669 0.00319
O12 3 0.82516 0.73861 0.61183 11.00000 0.07339 0.06521 = 0.04150 0.01914 0.03837 0.02448
O13 3 0.61275 0.41774 0.78541 11.00000 0.07164 0.02394 = 0.05839 0.00682 0.03170 0.01105

014 3 1.04765 0.74498 1.02004 11.00000 0.03260 0.04401 =
0.04113 0.00576 0.00012 0.01038
C1 1 0.50983 0.89156 0.74810 11.00000 0.03314 0.02478 =
0.01958 0.00712 0.00767 0.00937
C2 1 0.36934 0.76566 0.70802 11.00000 0.02782 0.02659 =
0.01837 0.00392 0.00333 0.00668
C3 1 0.33500 0.69418 0.80655 11.00000 0.02701 0.02501 =
0.02450 0.00488 0.00713 0.00598
C4 1 0.45316 0.73843 0.94132 11.00000 0.02898 0.02616 =
0.02169 0.00689 0.00974 0.00731
H4 2 0.44138 0.68516 1.00913 11.00000 0.02351
C5 1 0.59866 0.85867 0.97794 11.00000 0.02973 0.02340 =
0.01670 0.00236 0.00726 0.00753
C6 1 0.62719 0.93751 0.88232 11.00000 0.03200 0.02098 =
0.01975 0.00413 0.00766 0.00630
H6 2 0.71900 1.01411 0.90463 11.00000 0.02664
C7 1 0.67806 1.07571 0.68085 11.00000 0.04522 $0.03907 =$
0.02878 0.01450 0.00748 -0.00108
H7C 2 0.67009 1.10120 0.59892 11.00000 0.03488
H7B 2 0.65602 1.14848 0.73957 11.00000 0.04080
H7A 2 0.80170 1.05097 0.71989 11.00000 0.04636
C8 1 0.25717 0.60017 0.50600 11.00000 0.06470 0.05252 =
0.02561 - 0.00588 0.00123 0.00986
H8C 2 0.18548 0.58902 0.41984 11.00000 0.09167
H8B 2 0.38670 0.60641 0.50058 11.00000 0.12526
H8A 2 0.24218 0.52729 0.54745 11.00000 0.10411
C9 1 0.17005 0.48994 0.84953 11.00000 0.03753 0.03139 =
0.03690 0.01079 0.01094 0.00113
H9C 2 0.28316 0.45400 0.87675 11.00000 0.03532
H9B 2 0.14351 0.53556 0.92949 11.00000 0.05603
H9A 2 0.06863 0.41714 0.80400 11.00000 0.04964
C10 1 0.73279 0.90833 1.11897 11.00000 0.03239 0.02933 =
0.01920 0.00397 0.00784 0.00889
C11 1 0.80591 0.86732 1.33921 11.00000 0.04920 0.07185 =
0.01951 0.01271 0.00529 0.01437
H11C 2 0.91698 0.84345 1.35439 11.00000 0.06447
H11B 2 0.83137 0.95907 1.36722 11.00000 0.07514
H11A 2 0.72682 0.81937 1.38454 11.00000 0.07329
C12 1 0.76065 0.73155 0.69504 11.00000 0.04194 0.03197 =
0.02627 0.00832 0.01389 0.01236
C13 1 0.62637 0.53553 0.80089 11.00000 0.03479 $0.02735 =$
0.02870 0.00605 0.01342 0.00738
C14 1 0.89574 0.73695 0.94584 11.00000 0.03366 $0.02368 =$
0.02632 0.00322 0.00980 0.00718
HKLF 4
END
WGHT 0.0356 0.3014
Q1 1 0.6192 0.9035 0.9378 11.00000 0.05 0.44
Q2 1 0.6621 0.8812 1.0379 11.00000 0.05 0.42
Q3 1 0.3314 0.7350 0.7620 11.00000 0.05 0.39
Q4 1 0.5626 0.9245 0.8178 11.00000 0.05 0.35
Q5 1 0.5498 0.7835 0.9378 11.00000 0.05 0.31
Q6 1 0.4499 0.8210 0.7423 11.00000 0.05 0.31
Q/ 1 0.6822 0.7431 0.7380 11.00000 0.05 0.31
Q8 1 0.7479 0.7223 0.7581 11.00000 0.05 0.30
Q9 1 0.8082 0.7600 0.8783 11.00000 0.05 0.26
Q10 1 0.2580 0.6408 0.8019 11.00000 0.05 0.26
Q11 1 0.2610 0.6147 0.4419 11.00000 0.05 0.26
Q12 1 0.5461 0.6761 0.8177 11.00000 0.05 0.25
Q13 1 0.3917 0.7180 0.8822 11.00000 0.05 0.25
Q14 1 0.1894 0.5547 0.7817 11.00000 0.05 0.25
Q15 1 0.5983 0.7992 1.1778 11.00000 0.05 0.24
Q16 1 0.7528 0.9803 1.0982 11.00000 0.05 0.24
Q17 1 0.8981 0.9622 1.1385 11.00000 0.05 0.24 Q18 1 0.2125 0.6404 0.4820 11.00000 0.05 0.24
Q18 1 0.5155 0.6404 0.4820 11.00000 0.05 0.22
Q19 1 0.0723 0.8040 1.1779 11.00000 0.05 0.23
Q20 I 0.301/ 1.0303 1.130/ 11.00000 0.03 0.23

3. CALCTEST.LST Output File for 8th Cycle: Using XL to do the Final Refinement Cycles

After this 8th cycle this calctest.lst file is six pages long and is shown below for you to become familiar with the format for the listing of XL results. As noted above, these files are typically very longer and for space reason they are not included in this manual (except for that for the 3rd cycle). However, they are available on disk if you want to view them.

```
+ XL - CRYSTAL STRUCTURE REFINEMENT - SIEMENS SHELXTL - Ver. 5.03 +
+ Copyright(c) 1994 Siemens Analytical Xray - All Rights Reserved +
                started at 20:28:08 on 23-Mar-1997 +
+ calctest
TITL 95adh06e in P-1
CELL 0.71073 7.5265 10.0508 10.7429 97.271 108.116 99.782
ZERR 2.00 0.0003 0.0005 0.0005 0.004 0.004 0.004
LATT 1
SFAC C H O CR
UNIT 28 28 16 2
V = 747.07 F(000) = 372.0 Mu = 0.81 mm-1 Cell Wt = 724.50 Rho = 1.610
TEMP -50
L.S. 4
BOND $H
FMAP 2
PLAN 20
ACTA
EXTI
WGHT 0.0440 0.2400
FVAR 0.62761
CR 4 0.65440 0.72254 0.82867 11.00000 0.02659 0.02019 =
  0.01688 0.00352 0.00683 0.00563
O7 3 0.52391 0.95662 0.64835 11.00000 0.03841 0.02887 =
  0.02153 0.01117 0.00512 0.00400
O8 3 0.25581 0.72953 0.57765 11.00000 0.03865 0.03619 =
  0.01938 0.00492 -0.00155 0.00605
09 3 0.18823 0.58253 0.76081 11.00000 0.03108 0.03206 =
  0.02837 0.00759 0.00467 -0.00190
010 3 0.86343 1.00617 1.15328 11.00000 0.04806 0.04149 =
  0.02468 0.00248 0.00183 -0.00674
O11 3 0.68509 0.83015 1.20028 11.00000 0.04485 0.04710 =
  0.01854 0.01023 0.00677 0.00347
012 3 0.82505 0.73845 0.61180 11.00000 0.07314 0.06383 =
  0.04186 0.01911 0.03844 0.02436
013 3 0.61300 0.41786 0.78536 11.00000 0.07202 0.02400 =
  0.05807 0.00665 0.03182 0.01110
O14 3 1.04761 0.74487 1.02005 11.00000 0.03273 0.04390 =
  0.04098 \quad 0.00584 \quad 0.00020 \quad 0.01046
C1 1 0.50999 0.89148 0.74815 11.00000 0.03269 0.02471 =
  0.01956 0.00691 0.00735 0.00919
C2 1 0.36916 0.76568 0.70792 11.00000 0.02798 0.02611 =
```

0.01837 0.00420 0.00350 0.00659 C3 1 0.33493 0.69422 0.80665 11.00000 0.02663 0.02485 = 0.02417 0.00482 0.00668 0.00593 C4 1 0.45293 0.73826 0.94123 11.00000 0.02857 0.02583 = 0.02204 0.00692 0.00965 0.00716 H4 2 0.44605 0.68617 1.01092 11.00000 0.02263 C5 1 0.59867 0.85880 0.97806 11.00000 0.02994 0.02323 = $0.01645 \quad 0.00244 \quad 0.00716 \quad 0.00740$ C6 1 0.62711 0.93742 0.88225 11.00000 0.03194 0.02128 = 0.01918 0.00437 0.00790 0.00639 H6 2 0.72001 1.01290 0.90558 11.00000 0.02575 C7 1 0.67793 1.07571 0.68083 11.00000 0.04413 0.03904 = 0.02888 0.01453 0.00689 -0.00102 H7C 2 0.67300 1.09880 0.59829 11.00000 0.03254 H7B 2 0.65551 1.14752 0.74090 11.00000 0.04051 H7A 2 0.78986 1.05269 0.71452 11.00000 0.04687 C8 1 0.25741 0.60036 0.50591 11.00000 0.06612 0.05310 = 0.02544 -0.00593 0.00116 0.01225 H8C 2 0.19469 0.58906 0.41479 11.00000 0.10224 H8B 2 0.35402 0.56250 0.52043 11.00000 0.15001 H8A 2 0.21005 0.52184 0.54436 11.00000 0.11119 C9 1 0.17013 0.48995 0.84946 11.00000 0.03779 0.03119 = 0.03693 0.01068 0.01106 0.00158 H9C 2 0.28780 0.45769 0.87892 11.00000 0.03267 $H9B \ 2 \ 0.13681 \ 0.54024 \ 0.92725 \ 11.00000 \ 0.07106$ H9A 2 0.07112 0.41509 0.80792 11.00000 0.04563 $C10 \ 1 \ 0.73262 \ 0.90843 \ 1.11884 \ 11.00000 \ 0.03202 \ 0.02908 =$ $0.01912 \ \ 0.00402 \ \ 0.00760 \ \ 0.00846$ C11 1 0.80566 0.86740 1.33914 11.00000 0.04885 0.07198 = 0.01916 0.01251 0.00518 0.01459 H11C 2 0.91206 0.84274 1.35464 11.00000 0.06396 H11B 2 0.83570 0.96603 1.36615 11.00000 0.07090 H11A 2 0.72394 0.81729 1.38243 11.00000 0.07281 C12 1 0.76103 0.73192 0.69507 11.00000 0.04194 0.03217 = 0.02588 0.00855 0.01431 0.01221 C13 1 0.62647 0.53558 0.80079 11.00000 0.03440 0.02704 = $0.02914 \quad 0.00577 \quad 0.01327 \quad 0.00712$ C14 1 0.89604 0.73694 0.94599 11.00000 0.03315 0.02323 = 0.02638 0.00324 0.00912 0.00712 HKLF 4 Covalent radii and connectivity table for 95adh06e in P-1 C 0.770 H 0.320 O 0.660 CR 1.240 Cr - C13 C14 C12 C5 C6 C4 C2 C1 C3 O7 - C1 C7 O8 - C2 C8 O9 - C3 C9 O10 - C10 O11 - C10 C11 O12 - C12 013 - C13O14 - C14 C1 - O7 C6 C2 Cr C2 - O8 C3 C1 Cr C3 - O9 C4 C2 Cr C4 - C3 C5 Cr C5 - C4 C6 C10 Cr C6 - C1 C5 Cr C7 - O7 C8 - O8 C9 - O9 C10 - O10 O11 C5 C11 - O11

```
C12 - O12 Cr
C13 - O13 Cr
C14 - O14 Cr
 8074 Reflections read, of which 0 rejected
-1 = < h = < 11, -15 = < k = < 15, -16 = < 1 = < 16, Max. 2-theta = 66.00
   0 Systematic absence violations
   0 Inconsistent equivalents
 5627 Unique reflections, of which 0 suppressed
R(int) = 0.0231 R(sigma) = 0.0490 Friedel opposites merged
Maximum memory for data reduction = 1994 / 56289
   6.8 seconds elapsed time
Least-squares cycle 1 Maximum vector length = 511 Memory required = 2582 / 329089
wR2 = 0.1076 before cycle 1 for 5627 data and 265 / 265 parameters
GooF = S = 1.045; Restrained GooF = 1.045 for 0 restraints
Weight = 1 / [\text{sigma}^2(\text{Fo}^2) + (0.0440 * P)^2 + 0.24 * P] where P = (\text{Max}(\text{Fo}^2, 0) + 2 * \text{Fc}^2) / 3
  N value
              esd shift/esd parameter
  1 0.62895 0.00103 1.305 OSF
  2 0.00599 0.00158 3.797 EXTI
 181 0.58815 0.00604 4.247 y H8B
Mean shift/esd = 0.461 Maximum = 4.247 for y H8B
Max. shift = 0.284 A for H8B Max. dU =-0.011 for H9B
  18.4 seconds elapsed time
Least-squares cycle 2 Maximum vector length = 511 Memory required = 2582 / 329089
wR2 = 0.1064 before cycle 2 for 5627 data and 265 / 265 parameters
GooF = S = 1.031; Restrained GooF = 1.031 for 0 restraints
Weight = 1 / [sigma^2(Fo^2) + (0.0440 * P)^2 + 0.24 * P] where P = (Max (Fo^2, 0) + 2 * Fc^2) / 3
             esd shift/esd parameter
  Ν
      value
     0.62916 0.00104 0.201 OSF
  1
  2 0.00639 0.00178 0.223 EXTI
Mean shift/esd = 0.087 Maximum = -1.964 for z H8B
Max. shift = 0.153 A for H8B Max. dU =-0.012 for H8B
  18.4 seconds elapsed time
Least-squares cycle 3 Maximum vector length = 511 Memory required = 2582 / 329089
wR2 = 0.1062 before cycle 3 for 5627 data and 265 / 265 parameters
```

```
GooF = S = 1.029; Restrained GooF = 1.029 for 0 restraints
Weight = 1 / [sigma^2(Fo^2) + (0.0440 * P)^2 + 0.24 * P] where P = (Max (Fo^2, 0) + 2 * Fc^2) / 3
        Ν
                            value
                                                                  esd shift/esd parameter
                        0.62921 0.00104 0.048 OSF
         1
                       0.00640 0.00179 0.007 EXTI
        2
Mean shift/esd = 0.056 Maximum = 1.469 for y H8B
Max. shift = 0.101 A for H8B Max. dU =-0.005 for H8A
           18.4 seconds elapsed time
Least-squares cycle 4 Maximum vector length = 511 Memory required = 2582 / 329089
wR2 = 0.1062 before cycle 4 for 5627 data and 265 / 265 parameters
GooF = S = 1.028; Restrained GooF = 1.028 for 0 restraints
Weight = 1 / [sigma^2(Fo^2) + (0.0440 * P)^2 + 0.24 * P] where P = (Max (Fo^2, 0) + 2 * Fc^2) / 3
        Ν
                          value
                                                                  esd shift/esd parameter
                        0.62922 0.00104 0.010 OSF
         1
                        0.00640
                                                                 0.00179 -0.001 EXTI
        2
Mean shift/esd = 0.034 Maximum = 0.910 for x H8A
Max. shift = 0.062 A for H8B Max. dU =-0.004 for H8A
Largest correlation matrix elements

        0.629 U13 O12 / U11 O12
        0.535 U33 Cr / OSF
        0.528 z O12 / x O12

        0.612 U13 O12 / U33 O12
        0.534 U11 Cr / OSF
        0.518 U13 O13 / U1

        0.555 U12 O12 / U23 O12
        0.534 U22 Cr / OSF
        0.513 U13 O13 / U1

        0.612 U13 O12 / U33 O12
                                                                                                                                                                                                                                                                               0.518 U13 O13 / U11 O13
        0.555 U12 O12 / U23 O12
                                                                                                                                                    0.534 U22 Cr / OSF
                                                                                                                                                                                                                                                                                  0.513 U13 O13 / U33 O13
           18.4 seconds elapsed time
 95adh06e in P-1
ATOM
                                                                                                                                 sof
                                                                                                                                                                U11
                                                                                                                                                                                              U22
                                                                                                                                                                                                                      U33 U23 U13 U12
                                                                                                                                                                                                                                                                                                                                                                     Ueq
                                                   х
                                                                            у
                                                                                                     Z
                                0.65437 \quad 0.72254 \quad 0.82866 \quad 1.00000 \quad 0.02686 \quad 0.02032 \quad 0.01698 \quad 0.00354 \quad 0.00689 \quad 0.00573 \quad 0.02146
Cr
                           0.00004 0.00003 0.00003 0.00000 0.00013 0.00012 0.00011 0.00008 0.00009 0.00009 0.00008
07
                                  0.52386 \quad 0.95642 \quad 0.64831 \quad 1.00000 \quad 0.03809 \quad 0.02893 \quad 0.02133 \quad 0.01097 \quad 0.00482 \quad 0.00394 \quad 0.03058 \quad 0.03
                          0.00019 0.00013 0.00012 0.00000 0.00068 0.00059 0.00054 0.00046 0.00049 0.00051 0.00027
08
                                  0.25572 \quad 0.72963 \quad 0.57763 \quad 1.00000 \quad 0.03831 \quad 0.03702 \quad 0.01937 \quad 0.00480 \quad -0.00189 \quad 0.00601 \quad 0.03472
                          0.00020 \ 0.00015 \ 0.00013 \ 0.00000 \ 0.00071 \ 0.00069 \ 0.00055 \ 0.00049 \ 0.00050 \ 0.00057 \ 0.00030
                                 0.18826 \quad 0.58267 \quad 0.76084 \quad 1.00000 \quad 0.03140 \quad 0.03220 \quad 0.02845 \quad 0.00737 \quad 0.00476 \quad -0.00208 \quad 0.03299 \quad 0.03299 \quad 0.03140 \quad 0.03220 \quad 0.03245 \quad 0.00737 \quad 0.00476 \quad -0.00208 \quad 0.03299 \quad 0.03299 \quad 0.03140 \quad 0.03220 \quad 0.03245 \quad 0.00737 \quad 0.00476 \quad -0.00208 \quad 0.03299 \quad 0.03299 \quad 0.03299 \quad 0.03140 \quad 0.03220 \quad 0.03299 \quad 0.03140 \quad 0.03299 \quad 0.0329 \quad 0
09
                           0.00019 \ \ 0.00014 \ \ 0.00013 \ \ \ 0.00000 \ \ \ 0.00064 \ \ 0.00064 \ \ 0.00062 \ \ 0.00050 \ \ \ 0.00051 \ \ 0.00052 \ \ \ 0.00028
O10
                                     0.86346 \ 1.00601 \ 1.15333 \ 1.00000 \ 0.04785 \ 0.04182 \ 0.02479 \ 0.00247 \ 0.00242 \ -0.00658 \ 0.04299
                          0.00023 0.00016 0.00014 0.00000 0.00085 0.00079 0.00063 0.00056 0.00059 0.00066 0.00036
011
                                    0.68504 \ \ 0.83020 \ \ 1.20010 \ \ \ 1.00000 \ \ \ 0.04469 \ \ 0.04742 \ \ 0.01855 \ \ 0.01029 \ \ 0.00669 \ \ 0.00319 \ \ 0.03838
                           0.00022 \ 0.00016 \ 0.00013 \ 0.00000 \ 0.00079 \ 0.00082 \ 0.00055 \ 0.00053 \ 0.00053 \ 0.00064 \ 0.00032
                                    0.82516 \quad 0.73861 \quad 0.61183 \quad 1.00000 \quad 0.07339 \quad 0.06521 \quad 0.04150 \quad 0.01914 \quad 0.03837 \quad 0.02448 \quad 0.05353 \quad 0.05
012
                           0.00029 \hspace{0.1cm} 0.00020 \hspace{0.1cm} 0.00017 \hspace{0.1cm} 0.00000 \hspace{0.1cm} 0.00120 \hspace{0.1cm} 0.00113 \hspace{0.1cm} 0.00088 \hspace{0.1cm} 0.00087 \hspace{0.1cm} 0.00095 \hspace{0.1cm} 0.00044
```

O13	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
O14	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
C1	0.50983 0.89156 0.74810 1.00000 0.03314 0.02478 0.01958 0.00712 0.00767 0.00937 0.02551 0.00025 0.00017 0.00016 0.00000 0.00082 0.00071 0.00055 0.00061 0.00063 0.00031
C2	0.36934 0.76566 0.70802 1.00000 0.02782 0.02659 0.01837 0.00392 0.00333 0.00668 0.02531 0.00024 0.00017 0.00016 0.00000 0.00077 0.00074 0.00064 0.00054 0.00057 0.00062 0.00031
C3	0.33500 0.69418 0.80655 1.00000 0.02701 0.02501 0.02450 0.00488 0.00713 0.00598 0.02586 0.00024 0.00017 0.00000 0.00076 0.00072 0.00073 0.00057 0.00061 0.00060 0.00031
C4	0.45316 0.73843 0.94132 1.00000 0.02898 0.02616 0.02169 0.00689 0.00974 0.00731 0.02497 0.00025 0.00017 0.00016 0.00000 0.00078 0.00073 0.00069 0.00057 0.00060 0.00061 0.00030
H4	0.44138 0.68516 1.00913 1.00000 0.02351 0.00297 0.00214 0.00215 0.00000 0.00492
C5	0.59866 0.85867 0.97794 1.00000 0.02973 0.02340 0.01670 0.00236 0.00726 0.00753 0.02336 0.00024 0.00016 0.00015 0.00000 0.00077 0.00068 0.00062 0.00051 0.00059 0.00029
C6	0.62719 0.93751 0.88232 1.00000 0.03200 0.02098 0.01975 0.00413 0.00766 0.00630 0.02444 0.00026 0.00017 0.00016 0.00000 0.00081 0.00068 0.00066 0.00053 0.00062 0.00030
H6	0.719001.014110.904631.000000.026640.003150.002350.002190.000000.00524
C7	0.67806 1.07571 0.68085 1.00000 0.04522 0.03907 0.02878 0.01450 0.00748 -0.00108 0.03949 0.00034 0.00023 0.00021 0.00000 0.00115 0.00103 0.00090 0.00080 0.00083 0.00046
H7C	0.67009 1.10120 0.59892 1.00000 0.03488 0.00327 0.00243 0.00245 0.00000 0.00599
H7B	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
H7A	0.80170 1.05097 0.71989 1.00000 0.04636 0.00402 0.00280 0.00275 0.00000 0.00698
C8	0.25717 0.60017 0.50600 1.00000 0.06470 0.05252 0.02561 -0.00588 0.00123 0.00986 0.05265 0.00046 0.00030 0.00024 0.00000 0.00167 0.00142 0.00097 0.00092 0.0013 0.00124 0.00063
H8C	0.185480.589020.419841.000000.091670.005660.004080.004310.000000.01194
H8B	0.38670 0.60641 0.50058 1.00000 0.12526 0.00748 0.00492 0.00497 0.00000 0.01712
H8A	0.24218 0.52729 0.54745 1.00000 0.10411 0.00622 0.00480 0.00451 0.00000 0.01480
C9	0.17005 0.48994 0.84953 1.00000 0.03753 0.03139 0.03690 0.01079 0.01094 0.00113 0.03611 0.00032 0.00022 0.00000 0.00102 0.00090 0.00099 0.00076 0.00083 0.00079 0.00041
H9C	0.28316 0.45400 0.87675 1.00000 0.03532 0.00352 0.00251 0.00237 0.00000 0.00599
H9B	0.143510.535560.929491.000000.056030.004170.003040.003030.000000.00801
H9A	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
C10	0.73279 0.90833 1.11897 1.00000 0.03239 0.02933 0.01920 0.00397 0.00784 0.00889 0.02700 0.00026 0.00018 0.00016 0.00000 0.00083 0.00078 0.00067 0.00057 0.00061 0.00065 0.00032
C11 0.80591 0.86732 1.33921 1.00000 0.04920 0.07185 0.01951 0.01271 0.00529 0.01437 0.04790 0.00040 0.00034 0.00021 0.00000 0.00134 0.00176 0.00082 0.00095 0.00084 0.00125 0.00057	

H11C 0.91698 0.84345 1.35439 1.00000 0.06447 0.00494 0.00332 0.00320 0.00000 0.00933	
H11B 0.83137 0.95907 1.36722 1.00000 0.07514 0.00482 0.00397 0.00352 0.00000 0.01076	
H11A 0.72682 0.81937 1.38454 1.00000 0.07329 0.00479 0.00352 0.00346 0.00000 0.00990	
C12 0.76065 0.73155 0.69504 1.00000 0.04194 0.03197 0.02627 0.00832 0.01389 0.01236 0.03206 0.00029 0.00020 0.00018 0.00000 0.00100 0.00086 0.00079 0.00066 0.00073 0.00076 0.00037	
C13 0.62637 0.53553 0.80089 1.00000 0.03479 0.02735 0.02870 0.00605 0.01342 0.00738 0.02953 0.00027 0.00018 0.00018 0.00000 0.00089 0.00078 0.00080 0.00063 0.00070 0.00068 0.00034	
C14 0.89574 0.73695 0.94584 1.00000 0.03366 0.02368 0.02632 0.00322 0.00980 0.00718 0.02803 0.00027 0.00017 0.00017 0.00000 0.00086 0.00072 0.00076 0.00059 0.00066 0.00064 0.00033	
Final Structure Factor Calculation for 95adh06e in P-1	
Total number of l.s. parameters = 265 Maximum vector length = 511 Memory required = 2317 / 22484	
wR2 = 0.1061 before cycle 5 for 5627 data and $0 / 265$ parameters	
GooF = S = 1.028; Restrained $GooF = 1.028$ for 0 restraints	
Weight = 1 / [sigma^2(Fo^2) + (0.0440 * P)^2 + 0.24 * P] where P = (Max (Fo^2, 0) + 2 * Fc^2) / 3	
R1=0.0404 for $~4360$ Fo $>4.sigma(Fo)~$) . and 0.0611 for all $~5627$ data wR2 = $0.1061,~GooF=S=~1.028,~Restrained~GooF=~~1.028$ for all data	
2.0 seconds elapsed time	
Principal mean square atomic displacements U	
0.0274 0.0201 0.0168 Cr	
0.0459 0.0294 0.0164 07	
0.0504 0.0373 0.0165 08	
0.0472 0.0276 0.0242 09	
0.0576 0.0407 0.0169 011	
0.0805 0.0574 0.0227 012	
0.0753 0.0487 0.0232 013	
0.0345 0.0245 0.0175 C1	
0.0321 0.0263 0.0175 C2	
0.0287 0.0250 0.0239 C3	
0.0292 0.0239 0.0199 C4 0.0308 0.0231 0.0162 C5	
0.0330 0.0207 0.0196 C6	
0.0620 0.0345 0.0220 C7	
0.0773 0.0588 0.0218 C8 0.0460 0.0350 0.0255 C0	
0.0342 0.0277 0.0191 C10	
0.0720 0.0540 0.0177 C11	
0.0427 0.0294 0.0240 C12	
0.0352 0.0271 0.0263 CT3 0.0341 0.0274 0.0226 CT4	
0.0541 0.0274 0.0220 CIT	
Analysis of variance for reflections employed in refinement $K = Mean[Eo^{2}] / Mean[Ec^{2}]$ for group	

Fc/Fc(max)	0.000	0.010 0.0	019 0.0	27 0.030	5 0.045	0.056	0.068	0.090	0.128	1.000
Number in g	roup 58	2. 607.	506.	593. 56	53. 568	519.	580.	548.	561.	
GooF	1.024	1.068 1.0	022 1.0	45 1.110	0 0.990	1.084	0.997	1.026	0.898	
К	1.103 1.	069 1.06	3 1.030) 1.027	1.015	1.002	1.005	0.998	1.000	
Resolution(A	A) 0.65	0.68 0.7	0 0.74	0.77	0.82 0).89 ().	97 1.	12 1.4	1 inf	
Number in gi	roup 57	0. 569.	557.	555. 56	54. 566	563.	560.	558.	565.	
GooF	0.954	0.972 0.9	969 0.9	17 0.909	9 1.010	0.836	0.935	0.884	1.649	
К	1.011 1.	010 1.01	0 1.012	2 1.017	1.003	0.996	0.990	0.990	1.007	
R1	0.161 0	.149 0.11	7 0.09	5 0.081	0.066	0.041	0.034	0.028	0.030	
Recommende	d weightin	a scheme:	WGHT	0.0356	0.301	1				
Recommende	a weightin	g seneme.	WOIII	0.0550	0.501	-				
Most Disagre	eable Refle	ctions (* if	suppress	ed)						
h k l	Fo^2	Fc^2 Del	ta(F^2)/e	esd Fc/Fc(max) Re	solution	(A)			
7 -4 4	22.89	96.47	9.59	0.067	0.86					
$1 \ 4 \ 1 \\ 1 \ 0 \ 4$	122.38	64.26	8.16	0.055	1.99					
-2 -2 5	128.61	74.57	6.93	0.043	1.95					
-1 -4 5	59.43	30.01	6.83	0.038	1.72					
-1 -3 4	235.27	152.85	6.25	0.085	2.19					
0 -3 4	21.26	6.30	5.68	0.017	2.20					
2 1 8	198.45	273.60	4.85	0.113	1.04					
0 1 4	175.20	116.67	4.73	0.074	2.32					
-2 3 0	9.36	0.62	4.67	0.005	2.69					
1 - 1 1 2 4 1	152.21 50.35	104.91 31.70	4.60	0.070	4.98					
-2 -4 1	22.68	8 88	4.57	0.039	1.69					
0 1 5	309.19	231.02	4.36	0.104	1.47					
-1 -2 5	136.72	183.15	4.26	0.093	2.05					
-3 1 3	88.18	61.13	4.12	0.054	2.30					
-3 1 0	71.44	50.80	3.98	0.049	2.38					
0 -4 5	27.26	11.18	3.93	0.023	1.72					
1 2 4	166.24	216.71	3.91	0.101	1.81					
-2 1 2	197.14	254.86	3.88	0.109	3.36					
-2 -2 2 2 -4 4	210.00	9 79	3.80	0.088	2.71					
-4 -6 1	34.14	19.24	3.68	0.030	1.11					
0 -5 2	5.31	14.29	3.65	0.026	1.94					
-2 5 0	16.17	4.42	3.59	0.014	1.89					
1 -3 5	97.60	74.74	3.56	0.059	1.73					
-3 -8 10	49.33	26.40	3.53	0.035	0.84					
-1 4 0	1040.57	863.10	3.52	0.201	2.47					
289	4.98 311 60	32.44 276 61	5.49 2.40	0.039	0.09					
-2 -3 1	344.02 21.78	270.01 11.84	5.48 3.44	0.114	2.20					
2 2 2	144 89	183.62	3 41	0.024	2.02					
-1 -1 2	318.17	256.88	3.40	0.110	4.46					
2 1 3	118.54	150.98	3.38	0.084	1.94					
0 2 3	266.08	213.72	3.31	0.100	2.54					
2 -3 3	32.56	46.04	3.29	0.047	2.00					
-1 12 4	13.99	1.31	3.24	0.008	0.75					
-3-59	16.70	32.12	3.19	0.039	1.05					
-1 1 2	297.80	239.78	5.19 3.14	0.106	4.35					
3 3 11	20.90	2.58	3.14	0.011	0.71					
5 -6 10	46.65	26.11	3.04	0.035	0.72					

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Bond lengths and angles	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
O7 - Distance Angles C1 1.345 (0.002) C7 1.441 (0.002) 117.29 (0.14) O7 - C1	
O8 - Distance Angles C2 1.359 (0.002)	
O9 - Distance Angles C3 1.349 (0.002)	
O10 - Distance Angles C10 1.192 (0.002) O10 -	
O11 - Distance Angles C10 1.333 (0.002)	
O12 - Distance Angles C12 1.146 (0.002) O12 -	
O13 - Distance Angles C13 1.157 (0.002) O13 -	
O14 - Distance Angles C14 1.155 (0.002) O14 -	
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	
C2 - Distance Angles O8 1.359 (0.002)	

C3 1.415 (0.002) 122.45 (0.15) 1.424 (0.002) 117.64 (0.15) 119.27 (0.14) C1 Cr 2.280 (0.002) 134.27 (0.13) 72.96 (0.10) 72.11 (0.09) 08 C2 -C3 C1 C3 -Distance Angles 1.349 (0.002) 09 C4 1.410 (0.002) 124.35 (0.15) C2 1.415 (0.002) 115.31 (0.15) 120.32 (0.15) Cr 2.305 (0.002) 131.99 (0.12) 68.88 (0.10) 71.08 (0.10) C3 -09 C4 C2 Distance Angles C4 -C3 1.410 (0.002) C5 1.406 (0.002) 119.31 (0.15) 2.226 (0.002) 74.92 (0.10) 68.87 (0.09) Cr H4 0.974 (0.021) 121.69 (1.30) 118.91 (1.28) 124.85 (1.23) C5 C4 -C3 Cr Distance Angles C5 -C4 1.406 (0.002) C6 1.419 (0.002) 121.36 (0.15) C10 1.500 (0.002) 121.71 (0.14) 116.92 (0.15) Cr 2.163 (0.002) 73.80 (0.09) 73.52 (0.09) 124.14 (0.12) C4 C6 C10 C5 -C6 -Distance Angles C1 1.405 (0.002) C5 1.419 (0.002) 118.78 (0.15) Cr 2.225 (0.002) 74.31 (0.10) 68.76 (0.09) H6 0.893 (0.023) 119.18 (1.40) 122.02 (1.41) 127.27 (1.40) C6 -C1 C5 Cr C7 -Distance Angles 1.441 (0.002) 07 H7C 0.935 (0.024) 104.54 (1.48) 0.975 (0.027) 108.98 (1.54) 110.30 (2.07) H7B H7A 0.983 (0.028) 109.94 (1.61) 109.76 (2.10) 112.99 (2.21) C7 - 07 H7C H7B C8 -Distance Angles 1.429 (0.003) 08 H8C 0.896 (0.042) 110.28 (2.58) H8B 0.986 (0.051) 107.30 (2.89) 101.59 (3.65) H8A 0.913 (0.047) 115.37 (2.85) 117.34 (3.78) 103.18 (3.67) C8 - O8 H8C H8B C9 -Distance Angles 09 1.434 (0.002) H9C 0.958 (0.024) 109.71 (1.42) H9B 1.013 (0.030) 111.79 (1.65) 111.15 (2.17) H9A 0.919 (0.029) 108.51 (1.72) 107.58 (2.22) 107.96 (2.32) C9 - O9 H9C H9B C10 -Distance Angles O10 1.192 (0.002) 011 1.333 (0.002) 124.85 (0.16) 1.500 (0.002) 123.98 (0.16) 111.17 (0.15) C5 C10 -O10 011 C11 -Distance Angles 1.449 (0.002) 011 H11C 0.881 (0.035) 113.15 (2.14) H11B 0.901 (0.038) 110.20 (2.18) 107.07 (3.01) 0.983 (0.036) 103.22 (2.06) 112.41 (2.74) 110.83 (2.93) H11A C11 -011 H11C H11B C12 -Distance Angles 1.146 (0.002) 012 Cr 1.852 (0.002) 179.03 (0.17)

C12 -012 C13 -Distance Angles 013 1.157 (0.002) Cr 1.830 (0.002) 178.46 (0.18) O13 C13 -C14 -Distance Angles 1.155 (0.002) 014 1.830 (0.002) 179.43 (0.16) Cr C14 -014 2.4 seconds elapsed time FMAP and GRID set by program FMAP 2 1 24 GRID -2.381 -2 -2 2.381 2 2 R1 = 0.0597 for 5627 unique reflections after merging Electron density synthesis with coefficients Fo-Fc Maximum = 0.44, Minimum = -0.39 e/A^3, Highest memory used = 1319 / 27387 Mean = 0.00, Rms deviation from mean = 0.07 e/A^3 Fourier peaks appended to .res file y z sof U Peak Distances to nearest atoms (including symmetry equivalents) Q1 1 0.6192 0.9035 0.9378 1.00000 0.05 0.44 0.69 C5 0.74 C6 1.38 H6 1.86 C10 O2 1 0.6621 0.8812 1.0379 1.00000 0.05 0.42 0.66 C5 0.85 C10 1.79 O10 1.79 C6 Q3 1 0.3314 0.7350 0.7620 1.00000 0.05 0.39 0.67 C3 0.79 C2 1.71 O9 1.85 C4 Q4 1 0.5626 0.9245 0.8178 1.00000 0.05 0.35 0.69 C6 0.73 C1 1.35 H6 1.83 O7 Q5 1 0.5498 0.7835 0.9378 1.00000 0.05 0.31 0.79 C5 0.80 C4 1.59 H4 1.71 CR Q6 1 0.4499 0.8210 0.7423 1.00000 0.05 0.31 0.71 C2 0.76 C1 1.75 C3 1.79 C6 Q7 1 0.6822 0.7431 0.7380 1.00000 0.05 0.31 0.87 C12 1.09 CR 1.98 O12 2.15 C1 Q8 1 0.7479 0.7223 0.7581 1.00000 0.05 0.30 0.73 C12 1.18 CR 1.85 O12 1.95 C14 Q9 1 0.8082 0.7600 0.8783 1.00000 0.05 0.26 0.90 C14 1.09 CR 1.86 C12 2.01 O14 Q10 1 0.2580 0.6408 0.8019 1.00000 0.05 0.26 0.70 C3 0.71 O9 1.75 C9 1.77 C4 Q11 1 0.2610 0.6147 0.4419 1.00000 0.05 0.26 0.54 H8C 0.73 C8 0.98 H8B 1.55 H8A Q12 1 0.5461 0.6761 0.8177 1.00000 0.05 0.25 0.83 CR 1.60 C3 1.64 C13 1.78 C4 Q13 1 0.3917 0.7180 0.8822 1.00000 0.05 0.25 0.64 C4 0.77 C3 1.40 H4 1.84 C5 Q14 1 0.1894 0.5547 0.7817 1.00000 0.05 0.25 0.38 O9 1.06 C9 1.56 C3 1.61 H9A Q15 1 0.5983 0.7992 1.1778 1.00000 0.05 0.24 0.63 O11 1.68 C10 1.89 C11 1.92 H4 Q16 1 0.7528 0.9803 1.0982 1.00000 0.05 0.24 0.79 C10 0.83 O10 1.64 C5 2.06 O11 Q17 1 0.8981 0.9622 1.1385 1.00000 0.05 0.24 0.58 O10 1.21 C10 2.22 O11 2.34 H7A Q18 1 0.3135 0.6404 0.4820 1.00000 0.05 0.24 0.67 C8 0.69 H8B 0.99 H8C 1.49 O8 Q19 1 0.6723 0.8646 1.1779 1.00000 0.05 0.23 0.45 O11 0.99 C10 1.71 C11 1.95 O10 O20 1 0.9617 1.0309 1.1987 1.00000 0.05 0.23 0.73 O10 1.82 C10 2.08 H7A 2.44 H11B Shortest distances between peaks (including symmetry equivalents) 11 18 0.49 7 8 0.56 15 19 0.78 17 20 0.84 10 14 0.89 1 2 1.09 2 16 1.10 $16 \ 17 \ 1.10 \quad 10 \ 13 \ 1.18 \quad 5 \ 13 \ 1.18 \quad 3 \ 10 \ 1.21 \quad 8 \ 9 \ 1.21 \quad 3 \ 6 \ 1.22 \quad 1 \ 5 \ 1.23$ 4 6 1.23 3 13 1.27 1 4 1.28 2 5 1.31 7 9 1.48 2 19 1.51 16 20 1.56 5 12 1.56 12 13 1.61 7 12 1.64 16 19 1.67 1 16 1.70 2 17 1.75 3 12 1. 3 12 1.77 8 12 1.84 9 12 1.88 6 12 1.90 2 15 1.95 13 14 1.96 17 19 2.00 3 14 2.01

 3
 5
 2.02
 6
 13
 2.04
 4
 5
 2.04
 6
 7
 2.04
 1
 6
 2.06
 10
 12
 2.09
 5
 6
 2.11

 1
 13
 2.18
 3
 4
 2.23
 5
 9
 2.27
 5
 10
 2.33
 4
 7
 2.35
 1
 9
 2.35
 1
 12
 2.36

 2
 4
 2.37
 2
 13
 2.38
 5
 16
 2.38
 15
 16
 2.39
 6
 10
 2.40
 1
 17
 2.42
 5
 19
 2.43

19 20 2.44 5 15 2.47 2 20 2.47 4 12 2.48 4 13 2.54 1 3 2.55 6 8 2.57 1 19 2.58 2 9 2.59 12 14 2.64 5 7 2.65 4 9 2.67 3 7 2.72 1 7 2.73 15 17 2.73 2 12 2.73 4 8 2.77 4 16 2.84 6 9 2.85 5 8 2.85 9 20 2.86 8 20 2.90 6 18 2.91 1 15 2.94 5 17 2.94 1 8 2.98 4 19 2.99 3 18 2.99 2.2 seconds elapsed time

Using **XP** after this cycle allows one to check that all the bond lengths and angles are reasonable and to look for disorder etc. [Note: the Hydrogens on carbon 8 have large displacement parameters that are about twice those of the other Hydrogens (i.e., seen from 'info'), probably reflecting greater motion.] A displacement ellipsoid plot (**telp 0 -75 0.04 0 [ent] calctest.8 [ent]**) (Note: this plot is now anisotropic) of this molecule at this stage of refinement is plotted on the following page. For some structures, this cycle will have to be repeated before the refinement goes to final convergence (i.e., the atoms aren't shifting any more). In the chapter after this one (i.e., Tables for calctest, $(\eta^6-1,2,3-(OMe)_3-5-(CO_2Me)C_6H_2)Cr(CO)_3)$, the Tables for this example are presented. For some structures, this cycle will have to be repeated before the refinement goes to final convergence (i.e., the atoms aren't shifting any more).

4. Plot calctest.8, After The 8th Cycle

(i.e., When all Non-Hydrogen Atoms Have Been Refined Using Anisotropic Displacement Parameters, all Hydrogen Atoms Have Been Refined Using Isotropic Displacement Parameters, and Extinction and the Weighting Function have Been Added to the Refinement.)

[Note: Made with graphics file CALCTEST.8hc.GIF]

I. THE 9TH CYCLE: USING XL TO DRIVE THE SOLUTION TO CONVERGENCE

This sections involves the seventh refinement cycle by **XL**. This takes the atom positions and anisotropic displacement parameters for non-Hydrogen atoms and the isotropic displacement parameters for Hydrogen atoms from the sixth **XL** and then uses least squares refinement to improve the atomic positions and displacement parameters and to refine a few additional parameters such as extinction. It then calculates a residual electron density map (i.e., the Q peaks) which one uses **XP** to check the results and prepare the final plots and then uses **XCIF** to prepare the tables. It requires the following **calctest.ins** input file and produces the following **calctest.res** and **calctest.lst** output files.

We often change the L.S. command in **calctest.ins** file (by editing it in **DOS**) to about 10 or 15 to ensure that refinement is complete.

TITL 95adh06e in P-1 CELL 0.71073 7.5265 10.0508 10.7429 97.271 108.116 99.782 ZERR 2.00 0.0003 0.0005 0.0005 0.004 0.004 0.004 LATT 1 SFAC C H O CR UNIT 28 28 16 2 TEMP -50
L.S10
BOND \$H FMAP 2 PLAN 20
АСТА
WGHT 0.044000 0.240000
EXTI 0.006399
FVAR 0.62922
CR 4 0.65437 0.72254 0.82866 11.00000 0.02686 0.02032 = 0.01698 0.00354 0.00689 0.00573
O7 3 0.52386 0.95642 0.64831 11.00000 0.03809 0.02893 = 0.02133 0.01097 0.00482 0.00394
O8 3 0.25572 0.72963 0.57763 11.00000 0.03831 0.03702 = 0.01937 0.00480 -0.00189 0.00601
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
O10 3 0.86346 1.00601 1.15333 11.00000 0.04785 0.04182 = 0.02479 0.00247 0.00242 -0.00658
O11 3 0.68504 0.83020 1.20010 11.00000 0.04469 $0.04742 =$

1. CALCTEST.INS Input File for 9th Cycle: Using XL to do the Final Refinement Cycles

0.01855 0.01029 0.00669 0.00319	
012 3 0.82516 0.73861 0.61183 11.00000 0.073	39 0.06521 =
0.04150 0.01914 0.03837 0.02448	
013 3 0.61275 0.41774 0.78541 11.00000 0.071	64 0.02394 -
0.05920 0.00692 0.02170 0.01105	0+ 0.0237+ =
0.03839 0.00082 0.05170 0.01103	60 0 0 4 4 0 1
014 3 1.04/65 0.74498 1.02004 11.00000 0.0320	60 0.04401 =
0.04113 0.00576 0.00012 0.01038	
C1 1 0.50983 0.89156 0.74810 11.00000 0.0331	4 0.02478 =
0.01958 0.00712 0.00767 0.00937	
C2 1 0.36934 0.76566 0.70802 11.00000 0.0278	0.02659 =
0.01837 0.00392 0.00333 0.00668	
$C_3 = 1 = 0.33500 = 0.69418 = 0.80655 = 11.00000 = 0.0270$	0.02501 -
	0.02501 =
0.02430 0.00488 0.00713 0.00398	0.000(1)
C4 I 0.45316 0.73843 0.94132 II.00000 0.0289	0.02616 =
0.02169 0.00689 0.00974 0.00731	
H4 2 0.44138 0.68516 1.00913 11.00000 0.0235	51
C5 1 0.59866 0.85867 0.97794 11.00000 0.0297	3 0.02340 =
0.01670 0.00236 0.00726 0.00753	
C6 1 0.62719 0.93751 0.88232 11.00000 0.0320	0.02098 =
0.01975 0.00413 0.00766 0.00630	0.02020
$H_{6} = 2 + 0.71000 + 0.01411 + 0.00462 + 1.00000 + 0.0266$	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
C/ 1 0.6/806 1.0/5/1 0.68085 11.00000 0.0452	2 0.03907 =
0.02878 0.01450 0.00748 -0.00108	
H7C 2 0.67009 1.10120 0.59892 11.00000 0.034	88
H7B 2 0.65602 1.14848 0.73957 11.00000 0.040	80
H7A 2 0.80170 1.05097 0.71989 11.00000 0.046	36
C8 1 0.25717 0.60017 0.50600 11.00000 0.0647	0.05252 =
0.02561 -0.00588 0.00123 0.00986	
H8C 2 0 18548 0 58902 0 41984 11 00000 0 091	67
H8B 2 0.38670 0.60641 0.50058 11.00000 0.125	26 26
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11
H8A = 2 + 0.24218 + 0.32729 + 0.34743 + 11.00000 + 0.104	
$C9 \ 1 \ 0.17005 \ 0.48994 \ 0.84953 \ 11.00000 \ 0.0375$	3 0.03139 =
0.03690 0.01079 0.01094 0.00113	
H9C 2 0.28316 0.45400 0.87675 11.00000 0.035	32
H9B 2 0.14351 0.53556 0.92949 11.00000 0.056	03
H9A 2 0.06863 0.41714 0.80400 11.00000 0.049	64
C10 1 0.73279 0.90833 1.11897 11.00000 0.032	39 0.02933 =
0.01920 0.00397 0.0078/ 0.00889	0.02/00
$C_{11} = 0.0000000000000000000000000000000000$	0 0 07185 -
0.01051 0.01071 0.00520 0.01427	20 0.07165 -
0.01951 0.012/1 0.00529 0.0143/	
H11C 2 0.91698 0.84345 1.35439 11.00000 0.064	147
H11B 2 0.83137 0.95907 1.36722 11.00000 0.075	514
H11A 2 0.72682 0.81937 1.38454 11.00000 0.073	329
C12 1 0.76065 0.73155 0.69504 11.00000 0.0419	94 0.03197 =
0.02627 0.00832 0.01389 0.01236	
$C_{12} = 1 - 0.62637 - 0.52552 - 0.0000 - 0.024'$	79 0 02735 -
x + y + y + (y + y + y + y + y + y + y +	
0.02037 0.02037 0.00009 11.00000 0.004	
0.02870 0.00605 0.01342 0.00738	CC 0.000C0
0.02870 0.00605 0.01342 0.00738 C14 1 0.89574 0.73695 0.94584 11.00000 0.0330	66 0.02368 =

On a Gateway2000[®] Pentium computer running at 166 MHz and with 32 MB of RAM, this **XL** calculation look a total of 197 seconds for 265 parameters.

After the refinement, there is no significant change in any of the R values, etc. In the final cycle, the largest shift for any atom (in this case H8A) was 0.002 and the largest shift in a displacement parameter was 0.000 for H8A and the largest shift/standard uncertainty for any parameter was now less than 0.01 for all atoms.

2. CALCTEST.RES Output File for 9th Cycle: Using XL to do the Final Refinement Cycles

TITL 95adh06e in P-1 CELL 0.71073 7.5265 10.0508 10.7429 97.271 108.116 99.782 ZERR 2.00 0.0003 0.0005 0.0005 0.004 0.004 0.004 LATT 1 SEAC C H O CR
UNIT 28 28 16 2 TEMP -50
L.S. 10 BOND \$H FMAP 2 PLAN 20
ACTA
WGHT 0.044000 0.240000 EXTI 0.006355 FVAR 0.62919
CR 4 0.65437 0.72254 0.82866 11.00000 0.02686 0.02032 = 0.01697 0.00354 0.00689 0.00573
O7 3 0.52386 0.95643 0.64833 11.00000 0.03809 $0.02892 = 0.02133$ 0.01098 0.00482 0.00396
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
0.02074 0.00755 0.00775 0.00000 0.04784 0.04181 = 0.02478 0.00247 0.00245 0.00658
$\begin{array}{c} 0.02478 & 0.00247 & 0.00248 & 0.00000 \\ 0.11 & 3 & 0.68506 & 0.83021 & 1.20009 & 11.00000 & 0.04464 & 0.04743 = \\ 0.01856 & 0.01028 & 0.00669 & 0.00314 \end{array}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
0.04149 0.01914 0.03336 $0.024400.013$ 3 0.61277 0.41774 0.78541 11.00000 0.07166 $0.02393 =0.05842$ 0.00685 0.03178 0.01102
014 3 1.04766 0.74498 1.02004 11.00000 0.03260 0.04404 =
$\begin{array}{c} \text{C1} & 1 & 0.50984 & 0.89157 & 0.74810 & 11.00000 & 0.03314 & 0.02479 = \\ & 0.01550 & 0.0212 & 0.02524 & 0.00202 \\ \end{array}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
0.02167 0.00689 0.00974 0.00734 H4 2 0.44108 0.68494 1.00927 11.00000 0.02389
C5 1 0.59866 0.85866 0.97793 11.00000 0.02974 0.02341 = 0.01660 0.00236 0.00726 0.00757
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
0.01975 0.00411 0.00766 0.00628 H6 2 0.71844 1.01387 0.90473 11.00000 0.02661
$\begin{array}{cccccccccccccccccccccccccccccccccccc$

0.02880 0.01449 0.00745 -0.00106	
H7C 2 0.67004 1.10138 0.59847 11.00000 0.03451	
H7B 2 0.65605 1.14812 0.73989 11.00000 0.04071	
H7A 2 0 80150 1 05101 0 72024 11 00000 0 04679	
$C_8 = 1 + 0.25710 + 0.60015 + 0.50600 + 1.00000 + 0.6528 + 0.05221 =$	
HSC = 2 - 0.18358 - 0.58779 - 0.42071 - 11.00000 - 0.00233	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$10A = 2 \ 0.23396 \ 0.32694 \ 0.34903 \ 11.00000 \ 0.09393$	
$(9 \ 1 \ 0.1/004 \ 0.48995 \ 0.84951 \ 11.00000 \ 0.05/49 \ 0.05155 =$	
$0.03089 \ 0.01077 \ 0.01089 \ 0.00109$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
H9B 2 0.14351 0.53546 0.92953 11.00000 0.05520	
H9A 2 0.06925 0.41706 0.80381 11.00000 0.04979	
C10 = 1 = 0.73278 = 0.90833 = 1.11897 = 11.00000 = 0.03241 = 0.02930 = 0.01010 = 0.002075 = 0.002704 = 0.000000	
0.01919 0.00397 0.00784 0.00890	
C11 1 0.80592 0.86730 1.33922 11.00000 0.04924 $0.07181 =$	
0.01952 0.01268 0.00530 0.01439	
H11C 2 0.91747 0.84378 1.35466 11.00000 0.06470	
H11B 2 0.83140 0.95842 1.36755 11.00000 0.07589	
H11A 2 0.72703 0.81890 1.38472 11.00000 0.07287	
C12 1 0.76062 0.73155 0.69503 11.00000 0.04199 0.03199 =	
0.02625 0.00828 0.01388 0.01237	
C13 1 0.62639 0.53553 0.80090 11.00000 0.03480 0.02736 =	
0.02871 0.00605 0.01343 0.00738	
C14 1 0.89572 0.73695 0.94584 11.00000 0.03362 0.02368 =	
0.02634 0.00321 0.00980 0.00716	
HKLF 4	
END	
WGHT 0.0362 0.2614	
01 1 0.6191 0.9034 0.9379 11.00000 0.05 0.44	
02 1 0.6622 0.8812 1.0379 11.00000 0.05 0.42	
$O_3 = 1 = 0.3316 = 0.7350 = 0.7621 = 11 = 00000 = 0.05 = 0.39$	
$O_4 = 1 + 0.5624 + 0.9245 + 0.8178 + 11.00000 + 0.05 + 0.35$	
$O_5 = 1 = 0.5500 = 0.7833 = 0.9378 = 11.00000 = 0.05 = 0.31$	
$O_{6} = 1 + 0.4501 + 0.8211 + 0.7423 + 11.00000 + 0.05 + 0.31$	
$0.7 \pm 0.6822 = 0.7430 \pm 0.7380 \pm 11.00000 \pm 0.05 \pm 0.31$	
Q_{1} 1 0.0822 0.7450 0.7580 11.00000 0.05 0.51 Q_{2} 1 0.7477 0.7222 0.7581 11.00000 0.05 0.31	
$Q_0 = 1 + 0.7477 + 0.7222 + 0.7381 + 11.00000 + 0.05 + 0.51$	
$Q^{9} = 1 \ 0.2599 \ 0.0140 \ 0.4419 \ 11.00000 \ 0.05 \ 0.20$	
$Q10 = 1 \cdot 0.2381 \cdot 0.0407 \cdot 0.8019 \cdot 11.00000 \cdot 0.05 \cdot 0.20$	
Q11 1 0.8083 0.7001 0.8783 11.00000 0.05 0.26 Q12 1 0.5450 0.6761 0.8177 11.00000 0.05 0.26	
Q12 1 0.3439 0.6761 0.8177 11.00000 0.05 0.26	
Q13 1 0.1903 0.5551 0.7818 11.00000 0.05 0.25	
Q14 1 0.3920 0.7179 0.8822 11.00000 0.05 0.25	
Q15 1 0.5989 0.7993 1.1778 11.00000 0.05 0.24	
Q16 1 0.7526 0.9802 1.0982 11.00000 0.05 0.24	
Q17 1 0.8979 0.9625 1.1385 11.00000 0.05 0.24	
Q18 1 0.6762 0.8604 1.1579 11.00000 0.05 0.23	
Q19 1 0.9618 1.0309 1.1987 11.00000 0.05 0.23	
0.20 1 0.7689 0.7729 0.8182 11 00000 0.05 0.23	

3. CALCTEST.LST Output File for 9th Cycle: Using XL to do the Final Refinement Cycles

18 pages of text. See the computer copies of these files.

The Structure has now converged and the bond lengths and angle won't improve with further refinement *of this model*. [Note: the plots from this molecule at the end of this 9th cycle of refinement are visually indistinguishable from those after the last cycle shown in Plot calctest.8, above

CHAPTER X.EXAMPLES OF MOLECULAR PLOTS GENERATEDUSING XP FOR THE TEST DATA SET "PLOTTEST",
(h⁶-1,2,3-(OMe)₃-5-(CO₂Me)C₆H₂)CR(CO)₃)

There are an almost limitless number of ways one can use **XP** to illustrate a least squares planes calculated by XP. Some of the most common are described in the following section with a series of examples of such plots for one molecule (95ADH06e referred to as "plottest", (η^{6} -1,2,3-(OMe)₃-5-(CO₂Me)C₆H₂)Cr(CO)₃). The setting up of these plots are described in detail in chapter VII above. The refinement of this structure is also illustrated in chapter IX, above (i.e., as the **calctest.*** input and output files).

Plot Name	Plot Features
plottest.a	telp [ent]
	A standard ball and stick plot.
plottest.b	telp 0 -50 0.04 0 [ent]
	A displacement ellipsoid view with 50% ellipsoids.
plottest.c	telp 0 -100 0.04 0 [ent]
	A displacement ellipsoid view with 100% ellipsoids.
plottest.d	telp 0 -75 0.04 0 [ent]
	A displacement ellipsoid view with 75% ellipsoids.
plottest.e	proj cell [ent] telp 0 -75 0.04 0 CELL [ent]
	This gives a displacement ellipsoid plot of the molecule in the orientation chosen in 'proj' with 75% ellipsoids.
plottest.f	telp 0 -75 0.04 0 less \$H [ent]
	A displacement ellipsoid view with 75% ellipsoids and without Hydrogens.
plottest.g	telp 3 50 0.08 50 [ent]
	A stereo view of the molecule.
plottest.h	proj cell [ent] telp 3 50 0.08 50 CELL [ent]
	This gives a <i>stereo</i> view of the molecule and the unit cell.
nlottest.i	teln 3 -50 0.08 50 [ent]
Piotesti	A starse displacement allingoid view with 50% allingoids and with "fatter" hands
	A siereo displacement empsoid view with 50% empsoids and with fatter bonds
plottest.j	prun Cr [ent] telp 0 -75 0.04 0 [ent]

	After all bonds to the Cr atom removed. A displacement ellipsoid view with 75%						
	ellipsoids.						
plottest.k	join Cr C12 [ent] join Cr C13 [ent] join Cr C14 [ent] telp 0 -75 0.04 0						
	[ent]						
	After the bonds to the carbonyl carbons are added back. A displacement ellipsoid view with 75% ellipsoids.						
plottest.l	cent/x C1 to C6 [ent] join Cr X1A [ent] telp 0 -75 0.04 0 [ent]						
	After a dummy atom has been added in the centroid of the arene ring (i.e., X1A) and connected to the Cr atom. A displacement ellipsoid view with 75% ellipsoids.						
plottest.m	invt [ent] proj [ent] telp 0 -75 0.04 0 [ent]						
	This gives a displacement ellipsoid plot of the inverted molecule having 75%						
	ellipsoids.						
plottest.n	pbox 5 5 [ent] pack [ent] proj [ent] telp CELL [ent]						
	A view of the packing with a orientation chosen in 'proj'.						
plottest.o	pbox 5 5 [ent] pack [ent] matr 1 [ent] telp CELL [ent]						
	A view chosen down the a axis of the unit cell.						
plottest.p	pbox 5 5 [ent] pack [ent] matr 2 [ent] telp CELL [ent]						
	A view chosen down the b axis of the unit cell.						
plottest.q	pbox 5 5 [ent] pack [ent] matr 3 [ent] telp CELL [ent]						
	A view chosen down the c axis of the unit cell.						
plottest.r	sfil [ent]						
	A 'SFIL' space filling plot.						
plottest.s	sfil 3 50 [ent]						
	A stereo 'SFIL' space filling plot.						

Note: Because of difficulties I have had as yet in importing the graphics into this Microsoft Word/.pdf file, all of the following plots are at substantially lower resolution than they are when produced directly by XP and also are approximately 40% smaller.

A. PLOTTEST.A A STANDARD BALL AND STICK PLOT.

[Note: Made with graphics file PLOTTEST.Ahc.GIF]

B. PLOTTEST.B A DISPLACEMENT ELLIPSOID VIEW WITH 50% ELLIPSOIDS.

telp 0 -50 0.04 0 [ent]

[Note: Made with graphics file PLOTTEST.Bhc.GIF]

C. PLOTTEST.C A DISPLACEMENT ELLIPSOID VIEW WITH 100% ELLIPSOIDS.

telp 0 -100 0.04 0 [ent]

[Note: Made with graphics file PLOTTEST.Chc.GIF]

D. PLOTTEST.D A DISPLACEMENT ELLIPSOID VIEW WITH 75% ELLIPSOIDS.

telp 0 -75 0.04 0 [ent]

[Note: Made with graphics file PLOTTEST.Dhc.GIF]

E. PLOTTEST.E THIS GIVES A DISPLACEMENT ELLIPSOID PLOT OF THE MOLECULE IN THE ORIENTATION CHOSEN IN 'PROJ' WITH 75% ELLIPSOIDS.

proj cell [ent] telp 0 -75 0.04 0 CELL [ent]

[Note: Made with graphics file PLOTTEST.Ehc.GIF]

F. PLOTTEST.F A DISPLACEMENT ELLIPSOID VIEW WITH 75% ELLIPSOIDS AND WITHOUT HYDROGENS.

telp 0 -75 0.04 0 less \$H [ent]

[Note: Made with graphics file PLOTTEST.Fhc.GIF]

G. PLOTTEST.G A *STEREO* VIEW OF THE MOLECULE.

telp 3 50 0.08 50 [ent]

[Note: Made with graphics file PLOTTEST.Ghc.GIF]

H. PLOTTEST.H THIS GIVES A *STEREO* VIEW OF THE MOLECULE AND THE UNIT CELL.

proj cell [ent] telp 3 50 0.08 50 CELL [ent]

[Note: Made with graphics file PLOTTEST.Hhc.GIF]

I. PLOTTEST.I A STEREO DISPLACEMENT ELLIPSOID VIEW OF THE MOLECULE WITH 50% ELLIPSOIDS AND WITH "FATTER" BONDS.

telp 3 -50 0.08 50 [ent]

[Note: Made with graphics file PLOTTEST.Ihc.GIF]

J. PLOTTEST.J AFTER ALL BONDS TO THE CR ATOM REMOVED. A DISPLACEMENT ELLIPSOID VIEW WITH 75% ELLIPSOIDS.

prun Cr [ent] telp 0 -75 0.04 0 [ent]

[Note: Made with graphics file PLOTTEST.Jhc.GIF]

X-205

K. PLOTTEST.K AFTER THE BONDS TO THE CARBONYL CARBONS ARE ADDED BACK. A DISPLACEMENT ELLIPSOID VIEW WITH 75% ELLIPSOIDS.

join Cr C12 [ent] join Cr C13 [ent] join Cr C14 [ent] telp 0 -75 0.04 0 [ent]

[Note: Made with graphics file PLOTTEST.Khc.GIF]

X-206

L. PLOTTEST.L AFTER A DUMMY ATOM HAS BEEN ADDED IN THE CENTROID OF THE ARENE RING (I.E., X1A) AND CONNECTED TO THE CR ATOM. A DISPLACEMENT ELLIPSOID VIEW WITH 75% ELLIPSOIDS.

cent/x C1 to C6 [ent] join Cr X1A [ent] telp 0 -75 0.04 0 [ent]

[Note: Made with graphics file PLOTTEST.Lhc.GIF]

M. PLOTTEST.M THIS GIVES AND DISPLACEMENT ELLIPSOID PLOT OF THE INVERTED MOLECULE HAVING 75% ELLIPSOIDS.

invt [ent] proj [ent] telp 0 -75 0.04 0 [ent]

[Note: Made with graphics file PLOTTEST.Mhc.GIF]

N. PLOTTEST.N A VIEW OF THE PACKING WITH A ORIENTATION CHOSEN IN 'PROJ'.

pbox 5 5 [ent] pack [ent] proj [ent] telp CELL [ent]

[Note: Made with graphics file PLOTTEST.Nhc.GIF]

O. PLOTTEST.O A VIEW CHOSEN DOWN THE A AXIS OF THE UNIT CELL..

pbox 5 5 [ent] pack [ent] matr 1 [ent] telp CELL [ent]

[Note: Made with graphics file PLOTTEST.Ohc.GIF]

P. PLOTTEST.P A VIEW CHOSEN DOWN THE B AXIS OF THE UNIT CELL..

pbox 5 5 [ent] pack [ent] matr 2 [ent] telp CELL [ent]

[Note: Made with graphics file PLOTTEST.Phc.GIF]

Q. PLOTTEST.Q A VIEW CHOSEN DOWN THE C AXIS OF THE UNIT CELL..

pbox 5 5 [ent] pack [ent] matr 3 [ent] telp CELL [ent]

[Note: Made with graphics file PLOTTEST.Qhc.GIF]

R. PLOTTEST.R A 'SFIL' SPACE FILLING PLOT.

sfil [ent]

[Note: Made with graphics file PLOTTEST.Rhc.GIF]

S. PLOTTEST.S A *STEREO* 'SFIL' SPACE FILLING PLOT.

sfil 3 50 [ent]

[Note: Made with graphics file PLOTTEST.Shc.GIF]

<u>CHAPTER XI.</u> EXAMPLES OF TABLES GENERATED USING XCIF FOR THE TEST DATA SET "CALCTEST", (**h**⁶-1,2,3-(OMe)₃-5-(CO₂Me)C₆H₂)CR(CO)₃)

The following are the standard tables of final results for the test structure "calctest," (η^{6} -1,2,3-(OMe)₃-5-(CO₂Me)C₆H₂)Cr(CO)₃ that are produced by **XCIF**. They are in a form suitable for publication.

A. TABLE 1. CRYSTAL DATA AND STRUCTURE REFINEMENT FOR "CALCTEST", $(\mathbf{h}^6-1,2,3-(OMe)_3-5-(CO_2Me)C_6H_2)CR(CO)_3)$

Table 1. Crystal data and structure refinement for 1.

Identification code	calctest
Empirical formula	C14 H14 Cr O8
Formula weight	362.25
Temperature	223(2) K
Wavelength	0.71073 A
Crystal system	Triclinic
Space group	P-1
Unit cell dimensions	a = 7.5265(3) A alpha = 97.271(4) deg. b = 10.0508(5) A beta = 108.116(4) deg. c = 10.7429(5) A gamma = 99.782(4) deg
Volume, Z	747.07(6) A^3, 2
Density (calculated)	1.610 Mg/m^3
Absorption coefficient	0.806 mm^-1
F(000)	372
Crystal size	.12 x .28 x .36 mm
Theta range for data collection	2.03 to 33.00 deg.
Limiting indices	-1≤h≤11, -15≤k≤15, -16≤l≤16
Reflections collected	8074
Independent reflections	5627 [R(int) = 0.0231]
Absorption correction	Semi-empirical from psi-scans
Max. and min. transmission	0.7232 and 0.6426
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	5627 / 0 / 265
Goodness-of-fit on F^2	1.027
Final R indices [I>2sigma(I)]	R1 = 0.0404, $wR2 = 0.0961$
R indices (all data)	R1 = 0.0610, wR2 = 0.1061
Extinction coefficient	0.006(2)
Largest diff. peak and hole	0.439 and -0.388 e.A^-3

[Note: This table and the others that follow were originally in courier font.]

B. TABLE 2. ATOMIC COORDINATES AND EQUIVALENT ISOTROPIC DISPLACEMENT PARAMETERS FOR "CALCTEST", $(\mathbf{h}^{6}-1,2,3-(OMe)_{3}-5-(CO_{2}Me)C_{6}H_{2})CR(CO)_{3})$

Table 2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (A² x 10³) for 1. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	x	У	Z	U(eq)
Cr 0(7) 0(8) 0(9) 0(10) 0(11) 0(12) 0(13) 0(14) C(1) C(2) C(3) C(4) C(5) C(4) C(5) C(6) C(7) C(8) C(9) C(10) C(11)	x 6544(1) 5239(2) 2557(2) 1883(2) 8634(2) 6851(2) 8252(3) 6128(3) 10477(2) 5098(3) 3693(2) 3350(2) 4532(2) 5987(2) 6272(3) 6780(3) 2571(5) 1700(3) 7328(3) 8059(4)	y 7225(1) 9564(1) 7296(2) 5827(1) 10060(2) 8302(2) 7386(2) 4177(2) 7450(2) 8916(2) 7657(2) 6942(2) 7384(2) 8587(2) 9375(2) 10757(2) 6002(3) 4900(2) 9083(2) 8673(3)	$\begin{array}{c} \\ 8287(1)\\ 6483(1)\\ 5777(1)\\ 7608(1)\\ 11534(1)\\ 12001(1)\\ 6118(2)\\ 7854(2)\\ 10200(2)\\ 7481(2)\\ 7080(2)\\ 8065(2)\\ 9413(2)\\ 9779(2)\\ 823(2)\\ 6808(2)\\ 5060(2)\\ 8495(2)\\ 1190(2)\\ 13392(2) \end{array}$	U(eq) 21(1) 31(1) 35(1) 33(1) 43(1) 38(1) 54(1) 49(1) 42(1) 26(1) 25(1) 26(1) 25(1) 23(1) 24(1) 40(1) 53(1) 36(1) 27(1) 48(1)
C(12) C(13) C(14)	7606(3) 6264(3) 8957(3)	7315(2) 5355(2) 7370(2)	6950(2) 8009(2) 9458(2)	32(1) 30(1) 28(1)
TABLE 3. BOND LENGTHS AND ANGLES FOR "CALCTEST", (h^{6} -1,2,3-(OMe)₃-5-(CO₂Me)C₆H₂)CR(CO)₃)

Cr - C(14)	1 830(2)
Cr = C(13)	1 831(2)
$C_{1} = C(13)$	1 052(2)
Cr = C(12)	1.852(2)
Cr-C(5)	2.163(2)
Cr-C(6)	2.225(2)
Cr-C(4)	2.226(2)
Cr-C(2)	2.280(2)
Cr-C(1)	2 288(2)
Cr = C(3)	2.200(2)
CI = C(3)	2.305(2)
O(7) - C(1)	1.345(2)
O(1/) - C(1/)	1.441(2)
O(8)-C(2)	1.359(2)
O(8) - C(8)	1.429(3)
O(9) - C(3)	1.349(2)
O(9) - C(9)	1 434(2)
O(10) = C(10)	1 102(2)
O(10) - C(10)	1,222(2)
O(11) - C(10)	1.333(2)
O(11) - C(11)	1.449(2)
O(12)-C(12)	1.146(2)
O(13) - C(13)	1.157(2)
O(14) - C(14)	1,156(2)
C(1) - C(6)	1 405(2)
C(1) C(0)	1 425(2)
C(1) - C(2)	1.425(2)
C(2) = C(3)	1.415(2)
C(3) - C(4)	1.410(2)
C(4)-C(5)	1.406(2)
C(4) - H(4)	0.98(2)
C(5) - C(6)	1,419(2)
C(5) - C(10)	1,500(2)
C(5) = C(10)	
C(0) = H(0)	0.89(2)
C(7) - H(7C)	0.94(2)
C(7) - H(7B)	0.97(3)
C(7)-H(7A)	0.98(3)
C(8)-H(8C)	0.89(4)
C(8)-H(8B)	1.02(5)
C(8) - H(8A)	0.90(4)
C(9) - H(9C)	0.96(2)
C(0) $H(0C)$	1 01(2)
C(9) - H(9B)	1.01(3)
C(9) - H(9A)	0.92(3)
C(11)-H(11C)	0.88(3)
C(11)-H(11B)	0.90(4)
C(11)-H(11A)	0.99(4)
C(14) - Cr - C(13)	88.10(8)
C(14) - Cr - C(12)	87 96(8)
C(13) - Cr - C(12)	90 16(8)
C(13) - C1 - C(12)	90.10(0)
C(14) - Cr - C(5)	89.21(7)
C(13) - Cr - C(5)	130.05(7)
C(12) - Cr - C(5)	139.56(7)
C(14) - Cr - C(6)	98.41(7)
C(13) - Cr - C(6)	165.35(8)
C(12) - Cr - C(6)	103.11(7)
C(5) = Cr = C(6)	37 71(6)
C(J) = C(U)	
C(14) - Cr - C(4)	109.42(7)

Table 3. Bond lengths [A] and angles [deg] for 1.

C(13) - Cr - C(4)	98.29(7)
C(12) - Cr - C(4) C(5) - Cr - C(4)	160.80(7)
C(6) - Cr - C(4)	67.19(6)
C(14)-Cr-C(2)	164.50(7)
C(13) - Cr - C(2) C(12) - Cr - C(2)	107.02(8) 95.21(7)
C(5) - Cr - C(2)	78.53(6)
C(6)-Cr-C(2)	66.10(6)
C(4) - Cr - C(2) C(14) - Cr - C(1)	65.86(6) 129 41(7)
C(13) - Cr - C(1)	141.83(8)
C(12) - Cr - C(1)	85.12(7)
C(5) - Cr - C(1) C(6) - Cr - C(1)	66.14(6) 36.24(6)
C(4) - Cr - C(1)	77.56(6)
C(2) - Cr - C(1)	36.34(6)
C(14) - Cr - C(3) C(13) - Cr - C(3)	89.60(7)
C(12) - Cr - C(3)	127.43(8)
C(5) - Cr - C(3)	65.81(6) 77.46(6)
C(4) - Cr - C(3)	36.20(6)
C(2)-Cr-C(3)	35.96(6)
C(1) - Cr - C(3) C(1) - O(7) - C(7)	64.50(6) 117 30(14)
C(2) - O(8) - C(8)	117.2(2)
C(3) - O(9) - C(9)	118.1(2)
O(7) - O(11) - O(11)	124.4(2)
O(7) - C(1) - C(2)	115.00(14)
C(6) - C(1) - C(2) O(7) - C(1) - Cr	120.57(14) 130 01(12)
C(6) - C(1) - Cr	69.45(9)
C(2) - C(1) - Cr	71.54(9)
O(8) - C(2) - C(3) O(8) - C(2) - C(1)	122.4(2) 117.6(2)
C(3) - C(2) - C(1)	119.27(14)
O(8) - C(2) - Cr C(3) - C(2) - Cr	134.27(13)
C(1) - C(2) - Cr	72.11(9)
O(9) - C(3) - C(4)	124.4(2)
C(4) - C(3) - C(2)	115.3(2) 120.3(2)
O(9) - C(3) - Cr	131.99(12)
C(4) - C(3) - Cr C(2) - C(3) - Cr	68.87(10) 71.08(10)
C(5) - C(4) - C(3)	119.3(2)
C(5) - C(4) - Cr	68.88(9)
C(3) - C(4) - Cr C(5) - C(4) - H(4)	74.92(10) 119.0(13)
C(3) - C(4) - H(4)	121.6(13)
Cr-C(4)-H(4)	124.9(12)
C(4) - C(5) - C(6) C(4) - C(5) - C(10)	121.4(2) 121.71(14)
C(6) - C(5) - C(10)	116.9(2)
C(4) - C(5) - Cr C(6) - C(5) - Cr	73.80(9)
C(10) - C(5) - Cr	124.15(12)
C(1) - C(6) - C(5)	118.8(2)
C(1) - C(6) - Cr C(5) - C(6) - Cr	/4.3⊥(10) 68.76(9)
C(1)-C(6)-H(6)	119.3(14)
C(5) - C(6) - H(6) $C_{r} - C(6) - H(6)$	121.9(14)
O(7) - C(7) - H(7C)	105(2)
O(7) - C(7) - H(7B)	109(2)

H(7C)-C(7)-H(7B)	111(2)
O(7)-C(7)-H(7A)	110(2)
H(7C)-C(7)-H(7A)	110(2)
H(7B)-C(7)-H(7A)	113(2)
O(8)-C(8)-H(8C)	111(3)
O(8)-C(8)-H(8B)	105(3)
H(8C)-C(8)-H(8B)	99(4)
O(8)-C(8)-H(8A)	117(3)
H(8C)-C(8)-H(8A)	120(4)
H(8B)-C(8)-H(8A)	103(4)
O(9)-C(9)-H(9C)	109.7(14)
O(9)-C(9)-H(9B)	112(2)
H(9C)-C(9)-H(9B)	111(2)
O(9)-C(9)-H(9A)	108(2)
H(9C)-C(9)-H(9A)	107(2)
H(9B)-C(9)-H(9A)	108(2)
O(10) - C(10) - O(11)	124.8(2)
O(10) - C(10) - C(5)	124.0(2)
O(11) - C(10) - C(5)	111.2(2)
O(11)-C(11)-H(11C)	113(2)
O(11)-C(11)-H(11B)	111(2)
H(11C)-C(11)-H(11B)	107(3)
O(11)-C(11)-H(11A)	103(2)
H(11C)-C(11)-H(11A)	112(3)
H(11B)-C(11)-H(11A)	111(3)
O(12)-C(12)-Cr	179.0(2)
O(13)-C(13)-Cr	178.5(2)
O(14)-C(14)-Cr	179.4(2)

Symmetry transformations used to generate equivalent atoms:

TABLE 4. ANISOTROPIC DISPLACEMENT PARAMETERS FOR "CALCTEST", $(\mathbf{h}^{6}-1,2,3-(OMe)_{3}-5-(CO_{2}Me)C_{6}H_{2})CR(CO)_{3})$

Table 4. Anisotropic displacement parameters (A^2 x 10^3) for 1. The anisotropic displacement factor exponent takes the form: -2 pi^2 [h^2 a*^2 Ul1 + \dots + 2 h k a* b* Ul2]

	U11	U22	U33	U23	U13	U12
Cr	27(1)	20(1)	17(1)	4(1)	7(1)	6(1)
0(7)	38(1)	29(1)	21(1)	11(1)	5(1)	4(1)
0(8)	38(1)	37(1)	19(1)	5(1)	-2(1)	6(1)
0(9)	31(1)	32(1)	28(1)	7(1)	5(1)	-2(1)
0(10)	48(1)	42(1)	25(1)	2(1)	2(1)	-7(1)
0(11)	45(1)	47(1)	19(1)	10(1)	7(1)	3(1)
0(12)	73(1)	65(1)	42(1)	19(1)	38(1)	24(1)
0(13)	72(1)	24(1)	58(1)	7(1)	32(1)	11(1)
0(14)	33(1)	44(1)	41(1)	6(1)	0(1)	10(1)
C(1)	33(1)	25(1)	20(1)	7(1)	8(1)	9(1)
C(2)	28(1)	27(1)	18(1)	4(1)	3(1)	7(1)
C(3)	27(1)	25(1)	24(1)	5(1)	7(1)	6(1)
C(4)	29(1)	26(1)	22(1)	7(1)	10(1)	7(1)
C(5)	30(1)	23(1)	17(1)	2(1)	7(1)	8(1)
C(6)	32(1)	21(1)	20(1)	4(1)	8(1)	6(1)
C(7)	45(1)	39(1)	29(1)	14(1)	7(1)	-1(1)
C(8)	65(2)	52(1)	26(1)	-6(1)	1(1)	10(1)
C(9)	38(1)	31(1)	37(1)	11(1)	11(1)	1(1)
C(10)	32(1)	29(1)	19(1)	4(1)	8(1)	9(1)
C(11)	49(1)	72(2)	20(1)	13(1)	5(1)	14(1)
C(12)	42(1)	32(1)	26(1)	8(1)	14(1)	12(1)
C(13)	35(1)	27(1)	29(1)	6(1)	13(1)	7(1)
C(14)	34(1)	24(1)	26(1)	3(1)	10(1)	7(1)

C. TABLE 5. HYDROGEN COORDINATES AND ISOTROPIC DISPLACEMENT PARAMETERS FOR "CALCTEST", $(\mathbf{h}^{6}-1,2,3-(OMe)_{3}-5-(CO_{2}Me)C_{6}H_{2})CR(CO)_{3})$

Table 5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (A^2 x 10^3) for 1.

	x	У	Z	U(eq)
ц(Л)	4411(20)	6949(21)	10002(22)	24(5)
п(ч) ц(с)	4411(30)	10120(24)	10093(22)	24(5)
H(0)	/104(31) (700(22)	10139(24)	9047(22)	27(5)
H(7C)	6700(33)	11014(24)	5985(24)	35(0)
H(7B)	6560(36)	11481(27)	7399(27)	41(7)
H(7A)	8015(40)	10510(28)	7202(28)	47(7)
H(8C)	1836(57)	5878(41)	4207(43)	92(12)
H(8B)	3888(75)	6136(50)	4952(50)	128(17)
H(8A)	2560(58)	5289(44)	5490(42)	96(13)
H(9C)	2831(35)	4540(25)	8766(24)	35(6)
H(9B)	1435(41)	5355(30)	9295(30)	55(8)
H(9A)	692(40)	4171(29)	8038(28)	50(7)
H(11C)	9175(49)	8438(33)	13547(32)	65(9)
H(11B)	8314(49)	9584(40)	13675(35)	76(11)
H(11A)	7270(48)	8189(35)	13847(34)	73(10)

Table 6. Table of Structure Factors for "calctest", $(\eta^{6}-1,2,3-(OMe)_{3}-5-(CO_{2}Me)C_{6}H_{2})Cr(CO)_{3})$

ble		7.	Obs	served	and	cal	lcul	ated	struc	cture	facto	ors	fo	r 1											Pag	e 1
k	1	10Fo	10Fc	10s	h	k	1	10Fo	10Fc	10s	h	k	1	10Fo	10Fc	10s	h k	1	10Fo	10Fc	10s	h }	: 1	. 10Fo	10Fc	10s
0	0	679	677	5	5	4	0	20	25	8	-3	9	0	126	125	2	5-14	1	115	121	4	6 -8	1	. 106	104	3
0	0	594	599	5	6	4	0	0	10	1	-2	9	0	78	78	3	6-14	1	37	30	8	7 -8	1	. 86	84	3
0	0	244	248	4	7	4	0	59	60	4	-1	9	0	209	209	3	-3-13	1	63	65	5	8 - 8	1	. 46	40	5
0	0	255	254	4	8	4	0	66	72	5	0	9	0	267	267	2	-2-13	1	41	41	8	9 - 8	1	. 73	76	5
0	0	11	6	11	9	4	0	13	6	12	1	9	0	0	8	1	-1-13	1	20	2	10	10 -8	1	. 63	61	5
0	0	201	203	3	-10	5	0	50	53	6	2	9	0	108	110	2	0-13	1	76	79	3	-8 -7	1	. 55	47	5
0	0	163	163	2	-9	5	0	0	11	1	3	9	0	132	136	3	1-13	1	81	84	3	-7 -7	1	. 44	33	6
0	0	48	38	4	-8	5	0	113	117	2	4	9	0	81	80	3	2-13	1	11	8	11	-6 -7	1	. 25	31	13
0	0	26	20	12	-7	5	0	96	98	2	5	9	0	64	62	4	3-13	1	115	111	3	-5 -7	1	. 95	91	3
0	0	64	63	5	-6	5	0	94	99	2	6	9	0	70	67	4	4-13	1	108	116	4	-4 -7	1	. 21	5	7
1	0	36	33	8	-5	5	0	110	116	2	7	9	0	36	34	10	5-13	1	0	9	1	-3 -1	1	. 86	89	2
1	0	0	4	1	-4	5	0	86	88	1	-9	10	0	31	34	11	6-13	1	59	65	6	-2 -7	1	. 75	79	3
1	0	65	63	4	- 3	5	0	191	179	3	-8	10	0	81	69	4	7-13	1	51	43	6	-1 -1	1	. 57	52	2
1	0	48	44	2	-2	5	0	40	21	3	-7	10	0	0	4	1	-5-12	1	19	14	18	0 - 7	1	. 23	22	6
1	0	34	33	3	-1	5	0	231	242	5	-6	10	0	42	43	6	-4-12	1	29	21	14	1 -1	1	252	258	7
1	0	423	431	3	0	5	0	332	329	3	-5	10	0	153	151	3	-3-12	1	14	21	13	2 - 7	1	407	413	3
1	0	183	189	3	1	5	0	160	143	3	-4	10	0	74	73	3	-2-12	1	22	23	22	3 - 1	1	102	102	1
1	0	85	73	1	2	5	0	158	164	3	-3	10	0	50	50	3	-1-12	1	70	70	2	4 - 1	1	266	262	3
1	0	64	64	1	3	5	0	218	211	3	-2	10	0	72	73	2	0-12	1	97	102	2	5 - 2	1	. 111	106	2
1	0	207	206	2	4	5	0	0	14	1	-1	10	0	192	195	6	1-12	1	78	78	2	б - 1	1	. 14	16	13
1	0	148	147	1	5	5	0	163	161	4	0	10	0	19	16	11	2-12	1	43	33	5	7 - 7	1	. 47	49	5
1	0	559	559	2	6	5	0	86	88	3	1	10	0	197	204	1	3-12	1	58	55	4	8 - 1	1	. 58	64	4
1	0	320	319	3	7	5	0	83	77	3	2	10	0	169	171	3	4-12	1	96	94	3	9 - 1	1	. 42	35	7
1	0	83	91	1	8	5	0	52	53	6	3	10	0	21	29	20	5-12	1	109	105	3	10 -1	1	. 10	8	9
	ble k 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ble k 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	ble 7. k 1 10Fo 0 0 679 0 0 594 0 0 244 0 0 244 0 0 201 0 0 11 0 0 0 148 0 0 0 0 48 0 0 265 1 0 366 1 0 0 1 1 0 361 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 0 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1<	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ble 7. Observed k 1 10F0 10FC 10s 0 679 677 5 0 0 594 599 5 0 0 244 248 4 0 0 255 254 4 0 0 11 6 11 0 0 201 203 3 0 163 163 2 0 0 48 38 4 0 0 26 20 12 0 0 48 38 4 0 0 26 20 12 0 0 64 63 5 1 0 36 33 8 1 0 0 0 4 1 1 1 0 65 63 4 1 1 1 0 65 63 4 4 2 1 0 34 33 3 1 0 423 431 3 1 0 423 431 3 1 0 423 431 3 1 0 183 189 3 1 0 85 73 1 1 1 0 64 64 1 1 1 0 65 73 1 1 1 0 64 64 1 1 1 0 0 559 559 2 1 0 320 319 3 1 0 83 91 1	ble 7. Observed and k l 10Fo 10Fc 10s h 0 0 679 677 5 5 0 0 594 599 5 6 0 0 244 248 4 7 0 0 255 254 4 8 0 0 11 6 11 9 0 0 201 203 3 -10 0 0 163 163 2 -9 0 0 26 20 12 -7 0 0 64 63 5 -6 1 0 36 33 8 -5 1 0 0 44 1 -4 1 0 65 63 4 -3 1 0 423 431 3 0 1 0 48 442 -22 1 0 34 33 3 -1 1 0 423 431 3 0 1 0 183 189 3 1 1 0 207 206 2 4 1 0 36 73 1 2 1 0 207 206 2 4 1 0 320 319 3 7 1 0 559 559 2 6 1 0 320 319 3 7 1 0 88 91 1 8 0 320 319 3 1 8 0 3 91 1 8 0 3 91 1 8 0 3 91 1 8 0 3 91 1 8 0 0 3 0 1 9 1 8 0 0 3 91 1 8 0 0 3 0 1 0 1 8 91 1 8 0 0 3 91 1 8 0 0 3 0 1 0 1 8 91 1 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ble 7. Observed and call k 1 10Fo 10Fc 10s h k 0 0 679 677 5 5 4 0 0 254 599 5 6 4 0 0 254 248 4 7 4 0 0 255 254 4 8 4 0 0 111 6 11 9 4 0 0 111 6 11 9 4 0 0 101 16 11 9 4 0 0 101 203 3 -10 5 0 0 163 163 2 -9 5 0 0 26 20 12 -7 5 0 0 26 20 12 -7 5 0 0 26 20 12 -7 5 1 0 36 33 8 -5 5 1 0 36 33 8 -5 5 1 0 36 33 3 -1 5 1 0 423 431 3 0 5 1 0 48 44 2 -2 5 1 0 34 33 3 -1 5 1 0 423 431 3 0 5 1 0 48 44 1 3 5 1 0 64 64 1 3 5 1 0 207 206 2 4 5 1 0 148 147 1 5 5 1 0 320 319 3 7 5 1 0 320 319 3 7 5	ble 7. Observed and calculation of the served of the served and calculation of the served and calculation of the served of the served and calculation of the served and calculatin of the	ble 7. Observed and calculated k l 10Fo 10Fc 10s h k 1 10Fo 0 0 679 677 5 5 4 0 20 0 0 594 599 5 6 4 0 0 0 0 244 248 4 7 4 0 59 0 0 255 254 4 8 4 0 66 0 11 6 11 9 4 0 13 0 0 201 203 3 -10 5 0 50 0 0 11 6 11 9 4 0 13 0 0 201 203 3 -10 5 0 50 0 0 0 163 163 2 -9 5 0 0 0 0 0 48 38 4 -8 5 0 113 0 0 26 20 12 -7 5 0 96 0 0 64 63 5 -6 5 0 94 1 0 36 33 8 -5 5 0 140 1 0 36 33 8 -5 5 0 140 1 0 36 33 8 -5 5 0 140 1 0 36 33 3 -1 5 0 231 1 0 423 431 3 0 5 0 320 110 1 0 423 431 3 0 5 0 332 1 0 48 38 1 -8 5 0 158 1 0 64 64 1 3 5 0 218 1 0 207 206 2 4 5 0 0 10 148 147 1 5 5 0 163 1 0 559 559 2 6 5 0 86 1 0 320 319 3 7 5 0 83 1 0 83 91 1 8 5 0 52	ble 7. Observed and calculated struct k 1 10F0 10Fc 10s h k 1 10F0 10FC 0 0 679 677 5 5 4 0 20 25 0 0 594 599 5 6 4 0 0 10 0 0 244 248 4 7 4 0 59 60 0 0 255 254 4 8 4 0 66 72 0 0 11 6 11 9 4 0 13 6 0 0 201 203 3 -10 5 0 50 53 0 0 163 163 2 -9 5 0 0 11 0 0 48 38 4 -8 5 0 113 117 0 0 26 20 12 -7 5 0 96 98 0 0 64 63 5 -6 5 0 94 99 1 0 36 33 8 -5 5 0 110 116 1 0 0 4 1 -4 5 0 86 88 1 0 65 63 4 -3 5 0 191 179 1 0 34 33 3 -1 5 0 231 242 1 0 423 431 3 0 5 0 332 292 1 0 183 189 3 1 5 0 160 143 1 0 207 206 2 4 5 0 0 144 1 0 64 64 1 3 5 0 218 211 1 0 207 206 2 4 5 0 0 144 1 0 559 559 2 6 5 0 86 88 1 0 320 319 3 7 5 0 83 77 1 0 83 91 1 8 5 0 252 53	ble 7. Observed and calculated structure k l 10Fo 10Fc 10s h k l 10Fo 10Fc 10s 0 0 679 677 5 5 4 0 20 25 8 0 0 594 599 5 6 4 0 0 10 1 0 0 244 248 4 7 4 0 59 60 4 0 0 255 254 4 8 4 0 66 72 5 0 0 11 6 11 9 4 0 13 6 12 0 0 201 203 3 -10 5 0 50 53 6 0 0 163 163 2 -9 5 0 0 11 1 0 0 48 38 4 -8 5 0 113 117 2 0 0 26 20 12 -7 5 0 96 98 2 0 0 64 63 5 -6 5 0 94 99 2 1 0 36 33 8 -5 5 0 101 16 2 1 0 0 4 1 -4 5 0 86 88 1 1 0 65 63 4 -3 5 0 191 179 3 1 0 48 44 2 -2 5 0 40 21 3 1 0 34 33 3 -1 5 0 332 329 3 1 0 183 189 3 1 5 0 158 164 3 1 0 207 206 2 4 5 0 158 164 3 1 0 207 206 2 4 5 0 163 161 4 1 0 559 559 2 6 5 0 163 161 4 1 0 320 319 3 7 5 0 88 77 3 1 0 38 91 1 8 5 0 52 53 6	ble 7. Observed and calculated structure factors k l 10Fo 10Fc 10s h k l 10Fo 10Fc 10s h k l 10Fo 10Fc 10s h h 0 0 679 677 5 5 4 0 20 25 8 -3 0 0 594 599 5 6 4 0 0 10 1 -2 0 0 244 248 4 7 4 0 59 60 4 -1 0 0 255 254 4 8 4 0 66 72 5 0 0 0 11 6 11 9 4 0 13 6 12 1 0 0 255 254 4 8 4 0 66 72 5 0 0 0 11 6 11 9 4 0 13 6 12 1 0 0 201 203 3 -10 5 0 50 53 6 2 0 0 0 11 6 11 9 4 0 13 117 2 4 4 0 0 26 20 12 -7 5 0 96 98 2 5 0 0 0 4 1 -1 3 3 0 0 26 20 12 -7 5 0 96 98 2 5 0 0 6 4 6 3 5 -6 5 0 914 99 2 6 6 1 0 36 33 8 -5 5 0 110 116 2 7 7 1 0 0 4 1 -4 5 0 86 88 1 -9 1 0 65 63 4 -3 5 0 1191 179 3 -8 1 0 48 44 2 -2 5 0 40 21 3 -7 1 0 34 33 3 -1 5 0 231 242 5 -6 1 0 423 431 3 0 5 0 332 329 3 -5 1 0 183 189 3 1 5 0 160 143 3 -4 1 0 85 73 1 2 5 0 158 164 3 -3 1 0 64 64 1 3 3 5 0 218 211 3 -2 1 0 207 206 2 4 5 0 0 14 1 -1 1 1 0 148 147 1 5 5 0 163 161 4 0 0 1 0 559 559 2 6 5 0 86 88 3 1 1 0 320 319 3 7 5 0 86 88 3 1 1 0 320 319 3 7 5 0 83 77 3 2 2 1 0 83 91 1 8 5 0 52 53 6 3	ble 7. Observed and calculated structure factors k l 10Fo 10Fc 10s h k l 10Fo 10Fc 10s h k 0 0 679 677 5 5 4 0 20 25 8 -3 9 0 0 594 599 5 6 4 0 0 10 1 -2 9 0 0 244 248 4 7 4 0 59 60 4 -1 9 0 0 255 254 4 8 4 0 66 72 5 0 9 0 0 211 6 11 9 4 0 13 6 12 1 9 0 0 201 203 3 -10 5 0 50 53 6 2 9 0 0 116 11 9 4 0 11 1 3 9 0 0 26 20 12 -7 5 0 96 98 2 5 9 0 0 26 20 12 -7 5 0 96 98 2 5 9 0 0 26 20 12 -7 5 0 96 98 2 5 9 0 0 64 63 5 -6 5 0 94 99 2 6 9 1 0 36 33 8 -5 5 0 110 116 2 7 9 1 0 0 4 1 -4 5 0 86 88 1 -9 10 1 0 48 44 2 -2 5 0 40 21 3 -7 10 1 0 48 44 2 -3 5 0 131 279 3 -8 10 1 0 48 44 2 -2 5 0 40 21 3 -7 10 1 0 48 44 2 -2 5 0 40 21 3 -7 10 1 0 48 44 2 -2 5 0 40 21 3 -7 10 1 0 48 44 2 -2 5 0 40 21 3 -7 10 1 0 48 44 2 -2 5 0 40 21 3 -7 10 1 0 48 44 2 -2 5 0 40 21 3 -7 10 1 0 48 44 2 -2 5 0 40 21 3 -7 10 1 0 48 44 2 -2 5 0 40 21 3 -7 10 1 0 48 44 2 -2 5 0 40 21 3 -7 10 1 0 48 44 2 -2 5 0 40 21 3 -7 10 1 0 48 44 2 -2 5 0 40 21 3 -7 10 1 0 48 44 2 -2 5 0 40 21 3 -7 10 1 0 48 44 2 -2 5 0 40 21 3 -7 10 1 0 48 44 2 -2 5 0 40 21 3 -7 10 1 0 48 44 2 -2 5 0 40 21 3 -7 10 1 0 48 44 2 -2 5 0 40 21 3 -7 10 1 0 48 44 1 -1 5 0 0 320 329 3 -5 10 1 0 183 189 3 1 5 0 168 164 3 -3 10 1 0 48 147 1 5 5 0 168 164 3 -3 10 1 0 207 206 2 4 5 0 0 144 1 -1 10 1 0 320 319 3 7 5 0 83 77 3 2 10 1 0 320 319 3 7 5 0 83 77 3 2 10 1 0 83 91 1 8 5 0 52 53 6 3 10	ble 7. Observed and calculated structure factors for k l 10Fo 10Fc 10s h k l 10Fo 10Fc 10s h k l 0 0 679 677 5 5 4 0 20 25 8 -3 9 0 0 0 594 599 5 6 4 0 0 10 1 -2 9 0 0 0 244 248 4 7 4 0 59 60 4 -1 9 0 0 0 255 254 4 8 4 0 66 72 5 0 9 0 0 0 215 254 4 8 4 0 66 72 5 0 9 0 0 0 201 203 3 -10 5 0 50 53 6 2 9 0 0 0 11 6 11 9 4 0 13 117 2 4 9 0 0 0 26 20 12 -7 5 0 96 98 2 5 9 0 0 0 26 20 12 -7 5 0 96 98 2 5 9 0 0 0 26 20 12 -7 5 0 96 98 2 5 9 0 0 0 26 33 8 -5 5 0 110 116 2 7 9 0 1 0 36 33 8 -5 5 0 191 179 3 -8 10 0 1 0 42 431 3 0 5 0 332 329 3 -5 10 0 1 0 42 33 3 -1 5 0 231 242 5 -6 10 0 1 0 42 34 33 3 -1 5 0 231 242 5 -6 10 0 1 0 48 44 2 -2 5 0 40 21 3 -7 10 0 1 0 48 44 2 -2 5 0 160 143 3 -4 10 0 1 0 48 44 1 -4 5 0 186 88 1 -9 10 0 1 0 48 44 2 -2 5 0 163 120 -5 10 0 1 0 48 44 2 -2 5 0 40 21 3 -7 10 0 1 0 48 44 2 -2 5 0 163 120 -5 10 0 1 0 48 44 2 -2 5 0 160 143 3 -4 10 0 1 0 48 41 7 1 5 5 0 158 164 3 -3 10 0 1 0 207 206 2 4 5 0 0 14 1 -1 10 0 1 0 320 319 3 7 5 0 86 88 3 1 10 0	ble 7. Observed and calculated structure factors for 1 k 1 10Fo 10Fc 10s h k 1 10Fo 10Fc 10s h k 1 10Fo 0 0 679 677 5 5 4 0 20 25 8 -3 9 0 126 0 0 594 599 5 6 4 0 0 10 1 -2 9 0 78 0 0 244 248 4 7 4 0 59 60 4 -1 9 0 209 0 0 255 254 4 8 4 0 66 72 5 0 9 0 2267 0 0 11 6 11 9 4 0 13 6 12 1 9 0 0 0 0 201 203 3 -10 5 0 50 53 6 2 9 0 188 0 0 163 163 2 -9 5 0 0 11 1 3 9 0 120 0 0 26 20 12 -7 5 0 96 98 2 5 9 0 64 0 0 26 20 12 -7 5 0 96 98 2 5 9 0 64 0 0 64 63 5 -6 5 0 94 99 2 6 9 0 131 1 0 36 33 8 -5 5 0 110 116 2 7 9 0 36 1 0 0 4 1 -4 5 0 86 88 1 -9 10 0 31 1 0 65 63 4 -3 5 0 191 179 3 -8 10 0 10 1 0 34 33 3 -1 5 0 231 242 5 -6 10 0 42 1 0 423 431 3 0 5 0 332 329 3 -5 10 0 153 1 0 64 64 1 3 5 0 168 143 3 -4 10 0 74 1 0 207 206 2 4 5 0 163 161 4 0 10 0 197 1 0 363 31 9 3 1 5 0 163 164 3 -3 10 0 50 1 0 0 44 1 -4 5 0 86 88 3 1 -9 10 0 10 1 0 34 33 3 -1 5 0 231 242 5 -6 10 0 42 1 0 423 431 3 0 5 0 322 329 3 -5 10 0 153 1 0 183 189 3 1 5 0 160 143 3 -4 10 0 70 1 0 34 37 1 2 5 0 158 164 3 -3 10 0 50 1 0 0 44 14 7 1 5 5 0 218 211 3 -2 10 0 72 1 0 207 206 2 4 5 0 0 143 161 4 010 0 197 1 0 320 319 3 7 5 0 86 88 3 1 10 01 0 197 1 0 320 319 3 7 5 0 86 77 3 2 210 0 169 1 0 88 91 1 8 8 5 0 52 53 6 3 10 0 2	ble 7. Observed and calculated structure factors for 1 k l 10Fo 10Fc l0s h k l 10Fo 10Fc l0s h k l 10Fo 10Fc 0 0 679 677 5 5 4 0 20 25 8 -3 9 0 126 125 0 0 594 599 5 6 4 0 0 10 1 -2 9 0 78 78 0 0 244 248 4 7 4 0 59 60 4 -1 9 0 209 209 0 0 255 254 4 8 4 0 66 72 5 0 9 0 267 267 0 0 11 6 11 9 4 0 13 6 12 1 9 0 0 8 0 0 201 203 3 -10 5 0 50 53 6 2 9 0 108 110 0 0 163 163 2 -9 5 0 0 11 1 3 9 0 132 136 0 0 26 20 12 -7 5 0 96 98 2 5 9 0 64 62 0 0 64 63 5 -6 5 0 94 99 2 6 9 0 70 67 1 0 36 33 8 -5 5 0 110 116 2 7 9 0 36 34 1 0 0 4 1 -4 5 0 86 88 1 -9 10 0 31 34 1 0 65 63 4 -3 5 0 121 3 -7 10 0 0 4 1 0 34 33 3 -1 5 0 231 242 5 -6 10 0 42 43 1 0 423 431 3 0 5 0 332 329 3 -5 10 0 153 151 1 0 183 189 3 1 5 0 160 143 3 -4 10 0 72 73 1 0 207 206 2 4 5 0 163 161 4 0 10 0 192 195 1 0 148 147 1 5 5 0 168 184 3 -3 10 0 50 1 0 20 20 20 2 4 5 0 100 146 3 -2 10 0 72 73 1 0 207 206 2 4 5 0 0 14 1 -1 10 0 192 195 1 0 148 147 1 5 5 0 188 164 3 -3 10 0 50 1 0 20 20 20 2 2 4 5 0 100 146 1 3 -2 10 0 72 73 1 0 207 206 2 4 5 0 0 143 161 4 0 10 0 192 195 1 0 148 147 1 5 5 0 163 161 4 0 10 0 197 204 1 0 320 319 3 7 5 0 88 77 3 2 10 0 197 204 1 0 330 31 1 3 7 5 0 83 77 3 2 10 0 197 204 1 0 320 319 3 7 5 0 83 77 3 2 10 0 197 204 1 0 320 319 1 8 5 0 52 53 6 3 10 0 21 29	ble 7. Observed and calculated structure factors for 1 k l 10F0 10Fc 10s h k l 10F0 10Fc 10s h k l 10F0 10Fc 10s 0 0 679 677 5 5 4 0 20 25 8 -3 9 0 126 125 2 0 0 594 599 5 6 4 0 0 10 1 -2 9 0 78 78 3 0 0 244 248 4 7 4 0 59 60 4 -1 9 0 209 209 3 0 0 255 254 4 8 4 0 66 72 5 0 9 0 267 267 2 0 0 11 6 11 9 4 0 13 6 12 1 9 0 0 8 110 2 0 0 10 1 6 11 9 4 0 13 6 12 1 9 0 0 8 110 2 0 0 163 163 2 -9 5 0 0 111 1 3 9 0 102 136 3 0 0 262 20 12 -7 5 0 96 98 2 5 9 0 64 62 4 0 0 64 63 5 -6 5 0 94 99 2 6 9 0 70 67 4 1 0 36 33 8 -5 5 0 110 116 2 7 9 0 36 34 10 1 0 0 4 1 -4 5 0 86 88 1 -9 10 0 31 34 11 1 0 65 63 4 -3 5 0 191 179 3 -8 10 0 81 69 4 1 0 34 33 3 -1 5 0 231 242 5 -6 10 0 42 43 6 1 0 423 431 3 0 5 0 332 329 3 -5 10 0 153 151 3 1 0 183 189 3 1 5 0 160 143 3 -4 10 0 72 73 3 1 0 85 73 1 2 5 0 158 164 3 -3 10 0 50 50 3 1 0 207 206 2 4 5 0 163 161 3 -2 10 0 72 73 2 1 0 207 206 2 4 5 0 163 161 4 0 10 0 197 204 1 1 0 320 319 3 7 5 0 86 88 3 1 10 0 10 197 204 1 1 0 320 319 3 7 5 0 86 88 3 1 0 0 10 197 204 1 1 0 320 319 3 7 5 0 86 88 3 1 0 0 10 177 3 2 10 0 172 73 2 1 0 85 73 1 2 5 0 163 161 4 0 10 0 72 73 2 1 0 207 206 2 4 5 0 0 163 161 4 0 10 0 197 204 1 1 0 320 319 3 7 5 0 86 88 3 1 10 0 10 197 204 1 1 0 320 319 3 7 5 0 86 88 3 1 0 0 212 9 20	ble 7. Observed and calculated structure factors for 1 k l 10Fo 10Fc 10s h k l 10Fo 10Fc 10s h k l 10Fo 10Fc 10s h k 0 0 679 677 5 5 4 0 20 25 8 -3 9 0 126 125 2 5-14 0 0 594 599 5 6 4 0 0 10 1 -2 9 0 78 78 3 6-14 0 0 244 248 4 7 4 0 59 60 4 -1 9 0 209 209 3 -3-13 0 0 255 254 4 8 4 0 66 72 5 0 9 0 267 267 2 -2-13 0 0 11 6 11 9 4 0 13 6 12 1 9 0 0 8 110 2 0-13 0 0 201 203 3 -10 5 0 50 53 6 2 9 0 108 110 2 0-13 0 0 163 163 2 -9 5 0 0 11 1 3 3 9 0 132 136 3 1-13 0 0 266 20 12 -7 5 0 96 98 2 5 9 0 64 62 4 3-13 0 0 266 20 12 -7 5 0 96 98 2 5 9 0 64 62 4 3-13 0 0 266 20 12 -7 5 0 96 98 2 5 9 0 64 62 4 3-13 0 0 64 63 5 -6 5 0 94 99 2 6 9 0 70 67 4 4-13 1 0 36 33 8 -5 5 0 110 116 2 7 9 0 36 34 10 5-13 1 0 0 4 1 -4 5 0 86 88 1 -9 10 0 31 34 11 6-13 1 0 42 43 6 4 -3 5 0 191 179 3 -8 10 0 81 69 4 7-13 1 0 42 431 3 0 5 0 332 329 3 -5 10 0 153 151 3 -3-12 1 0 183 189 3 1 5 0 160 143 3 -4 10 0 74 73 3 -2-12 1 0 183 189 3 1 5 0 158 164 3 -3 10 0 50 50 3 -1-12 1 0 183 189 3 1 5 0 160 143 3 -4 10 0 72 73 2 0-12 1 0 207 206 2 4 5 0 163 161 4 0 10 0 192 195 6 1-12 1 0 207 206 2 4 5 0 86 88 3 1 10 0 10 0 192 195 6 1-12 1 0 207 206 2 4 5 0 86 88 3 1 10 0 10 0 197 204 1 3-12 1 0 148 147 1 5 5 0 163 161 4 0 10 0 197 204 1 3-12 1 0 148 147 1 5 5 0 163 161 4 0 10 0 197 204 1 3-12 1 0 320 319 3 7 5 0 86 88 3 1 10 0 0 21 29 20 5-12	ble 7. Observed and calculated structure factors for 1 k l 10F0 10Fc 10s h k l 10F0 10Fc 10s h k l 10F0 10Fc 10s h k l 0 0 679 677 5 5 4 0 20 25 8 -3 9 0 126 125 2 5-14 1 0 0 594 599 5 6 4 0 0 10 1 -2 9 0 78 78 3 6-14 1 0 0 244 248 4 7 4 0 59 60 4 -1 9 0 209 209 3 -3-13 1 0 0 215 254 4 8 4 0 66 72 5 0 9 0 267 267 2 -2-13 1 0 0 211 6 11 9 4 0 13 6 12 1 9 0 0 8 11 -1-13 1 0 0 201 203 3 -10 5 0 50 53 6 2 9 0 108 110 2 0-13 1 0 0 163 163 2 -9 5 0 0 11 1 1 3 9 0 132 136 3 1-13 1 0 0 266 20 12 -7 5 0 96 98 2 5 9 0 64 62 4 3-13 1 0 0 266 20 12 -7 5 0 96 98 2 5 9 0 64 62 4 3-13 1 1 0 0 64 63 5 -6 5 0 94 99 2 6 9 0 70 67 4 4-13 1 1 0 0 64 63 5 -6 5 0 101 116 2 7 9 0 36 34 10 5-13 1 1 0 0 44 1 -4 5 0 86 88 1 -9 10 0 31 34 11 6-13 1 1 0 423 431 3 0 5 0 332 242 5 -6 10 0 42 43 6 -4-12 1 1 0 423 431 3 0 5 0 322 329 3 -510 0 153 151 3 -3-12 1 1 0 423 431 3 0 5 0 323 242 5 -6 10 0 42 43 6 -4-12 1 1 0 48 44 2 -2 5 0 40 21 3 -710 0 0 74 73 3 -2-12 1 1 0 48 44 1 -2 5 0 160 143 3 -4 10 0 74 73 3 -2-12 1 1 0 48 147 1 5 0 158 164 3 -3 10 0 50 50 3 -1-12 1 1 0 207 206 2 4 5 0 163 161 4 0 10 0 197 204 1 3-12 1 1 0 207 206 2 4 5 0 86 88 3 1 10 0 10 0 197 204 1 3-12 1 1 0 320 319 3 7 5 0 86 88 3 1 0 0 197 204 1 3-12 1 1 0 320 319 3 7 5 0 86 88 3 1 0 0 197 204 1 3-12 1 1 0 38 91 1 8 5 0 52 53 6 130 10 0 10 0 197 204 1 3-12 1 1 0 38 91 1 8 5 0 52 52 5 6 130 0 0 12 12 9 20 5-12 1	ble 7. Observed and calculated structure factors for 1 k 1 10F0 10Fc 10s h k 1 10F0 10Fc 10s h k 1 10F0 10Fc 10s h k 1 10F0 0 0 679 677 5 5 4 0 20 25 8 -3 9 0 126 125 2 5-14 1 115 0 0 594 599 5 6 4 0 0 10 1 -2 9 0 78 78 3 6-14 1 37 0 0 244 248 4 7 4 0 59 60 4 -1 9 0 209 209 3 -3-13 1 63 0 0 255 254 4 8 4 0 66 72 5 0 9 0 267 267 2 -2-13 1 41 0 0 11 6 11 9 4 0 13 6 12 1 9 0 0 8 1 1 -1-13 1 20 0 0 201 203 3 -10 5 0 50 53 6 2 9 0 108 110 2 0-13 1 76 0 0 163 163 2 -9 5 0 0 111 1 3 9 0 132 136 3 1-13 1 81 0 0 266 20 12 -7 5 0 96 98 2 5 9 0 64 62 4 3-13 1 115 0 0 48 38 4 -8 5 0 113 117 2 4 9 0 81 80 3 2-13 1 11 0 0 26 20 12 -7 5 0 96 98 2 5 9 0 64 62 4 3-13 1 115 0 0 64 63 5 -6 5 0 94 99 2 6 9 0 70 67 4 4-13 1 108 1 0 36 33 8 -5 5 0 110 116 2 7 9 0 36 34 10 5-13 1 08 1 0 36 33 3 -1 5 0 231 242 5 -6 10 0 41 6-13 1 59 1 0 65 63 4 -3 5 0 191 179 3 -8 10 0 81 69 4 7-13 1 51 1 0 423 431 3 0 5 0 332 329 3 -5 10 0 153 151 3 -3-12 1 14 1 0 423 431 3 0 5 0 332 329 3 -5 10 0 153 151 3 -3-12 1 14 1 0 183 189 3 1 5 0 160 143 3 -4 10 0 74 73 3 3 -2-12 1 29 1 0 423 431 3 0 5 0 132 1242 5 -6 10 0 42 43 6 -4-12 1 29 1 0 423 431 3 0 5 0 160 143 3 -4 10 0 74 73 3 3 -2-12 1 29 1 0 423 431 3 0 5 0 160 143 3 -4 10 0 74 73 3 3 -2-12 1 128 1 0 183 189 3 1 5 0 160 143 3 -4 10 0 74 73 3 3 -2-12 1 22 1 0 85 73 1 2 5 0 158 164 3 -3 10 0 50 50 3 -1-12 1 70 1 0 207 206 2 4 5 0 0 14 1 -1 10 0 192 195 6 1-12 1 78 1 0 148 147 1 5 5 0 163 161 4 010 0 197 204 1 3-12 1 78 1 0 148 147 1 5 5 0 163 161 4 010 0 197 204 1 3-12 1 78 1 0 320 319 3 7 5 0 86 88 3 1 10 0 21 29 20 5-12 1 198 1 0 320 319 3 7 5 0 83 77 3 2 10 0 197 204 1 3-12 1 58 1 0 320 319 3 7 5 0 85 25 3 6 31 0 0 21 29 20 5-12 1 108	ble 7. Observed and calculated structure factors for 1 k l 10Fo 10Fc 10s h k l 10Fo 10Fc 10F 0 0 594 599 5 6 4 0 20 25 8 -3 9 0 126 125 2 5-14 1 115 121 0 0 594 599 5 6 4 0 0 110 1 -2 9 0 78 78 3 6-14 1 37 30 0 0 244 248 4 7 4 0 59 60 4 -1 9 0 209 209 3 -3-13 1 63 65 0 0 255 254 4 8 4 0 66 72 5 0 9 0 267 267 2 -2-13 1 41 41 0 0 11 6 11 9 4 0 13 6 12 1 9 0 0 8 1 -1-13 1 20 2 0 0 201 203 3 -10 5 0 50 53 6 2 9 0 108 110 2 0-13 1 76 79 0 0 163 163 2 -9 5 0 0 0 11 1 3 9 0 0122 136 3 1-13 1 81 84 0 0 26 20 12 -7 5 0 96 98 2 5 9 0 64 62 4 3-13 1 11 8 0 0 26 20 12 -7 5 0 96 98 2 5 9 0 64 62 4 3-13 1 118 18 0 0 26 20 12 -7 5 0 96 98 2 5 9 0 64 62 4 3-13 1 118 111 0 0 64 63 5 -6 5 0 110 116 2 7 9 0 36 41 0 5-13 1 0 9 1 0 0 4 1 -4 5 0 86 88 1 -9 10 0 31 34 11 6-13 1 59 65 1 0 65 63 4 -3 5 0 101 179 3 -8 10 0 81 69 4 7-13 1 51 43 1 0 48 44 2 -2 5 0 40 21 3 -71 0 0 0 4 1 -5-12 1 19 14 1 0 34 33 3 -1 5 0 231 242 5 -6 10 0 42 43 6 -4-12 1 29 21 1 0 423 431 3 0 5 0 332 329 3 -5 10 0 153 151 3 -3-12 1 14 21 1 0 423 431 3 0 5 0 160 143 3 -4 10 0 74 73 3 -2-12 1 22 23 1 0 48 44 2 -2 5 0 40 0 118 3 -4 10 0 74 73 3 -2-12 1 22 23 1 0 48 44 1 3 5 0 160 143 3 -4 10 0 74 73 3 -2-12 1 22 33 1 0 85 73 1 2 5 0 160 143 3 -4 10 0 72 73 2 0-12 1 97 102 1 0 207 206 2 4 5 0 0 163 161 4 0 10 0 197 204 1 3-12 1 78 78 1 0 207 206 2 4 5 0 0 86 88 3 1 10 0 197 204 1 3-12 1 78 78 1 0 320 319 3 7 5 0 83 77 3 2 10 0 169 171 3 4-12 1 76 70 1 0 320 319 3 7 5 0 83 77 3 2 10 0 169 171 3 4-12 1 96 94 1 0 320 319 3 7 5 0 83 77 3 2 10 0 169 171 3 4-12 1 96 94 1 0 320 319 3 7 5 0 83 77 3 2 10 0 169 171 3 4-12 1 96 94 1 0 320 319 3 7 5 0 85 75 2 5 3 6 310 0 212 92 0 5-12 1 109 105	ble 7. Observed and calculated structure factors for 1 k l 10F0 10Fc 10s h k l 10F0 10Fc 10s 0 0 679 677 5 5 4 0 20 25 8 -3 9 0 126 125 2 5-14 1 115 121 4 0 0 594 599 5 6 4 0 0 10 1 -2 9 0 78 78 3 6-14 1 37 30 8 0 0 244 248 4 7 4 0 59 60 4 -1 9 0 209 209 3 -3-13 1 6 6 3 65 5 0 0 255 254 4 8 4 0 66 72 5 0 9 0 267 267 2 -2-13 1 41 41 8 0 0 11 6 11 9 4 0 13 6 12 1 9 0 0 8 11 -1-13 1 20 2 10 0 0 201 203 3 -10 5 0 50 53 6 2 9 0 108 110 2 0-13 1 76 79 3 0 0 163 163 2 -9 5 0 0 111 1 3 9 0 132 136 3 1-13 1 81 84 3 0 0 266 20 12 -7 5 0 96 98 2 5 9 0 64 62 4 3-13 1 115 111 3 0 0 48 38 4 -8 5 0 113 117 2 4 9 0 81 80 3 2-13 1 11 8 11 0 0 26 20 12 -7 5 0 96 98 2 5 9 0 64 62 4 3-13 1 115 111 3 0 0 64 63 5 -6 5 0 94 99 2 6 9 0 70 67 4 4-13 1 108 116 4 1 0 36 33 8 -5 5 0 110 116 2 7 9 0 36 34 10 5-13 1 59 65 6 1 0 65 63 4 -3 5 0 191 179 3 -8 10 0 81 69 4 7-13 1 51 43 6 1 0 48 44 2 -2 5 0 40 21 3 -71 0 0 0 4 1 -512 1 19 4 18 1 0 34 33 3 -1 5 0 231 242 5 -6 10 0 42 43 6 -4-12 1 29 21 14 1 0 423 431 3 0 5 0 332 329 3 -51 0 0 153 151 3 -3-12 1 14 21 3 1 0 183 189 3 1 5 0 160 143 3 -4 10 0 74 73 3 -2-12 1 22 23 22 1 0 85 73 1 2 5 0 158 164 3 -3 10 0 50 50 3 -1-12 1 70 70 2 1 0 207 206 2 4 5 0 0 14 1 -1 10 0 192 195 6 1-12 1 79 70 2 1 0 207 206 2 4 5 0 86 88 3 1 -0 10 0 197 204 1 3-12 1 14 21 3 1 0 183 189 3 1 5 0 163 161 4 0 10 0 197 204 1 3-12 1 14 3 33 5 1 0 207 206 2 4 5 0 86 88 3 1 10 0 10 197 204 1 3-12 1 14 21 3 1 0 148 147 1 5 5 0 86 88 3 1 10 0 197 204 1 3-12 1 78 78 2 1 0 207 206 2 4 5 0 86 88 3 1 10 0 10 917 204 1 3-12 1 58 55 4 1 0 320 319 3 7 5 0 83 77 3 2 210 0 169 171 3 4-12 1 96 94 3 1 0 38 91 1 8 5 0 52 53 6 31 61 4 0 10 0 197 204 1 3-12 1 58 55 4 1 0 320 319 3 7 5 0 83 77 3 2 10 0 169 171 3 4-12 1 96 94 3 1 0 83 91 1 8 5 0 52 53 6 6 31 00 0 21 29 20 5-12 1 109 105 3	ble 7. Observed and calculated structure factors for 1 k l 10F0 10Fc 10s h k l 10F0 10Fc 10s h k l 10F0 10Fc 10s h k l 10F0 10Fc 10s h k 0 0 679 677 5 5 4 0 20 25 8 -3 9 0 126 125 2 5-14 1 115 121 4 6 -6 0 0 594 599 5 6 4 0 0 10 1 -2 9 0 78 78 3 6-14 1 37 30 8 7 -6 0 0 244 248 4 7 4 0 59 60 4 -1 9 0 209 209 3 -3-13 1 63 65 5 8 -6 0 0 255 254 4 8 4 0 66 72 5 0 9 0 267 267 2 -2-13 1 41 41 8 9 -6 0 0 201 203 3 -10 5 0 50 53 6 2 9 0 108 110 2 0-13 1 76 79 3 -8 -7 0 0 113 613 2 -9 5 0 0 11 1 3 9 0 132 136 3 1-13 1 81 84 3 -7 -7 0 0 163 163 2 -9 5 0 0 113 117 2 4 9 0 81 80 3 2-13 1 118 81 84 3 -7 -7 0 0 266 20 12 -7 5 0 96 98 2 5 9 0 64 62 4 3-13 1 115 111 3 -5 -7 0 0 266 20 12 -7 5 0 96 98 2 5 9 0 64 62 4 3-13 1 115 111 3 -5 -7 1 0 36 33 8 -5 5 0 110 116 2 7 9 0 36 34 10 5-13 1 0 9 1 -3 -7 1 0 36 33 8 -5 5 0 110 116 2 7 9 0 36 34 10 5-13 1 0 9 1 -3 -7 1 0 36 33 3 -1 5 0 231 242 5 -6 10 0 42 43 6 -4-12 1 29 21 14 1 -7 1 0 42 431 3 0 5 0 332 329 3 -5 10 0 153 151 3 -3-12 1 14 21 13 2 -7 1 0 48 44 2 -2 5 0 40 21 3 -7 10 0 0 4 1 -5-12 1 19 14 18 0 -7 1 0 48 44 2 -2 5 0 40 21 3 -7 10 0 0 4 1 -5-12 1 19 14 18 0 -7 1 0 48 44 1 -2 5 0 158 164 3 -3 10 0 50 50 3 -1-12 1 70 70 2 4 -7 1 0 48 441 2 -2 5 0 40 21 3 -7 10 0 0 74 73 3 -2-12 1 29 21 14 1 -7 1 0 48 441 -2 5 0 158 164 3 -3 10 0 50 50 3 -1-12 1 70 70 2 4 -7 1 0 48 441 -3 5 0 158 164 3 -3 10 0 50 50 3 -1-12 1 70 70 2 4 -7 1 0 48 441 -3 5 0 158 164 3 -3 10 0 50 50 3 -1-12 1 78 78 2 6 -7 1 0 183 189 3 1 5 0 160 143 3 -4 10 0 74 73 3 -2-12 1 22 23 22 3 -7 1 0 183 189 3 1 5 0 160 143 3 -4 10 0 74 73 3 -2-12 1 22 23 22 3 -7 1 0 183 189 3 1 5 0 160 143 3 -4 10 0 74 73 3 -2-12 1 78 78 2 6 -7 1 0 184 147 1 5 5 0 163 161 4 0 10 0 197 204 1 3 -12 1 78 78 2 6 -7 1 0 207 206 2 4 4 5 0 0 14 1 -10 0 0 197 204 1 3 -12 1 78 78 2 6 -7 1 0 320 319 3 7 5 0 83 77 3 2 10 0 169 171 3 4-12 1 96 94 3 9 -7 1 0 320 319 3 7 5 0 86 88 3 1 100 0 197 204 1 3 -21 2 1 00 94 3 9 -7 1 0 320 319 3 7 5 0 85 85 2 3 6 3 10 0 2 12 29 20 5-12 1 109 105 3 10 -7	ble 7. Observed and calculated structure factors for 1 k l 10Fo 10Fc 10s h k 1 0 0 679 677 5 5 4 0 20 25 8 -3 9 0 126 125 2 5-14 1 115 121 4 6 -8 1 0 0 594 599 5 6 4 0 0 10 1 -2 9 0 78 78 3 6-14 1 37 30 8 7 -8 1 0 0 244 248 4 7 4 0 59 60 4 -1 9 0 209 209 3 -3-13 1 63 65 5 8 -8 1 0 0 255 254 4 8 4 0 66 72 5 0 9 0 267 267 2 -2-13 1 41 41 8 9 -8 1 0 0 211 6 11 9 4 0 13 6 12 1 9 0 0 8 1 -1-13 1 20 2 10 10 -8 1 0 0 201 203 3 -10 5 0 50 53 6 2 9 0 108 110 2 0-13 1 76 79 3 -8 -7 1 0 0 163 163 2 -9 5 0 0 1 11 1 3 9 0 132 136 3 1-13 1 81 84 4 3 -7 -7 1 0 0 163 163 2 -9 5 0 96 98 2 5 9 0 64 62 4 3-13 1 118 111 -6 -7 1 0 0 266 20 12 -7 5 0 96 98 2 5 9 0 64 62 4 3-13 1 115 111 3 -5 -7 1 0 0 26 33 8 -5 5 0 110 116 2 7 9 0 36 41 0 5-13 1 0 9 1 -3 -7 1 1 0 36 33 8 -5 5 0 110 116 2 7 9 0 36 44 10 5-13 1 59 65 6 -2 -7 1 1 0 0 4 1 -4 5 0 86 88 1 -9 10 0 31 34 11 6-13 1 59 65 6 -2 -7 1 1 0 48 44 2 -2 5 0 40 21 3 -7 10 0 0 4 1 -5-12 1 19 14 18 0 -7 1 1 0 48 44 2 -2 5 0 40 21 3 -7 10 0 0 4 1 -5-12 1 19 14 18 0 -7 1 1 0 423 431 3 0 5 0 332 329 3 -5 10 0 153 151 3 -3-12 1 14 21 13 2 -7 1 1 0 48 44 2 -2 5 0 40 21 3 -7 10 0 0 4 1 -5-12 1 19 14 18 0 -7 1 1 0 48 44 2 -2 5 0 40 21 3 -7 10 0 0 4 1 -5-12 1 70 70 2 4 -7 1 1 0 48 44 1 -2 5 0 86 88 1 -9 10 0 153 151 3 -3-12 1 14 21 13 2 -7 1 1 0 48 44 2 -2 5 0 40 21 3 -7 10 0 0 4 1 -5-12 1 70 70 2 4 -7 1 1 0 48 44 1 -2 5 0 158 164 3 -3 10 0 50 50 3 -1-12 1 70 70 2 4 -7 1 1 0 48 147 1 5 0 0 218 211 3 -2 10 0 72 73 2 0-12 1 97 102 2 5 -7 1 1 0 48 147 1 5 0 0 163 161 4 0 10 0 197 204 1 3-1-12 1 78 78 2 6 -7 1 1 0 207 206 2 4 5 0 0 163 161 4 0 10 0 197 204 1 3-1-12 1 76 78 8 2 6 -7 1 1 0 203 319 3 7 5 0 83 77 3 2 10 0 169 171 3 4-12 1 96 94 3 9 -7 1 1 0 320 319 3 7 5 0 83 77 3 2 10 0 169 171 3 4-12 1 96 94 3 9 -7 1 1 0 320 319 3 7 5 0 83 77 3 2 10 0 169 171 3 4-12 1 109 105 3 10 -7 1 1 0 320 319 3 7 5 0 83 77 3 2 10 0 169 171 3 4-12 1 109 105 3 0 -7 1 1 0 320 319 3 7 5 0 83 77 3 2 10 0 169	ble 7. Observed and calculated structure factors for 1 k 1 10F0 10Fc 10s h k 1 10F0 0 0 679 677 5 5 4 0 20 25 8 -3 9 0 126 125 2 5-14 1 115 121 4 6 -8 1 106 0 0 244 248 4 7 4 0 59 60 4 -1 9 0 209 209 3 -3-31 1 63 65 5 8 -8 1 46 0 0 245 254 4 8 4 0 66 72 5 0 9 0 267 267 2 -2-13 1 41 41 8 9 -8 1 73 0 0 11 6 11 9 4 0 13 6 12 1 9 0 0 8 11 -1-13 1 20 2 10 10 -8 1 63 0 0 201 203 3 -10 5 0 50 53 6 2 9 0 108 110 2 0-13 1 76 79 3 -8 -7 1 55 0 0 163 163 2 -9 5 0 0 111 1 3 9 0 132 136 3 1-13 1 81 84 3 -7 -7 1 44 0 0 48 38 4 -8 5 0 113 117 2 4 9 0 81 80 3 2-13 1 115 111 8 11 -6 -7 1 25 0 0 264 63 5 -6 5 0 94 99 2 6 9 0 70 67 4 4-13 1 108 116 4 -4 -7 1 21 1 0 36 33 8 -5 5 0 110 116 2 7 9 9 0 36 34 10 5-13 1 0 9 1 -3 -7 1 86 1 0 0 44 1 -4 5 0 86 88 1 -9 10 0 31 34 11 6-13 1 59 65 6 -2 -7 1 75 1 0 48 44 2 -2 5 0 40 21 3 -7 10 0 0 41 -5-12 1 19 14 18 0 -7 1 25 1 0 48 44 2 -2 5 0 10 10 116 2 7 9 3 -8 10 0 81 69 4 7-13 1 51 43 6 -1 -7 1 25 1 0 48 44 2 -2 5 0 10 10 117 3 -8 10 0 81 69 4 7-13 1 51 43 6 -1 -7 1 25 1 0 48 44 2 -2 5 0 10 40 21 3 -7 10 0 0 4 1 -5-12 1 19 14 18 0 -7 1 25 1 0 48 44 2 -2 5 0 160 143 3 -4 10 0 74 73 3 -2-12 1 19 14 18 0 -7 1 25 1 0 48 44 2 -2 5 0 160 143 3 -4 10 0 74 73 3 -2-12 1 70 70 2 4 -7 1 25 1 0 48 44 1 3 -5 0 160 143 3 -4 10 0 74 73 3 -2-12 1 70 70 2 4 -7 1 25 1 0 48 44 1 3 -5 0 160 143 3 -4 10 0 74 73 3 -2-12 1 70 70 2 4 -7 1 25 1 0 48 44 1 3 5 0 128 211 3 -2 10 0 72 73 2 0-12 1 97 102 2 5 -7 1 1111 1 0 207 206 2 4 5 0 0 14 1 -1 10 0 192 195 6 1-12 1 78 78 2 6 -7 1 147 1 0 559 559 2 6 5 0 86 88 3 1 10 0 197 204 1 3-12 1 58 55 4 8 -7 1 58 1 0 320 319 3 7 5 0 83 77 3 2 10 0 169 171 3 4-12 1 99 04 3 9 -7 1 47 1 0 529 559 2 6 5 0 86 88 3 1 10 0 21 29 20 5-12 1 109 105 3 10 -7 1 47 1 0 320 319 3 7 5 0 83 77 3 2 10 0 169 171 3 4-12 1 99 04 3 9 -7 1 47 1 0 320 319 3 7 5 0 83 77 3 2 10 0 169 171 3 4-12 1 99 04 3 9 -7 1 47 1 0 320 319 3 7 5 0 83 77 3 2 10 0 169 171 3 4-12 1 90 94 3 9 -7 1 47 1 0 320	ble 7. Observed and calculated structure factors for 1 k 1 10F0 10Fc 10s h k 1 1 10F0 10Fc 10s h k 1 10F0 10Fc 10F0 10Fc 10s h k 1 10F0 10Fc 10Fc 10s h k 1 10F0 10Fc 10F0 10Fc 10s h k 1 10F0 10Fc 10Fc 10s h k 1 10F0 10Fc 10F0 10Fc 10s h k 1 10F0 10Fc 10Fc 10s h k 1 10F0 10Fc 10F0 10F0 10F0 10F0 10F0 10F0

[Note: To save space, only part of the first page of structure factors is printed out.]

PART III: APPENDICES

CHAPTER XII REFERENCE MATERIALS CONCERNING X-RAY DIFFRACTION ANALYSIS

- CHAPTER XIII A QUICK INTRODUCTION TO DOS COMMANDS
- CHAPTER XIV GROWING SINGLE CRYSTALS SUITABLE FOR DIFFRACTION ANALYSIS
- CHAPTER XV INDEX

<u>CHAPTER XII. REFERENCE MATERIALS CONCERNING X-RAY</u> <u>DIFFRACTION ANALYSIS</u>

I have prepared a list of many excellent reference materials on different aspects of X-ray crystallography that I have consulted, purchased, and/or are available in the YSU or comparable libraries.

A. CRYSTALLOGRAPHY TEXTS

1. Text Which Are Particularly Suitable for the Novice Crystallographer

- (1) G. Rhodes, "Crystallography Made Crystal Clear: A Guide for Users of Macromolecular Models", 1993, Academic Press, San Diego. QP 551.R48 1993
- (2) J. P. Glusker, M Lewis, and M. Rossi, "Crystal Structure Analysis for Chemists and Biologists", 1994, VCH, NY. QD 945.G583 1994 [Note: This is the text for the lecture component of Chemistry 832: Solid State Structural Methods.]
- (3) C. P. Brock, B. M. Craven, B. A. Frenz, E. Gabe, R. A. Sparks, C. E. Strouse, K. N. Trueblood, and B. C. Wang, Notes from the ACA "Course for Crystallographers," "Structure Analysis by X-ray Crystallography," 3rd Ed., 1995.

2. The International Tables

The single most important resource guide is the "International Tables of X-ray Crystallography." Current Volumes in X-ray Lab. Old Edition: QD 945.I55 1965 V.1 V.2 V.3

3. General Crystallography Texts

- (1) A. Hauptman, "Crystal Structure Determination: the Role of the Cosine Semi-Invariants",
- (2) A. Holden and P. Singer, "Crystals and Crystal Growing", Anchor Books-Doubleday, NT, 1960.
- B. Carpenter, "Principles of Crystal Structure Determination", 1969, W. A. Benjamin, NY. QD 945.C35
- (4) Coppens, "X-ray Charge Densities and Chemical Bonding".
- (5) D. Cullity, "Elements of X-ray Diffraction",
- (6) Drenth, "Principles of Protein X-ray Crystallography",
- (7) E. Alexander, "Diffraction Methods in Polymer Science", 1969, Wiley-Interscience, NY. QD 945.A365
- (8) E. Warren, "X-ray Diffraction", 1969, Addison-Wesley, Reading, MA. QD 945.W33
- (9) F. C. Ladd and R. A. Palmer, "Structure Determination by X-ray Diffraction", 3rd Edition, 1993, Plenum, NY. [1st edition: QD 945.L32 (1977). 2nd edition: QD 945.L32 1985.]

- (10) G. H. W. Milburn, "X-ray Crystallography; An Introduction to the Theory and Practice of Single Crystal Structure Analysis", 1973, CRC Press, Cleveland, OH. QD 945.M5 1973.
- (11) G. Rhodes, "Crystallography Made Crystal Clear: A Guide for Users of Macromolecular Models", 1993, Academic Press, San Diego. QP 551.R48 1993
- (12) Guinier, "X-ray Diffraction in Crystals, Imperfect Crystals, and Amorphous Bodies", 1963, W. H. Freeman, San Francisco. QD 945.G943
- (13) H. Brumberger, "Small-Angle X-ray Scattering; Proceedings of the Conference held at Syracuse University, June 1965", 1967, Gordon and Breach, NY. QC 482.S52
- (14) H. S. Lipson, "Crystals and X-rays", 1970, Wykeham, London. QD 945.L522
- (15) H. S. Lipson, "Interpretation of X-ray Powder Diffraction Patterns", 1970, St. Martin's Press, NY. QD 945.L52
- (16) H. Stout and L. H. Jensen, "X-ray Structure Determination; A Practical Guide", 1968, Macmillan, NY. QD 945.S8 Note: There is also a 2nd edition published in 1989.
- (17) H. W. Wyckoff, C. H. W. Hirs, and Serge N. Timasheff, "Diffraction Methods for Biological Macromolecules/Part A", 1985, Academic Press, Orlando, FL. QP 601.M49 vol. 114
- (18) H. W. Wyckoff, C. H. W. Hirs, and Serge N. Timasheff, "Diffraction Methods for Biological Macromolecules/Part B" 1985, Academic Press, Orlando, FL. QP 601.M49 vol. 115
- (19) Hammond, "The Basics of Crystallography and Diffraction",
- (20) Hargittai and M. Hargittai, "Symmetry Through the Eyes of a Chemist", 1995, Plenum, NY. QD 461.H268 1995.
- (21) J. C. Wilson, "Elements of X-ray Crystallography",
- (22) J. Cochran Wilson, "Elements of X-ray Crystallography", 1970, Addison-Wesley, Reading, MA. QD 945.W49
- (23) J. L. Amoros, M. J. Buerger, and M. C. De Amoros, "The Laue Method",
- (24) J. P. Glusker and K. N. Trueblood "Crystal Structure Analysis: A Primer", 1st Edition, 1972. QD 945.G58
- (25) J. P. Glusker, "Crystal Structure Analysis: A Primer", 2nd Edition, 1985, Oxford University Press, NY. QD 945.G58 1985.
- (26) J. P. Glusker, Editor, "Structural Crystallography in Chemistry and Biology", 1981, Hutchinson Ross Pub. Co., Stroudsburg, PA. QD 945.S87
- (27) J. P. Glusker, M Lewis, and M. Rossi, "Crystal Structure Analysis for Chemists and Biologists", 1994, VCH, NY. QD 945.G583 1994
- (28) J. R. Helliwell and P. M. Rentizepis, "Time Resolved Diffraction",
- (29) J. R. Wormald, "Diffraction Methods", 1973, Claredon Press, Oxford. QD 945.W63
- (30) J. W. Jeffery, "Methods in X-ray Crystallography", 1971, Academic Press, NY. QD 945.J36 1971
- (31) K. Tanner, "X-ray Diffraction Topography", 1976, Pergamon Press, NY. QD 945.T36 1976
- (32) L. V. Azaroff et al, "X-ray Diffraction", 1974, McGraw-Hill, NY. QC 482.D5 X7 1974
- (33) L. V. Azaroff, "Elements of X-ray Crystallography", 1968, McGraw-Hill, NY. QD 945.A85
- (34) M. J. Buerger, "The Precession Method in X-ray Crystallography", 1964, Wiley, NY. QD 945.B79

- (35) M. M. Woolfson, "An Introduction to X-ray Crystallography", 1970, Cambridge University Press, Cambridge. QD 945.W58
- (36) McPherson, "Preparation and Analysis of Protein Crystals", 1982, Wiley, NY. QP 551.M364 1982
- (37) R. Jenkins and R. Snyder, "Introduction to X-ray Powder Diffractometry", 1993, Wiley, NY. QD 482.D5 J46 1996
- (38) R. Rudman, "Low-temperature X-ray Diffraction: Apparatus and Techniques", 1976, Plenum Press, NY. QD 945.R77
- (39) R. A. Laudise, "The Growth of Single Crystals", Solid State Physics Series, N. Holonyak, Jr. Ed., Prentice-Hall, 1970.
- (40) S. Zevin and G. Kimmel, "Quantitative X-ray Diffractometry",
- (41) Sherwood, "Crystals, X-rays, and Proteins", 1976, Wiley, NY. QD 945.S46 1976
- (42) W. Mak and G. D. Zhou, "Crystallography in Modern Chemistry: A Resource Book of....",
- (43) W. Nuffield, "X-ray Diffraction Methods", 1966, Wiley, NY. QD 945.N83

B. REVIEW ARTICLES AND CHAPTERS ON CRYSTALLOGRAPHY

 E. A. V. Ebsworth, D. W. H. Rankin, & S. Cradock, "Structural Methods in Inorganic Chemistry", Second Edition, 1991, CRC Press, Boca Raton, Florida, QD 95.E29.1991b [1st edition, 1987, QD 95.E29 1987] (\$69.95 from Bookstore)

(2)

In most polymer characterization textbooks there is a section or chapter on X-ray characterization methods. A listing of some of these books can be found on my WEB page (as of December, 1998) at (<u>http://www.as.ysu.edu/~adhunter/Teaching/Chem824/index.html</u>).

C. JOURNALS

1. Educational and General Interest Journals Which Regularly Publish Articles on X-ray Diffraction Methods

- (1) The Journal Of Chemical Education
- (2) Chemical and Engineering News
- (3) Science
- (4) Nature
- (5) Physics Today

⁽⁴⁴⁾

2. Journals Devoted Largely to X-ray Crystallography

- (1) Acta Crystallographica. Section A. Foundation of Crystallography. QD 901.A25
- (2) Acta Crystallographica. Section B. Structural Science. QD 901.A26
- (3) Acta Crystallographica. Section C. Crystal Structure Communications. QD 901.A27
- (4) Acta Crystallographica. Section D. Biological Crystallography. QD 901.A28

3. Synthetic Chemistry Journals Which Deal With Crystallographic Results Particularly Rigorously

- (1) Journal of the American Chemical Society
- (2) Inorganic Chemistry
- (3) Organometallics
- (4) Science
- (5) Nature
- (6) Nature: Structural Biology

D. REFERENCES AND LITERATURE SOURCES ON X-RAY DIFFRACTION

1. Papers Discussing Teaching Methods in Crystallography

a) Interesting Journal of Chemical Education Papers

The best regular source of papers on the educational aspects of crystallography is the Journal of Chemical Education. Several of the most interesting of these are listed below:

- (1) Hunter, A. D.: "Crystallographic Structure Determination: An Experiment for Organic Analysis and other Non-Traditional Venues," *Journal of Chemical Education*, **1998**, *75*, 1297-1299 (plus on-line supplementary materials at http://jchemed.chem.wisc.edu/Journal/issues/1998/Oct/abs1297.html).
- (2)

b) Journal of Chemical Education Searches

If you go to their WEB site at (<u>http://jchemed.chem.wisc.edu/Journal/</u>) and their on-line index (<u>http://jchemed.chem.wisc.edu/Journal/Search/index.html</u>) and type in crystallography, X-ray, diffraction, crystal, etc., you can get an up to date listing of all papers they have published on this topic.

A listing of such a *JCE* search made for the "keyword" "crystallography" on October 28, 1998 looks as follows (two less relevant items have been deleted):

Search results 1 - 8 of 8 found	
 Search results 1 - 8 of 8 found Teaching Protein Crystallization by the Gel Acupuncture Method J. Chem. Educ. 1998 75 442. (Apr 1998) Cady, Susan G. Use of Pom Pons To Illustrate Cubic Crystal Structures J. Chem. Educ. 1997 74 794. (Jul 1997) Laing, Michael An Inexpensive Kit for Constructing Models of Crystals J. Chem. Educ. 1997 74 795. (Jul 1997) Hardgrove, Jr., George L. Teaching Space Group Symmetry through Problems J. Chem. Educ. 1997 74 797. (Jul 1997) Suh, Il-Hwan; Park, Koon Ha ; Jensen, William P.; Lewis, David E. Molecules, Crystals, and Chirality J. Chem. Educ. 1997 74 800. (Jul 1997) 	
 7. 8. Masson, Bernard L. X-ray Powder Diffraction Simulation with a Microcomputer J. Chem. Educ. 1996 73 918. (Oct 1996) 	

A listing of such a search made for the "title" "crystallography" on October 28, 1998 looks as follows:

 Search results 1 - 16 of 16 found
 Bond, Marcus R.; Carrano, Carl J. Introductory Crystallography in the Advanced Inorganic Chemistry Laboratory. J. Chem. Educ. 1995 72 451.
 Rudman, Reuben. Isidor Fankuchen and crystallography (LTE). J. Chem. Educ. 1992 69 775.
 Kettle, Sidney F. A.; Norrby, Lars J. The Brillouin zone--An interface between spectroscopy and crystallography. J. Chem. Educ. 1990 67 1022.
 Glusker, Jenny P. Teaching crystallography to noncrystallographers (SYMP). J. Chem. Educ. 1988 65 474.
 Wuenseh, Bernhardt J. The teaching of crystallography to materials scientists and engineers (SYMP). J. Chem. Educ.

1988 65 494.
6. Julian, Maureen M. Isabella L. Karle and a new
mathematical breakthrough in crystallography
(PROFILES). J. Chem. Educ. 1986 63 66.
7. Affholter, Kathleen A. Egg your optical crystallography
students on. J. Chem. Educ. 1983 60 196.
8. Brady, K. T. Models as an aid to courses in
crystallography and mineralogy. J. Chem. Educ. 1983 60
36.
9. Webster, M. An introduction to X-ray crystallography-two
computer programs (CS). J. Chem. Educ. 1981 58 555.
10. March, Richard E.; Nordman, Christer E. Interpretation of
a Patterson map-a dry-lab experiment in X-ray
crystallography (IE). J. Chem. Educ. 1977 54 318.
11. Howald, James C.; Smith, Gerald D. Crystallography-a
January term on the properties of crystals. J. Chem. Educ.
1976 53 224.
12. Kauffman, George B. Crystals as molecular compounds.
Paul Pfeiffer's application of coordination theory to
crystallography. J. Chem. Educ. 1973 50 277.
13. Allsobrook, A. J. R.; Brown, M. E.; Glasser, L. Xtal-line.
A board game in crystallography. J. Chem. Educ. 1973 50
688.
14. Waser, Jurg. Pictorial representation of the Fourier method
of X-ray crystallography. J. Chem. Educ. 1968 45 446.
15. Boer, F. Peter; Jordan, Truman H. X-ray crystallography
"experiment." Powder patterns for alkali halides. J. Chem.
Educ. 1965 42 76.
16. Macintyre, Walter M. X-ray crystallography as a tool for
structural chemists. J. Chem. Educ. 1964 41 526.

A listing of such a *JCE* search made for the "title" "diffraction" on October 28, 1998 looks as follows (3 less relevant items have been deleted):

Search results 1 - 35 of 35 found

- Butera, R. A.; Waldeck, D. H. X-ray Diffraction Investigation of Alloys J. Chem. Educ. 1997 74 115. (Jan 1997)
 Description of Content of Co
- 2. Pope, Christopher G. X-ray Diffraction and the Bragg

Equation J. Chem. Educ. 1997 74 129. (Jan 1997)
3. Masson, Bernard L. X-ray Powder Diffraction Simulation
with a Microcomputer J. Chem. Educ. 1996 73 918. (Oct
1996)
4. Hanson, Robert M.; Bergman, Sara A. Data-Driven
Chemistry: Building Models of Molecular Structure
(Literally) from Electron Diffraction Data, J. Chem. Educ.
1994 71 150.
5.
6. Pu. Oian. Simulation of X-ray powder diffraction (CS). J.
Chem. Educ. 1992 69 815.
7. Rosenthal, Jeffrey, Spreadsheet calculations for X-ray
powder diffraction patterns (BULLETIN). J. Chem. Educ.
1991 68 A285
8. Klier, Kamil: Taylor, J. Ashley, Diffraction of a laser light
by a memory chip (TD). J. Chem. Educ. 1991 68 155.
9 Lisensky George C : Kelly Thomas F : Neu Donald R :
Ellis Arthur B The ontical transform: Simulating diffraction
experiments in introductory courses I Chem Educ 1991
68 91
10 Goldberg Stephen Z On an X-ray diffraction pattern
simulator (ITE) I Chem Educ 1991 68 969
11 Rodriguez Silvio On an X-ray diffraction pattern simulator
(LTE) I Chem Educ 1991 68 969
12 Spencer Bertrand H · Zare Richard N Direct
visualization of Bragg diffraction with a He-Ne laser and an
ordered suspension of charged microspheres I Chem
Educ 1991 68 97
13 Segschneider Claudia: Versmold Heiner A simple Bragg
diffraction experiment with harmless visible light I Chem
Educ 1990 67 967
14 Rodriguez Gonzalo: Rodriguez Silvio An X-ray
diffraction pattern simulator (CS) I Chem Educ 1989 66
648
15 Glasser I. Diffraction at your finger tips I. Chem. Educ
1988 65 707
16
17 Speakman I C The discovery of X-ray diffraction by
crystals (SBS) I Chem Educ 1980 57 489
18 Goldberg Stephen Z. Two computer programs for the
simulation of X-ray diffraction phenomena I Chem Educ
1979 56 227
19 Williams Jack M. Combining residual entropy and
diffraction results to understand crustal structure. I Chem
Educ 1975 52 210

20. Brisse, F.; Sundararajan, P. K. A practical method of
simulating X-ray diffraction. J. Chem. Educ. 1975 52 414.
21. Nathan, Lawrence C. Computer analysis of X-ray
diffraction patterns of cubic substances. J. Chem. Educ.
1975 52 438.
22. Shields, K. G.; Kennard, C. H. L. A novel X-ray powder
diffraction experiment. J. Chem. Educ. 1974 51 265.
23. Lippert, E. L., Jr. Ambiguous unknowns for X-ray
diffraction identification. J. Chem. Educ. 1973 50 771.
24. Pavkovic, S. F. X-ray diffraction by crystal planes in real
space and reciprocal space. J. Chem. Educ. 1972 49 237.
25. Knox, James R. Protein molecular weight by X-ray
diffraction. J. Chem. Educ. 1972 49 476.
20. Wilson, F. C. Radiation salely in the X-ray diffraction lab
(Salety). J. Chemi. Educ. 1970 47 A97.
Part 1 Safety and generators I Chem Educ 1967 44
A7.
28. Rudman, Reuben, X-ray diffraction analysis (Chem Inst.)
Part 2. X-ray tubes and monochromatization. J. Chem.
Educ. 1967 44 A99.
29. Rudman, Reuben. X-ray diffraction analysis (Chem Inst.)
Part 3. Detectors. J. Chem. Educ. 1967 44 A187.
30. Rudman, Reuben. X-ray diffraction analysis (Chem Inst.)
Part 4. Powder cameras and techniques. J. Chem. Educ.
1967 44 A289.
31. Rudman, Reuben. X-ray diffraction analysis (Chem Inst.)
Part 5. Single crystal methods. J. Chem. Educ. 1967 44
A399.
32. Rudman, Reuben. X-ray diffraction analysis (Chem Inst.)
Part 6. Single crystal methods (continued) and
miscellaneous methods. J. Chem. Educ. 1967 44 A499.
55. Rudman, Reuben. Laboratory experiments in
10w-temperature X-ray diffraction. J. Chem. Educ. 1907
34 Ryland Ada I X-ray diffraction I Chem Educ 1058 35
80
35.

A listing of such a *JCE* search made for the "keyword" "crystal" on October 28, 1998 looks as follows (the "title" search produced 220 entries, some less relevant items have been deleted):

Search results 1 - 48 of 48 found 1. Teaching Protein Crystallization by the Gel Acupuncture Method J. Chem. Educ. 1998 75 442. (Apr 1998) 2. 3. Cady, Susan G. Use of Pom Pons To Illustrate Cubic Crystal Structures J. Chem. Educ. 1997 74 794. (Jul 1997) 4. Laing, Michael An Inexpensive Kit for Constructing Models of Crystals J. Chem. Educ. 1997 74 795. (Jul 1997) 5. Hardgrove, Jr., George L. Teaching Space Group Symmetry through Problems J. Chem. Educ. 1997 74 797. (Jul 1997) 6. Suh, Il-Hwan; Park, Koon Ha; Jensen, William P.; Lewis, David E. Molecules, Crystals, and Chirality J. Chem. Educ. 1997 74 800. (Jul 1997) 7. 8. Masson, Bernard L. X-ray Powder Diffraction Simulation with a Microcomputer J. Chem. Educ. 1996 73 918. (Oct 1996) 9. 10. Laporterie, A. The microscale organic laboratory: A very simple method of filtration and recrystallization (ML). J. Chem. Educ. 1992 69 A42. 11. 12. Ali, Saqib; Kalsoom, Abida. Selection of recrystallization solvent. J. Chem. Educ. 1991 68 877. 13. Qian, Chengyi. A useful method for obtaining crystals from viscous oils. J. Chem. Educ. 1990 67 355. 14. 15. Craig, Rhoda E. R. Rapid, efficient determination of recrystallization solvents at the microscale level. J. Chem. Educ. 1989 66 88. 16. Landgrebe, John A. Microscale recrystallizations with a disposable pipet. J. Chem. Educ. 1988 65 460. 17. Pyriadi, Thanun M. A simple and convenient method for crystallization of thermally unstable or highly soluble compounds. J. Chem. Educ. 1987 64 813. 18. Hiegel, Gene A. Selecting a solvent for recrystallization. J. Chem. Educ. 1986 63 273. 19. 20. Scaife, Charles W. J.; Dubs, Richard L. Association of ions and fractional crystallization: a general chemistry experiment. J. Chem. Educ. 1983 60 418. 21. Mroczkowski, Stanley. Needs and opportunities in crystal

growth. J. Chem. Educ. 1980 57 537.
22. Baumann, Jacob B. Solvent selection for recrystallization:
An undergraduate organic experiment. J. Chem. Educ.
1979 56 64.
23. Chu, Samuel ST. Crystallization by the "gauze bandage"
method. J. Chem. Educ. 1977 54 639.
24. Lewis, Dennis A. Oil formation. An "unexpected" difficulty
in an elementary organic laboratory experiment. J. Chem.
Educ. 1975 52 601.
25. Horak, V.; Crist, DeLanson R. Small scale organic
techniques: Filtration and crystallization. J. Chem. Educ.
1975 52 664.
26.
27. Bierne, David; Smith, Steven; Hoogenboom, Bernard E.
Recrystallization without tears. J. Chem. Educ. 1974 51
602.
28. 20. Courthlin Charles Theory of empted growth L Cham
29. Caugnini, Charles. Theory of crystal growth. J. Chem.
20 Shaw C Frank III: Allred A I Crystallization and
filtration apparatus for low temperatures and inert
atmosphere I Chem Educ 1970 47 164
31
32. Fischinger Andrew I. A flotation method for growing large
single crystals. J. Chem. Educ. 1969 46 486.
33. Gravatt, C. C.: Gross, Paul M. Apparatus for the
purification and crystal growth of organic compounds. J.
Chem. Educ. 1969 46 693.
34. Kaye, Irving Allan. Purification of low-melting compounds.
J. Chem. Educ. 1969 46 696.
35. Giese, Roger. Low temperature recrystallization tube. J.
Chem. Educ. 1968 45 610.
36. Bluhm, Aaron L. Apparatus for semimicro low temperature
crystallizations. J. Chem. Educ. 1958 35 200.
37. Schoen, Herbert M.; Grove, C. S., Jr.; Palermo, Joseph
A. The early history of crystallization. J. Chem. Educ.
1956 33 373.
38. Fehlner, Francis P. Growing crystals. J. Chem. Educ.
1956 33 449.
39. Svanoe, Hans. Crystallization of organic compounds from
solution. J. Chem. Educ. 1950 27 549.
40. Stone, Charles H. Crystallization. J. Chem. Educ. 1946 23
404. 41 Dever Arthur W Agitation and gradullization a practical
41. Devol, Althur W. Aghanon and Crystallization: a practical laboratory experiment. I. Chem. Educ. 1945 22 200
aboratory experiment. J. Chem. Educ. 1943 22 200.

42. Fernelius, W. Conard; Detling, Kenneth D. Preparation of
crystals of sparingly soluble salts. J. Chem. Educ. 1934 11
176.
43. Dunning, John; Pratt, Philip; Lowman, O. E. What starts
precipitation from a supersaturated solution? J. Chem.
Educ. 1934 11 624.
44. Stone, Charles H. Some experiments with crystals. J.
Chem. Educ. 1932 9 1107.
45. Fliedner, Leonard J. The preparation and preservation of
large crystals of chrome alum. J. Chem. Educ. 1932 9
1453.
46. Tauber, Henry; Kleiner, Israel S. A convenient method for
the crystallization of sugars and other organic substances.
J. Chem. Educ. 1932 9 1970.
47. Fisher, H. R. Crystallization. J. Chem. Educ. 1931 8 149.
48. Stone, Charles H. Some experiments in crystallization. J.
Chem. Educ. 1930 7 2170.

c) Papers from other journals concerning the teaching of crystallography and/or general aspects of crystallography

General interest journals such as those listed above also regularly publish interesting an enlightening papers. A selection of ones that I use for my class include:

- (1) A Special Section in *Science*, August **1997**, pages 1213-1219, on synchrotron radiation sources.
- (2) A Special Section in Physics Today, November 1995, pages 23 to 48, entitled "X-Rays 100 Years Later" on the history of X-ray diffraction.
- (3) "Optical Transform Kit: Simulating Diffraction Experiments in Introductory Courses," 2nd Ed., 1994, Institute for Chemical Education.
- (4)

2. Papers Discussing Strategies for Growing Crystals

Strategies for growing single crystals have been most systematically developed by people interested in macromolecular structures where the problem of growing quality single crystals are most severe. However, some relevant papers have been written on this topic.

- (1) M. P. Byrn, 6 others, and C. E. Strouse, "Porphyrin Sponges: Conservation of Host Structure in over 200 Porphyrin-Based Lattice Clathrates," *JACS*, **1993**, *115*, 9480-9497.
- (2) C. Reichardt, "Solvents and Solvent Effects in Organic Chemistry," 2nd Ed., VCH, NY, **1990**.

(3)

3. Papers on Technical Aspects of X-ray Crystallography

These is a massive literature on this topic but little of it is easily accessible to the crystallographic novice. Some of the more accessible papers, or at least the most valuable to brute ones way through, as listed below:

- (1) R. E. Marsh, "Some Thoughts on Choosing the Correct Space Group," Acta. Cryst. B, 1995, B51, 897-907. [Note: This is a very important paper on determining space groups as Professor Marsh is the world expert on this topic and if you aren't careful, one day one of your papers might be "Marshed."
- (2) N. Niimura, et. al., "Neutron Laue Diffractometry with an imaging plate provides and effective data collection regime for neutron protein crystallography," *Nature Structural Biology*, **1997**, *4*, 909-914.
- (3) T. Koritsanszky, et. al., "Accurate Experimental Electronic Properties of DL-Proline Monohydrate Obtained within 1 Day," *Science*, **1998**, *279*, 356-358.
- (4) S. Borman, "New Class of Diffractometer Speeds X-ray Crystal Structure Determinations," Chemical and Engineering News, March 11, 1996, 30-32.
- (5) W. Roush, "Analyzing Molecular Structure With Astronomical Speed," Science, February 23, 1996, 1060.
- (6)

4. References on Mosaic Tiling, Escher Patterns, etc.

Understanding of repeating motifs, mosaic tiling, Escher patterns, etc., is very helpful in understanding the repeating units of solids. There are many resources for doing so. For example:

- (1) Have you students identify the two dimensional unit cells in samples of wallpaper. From the discount bin, these can be purchased for a few dollars a roll.
- (2) For a nice WEB page on complex two dimensional tiling patterns, including an introduction to M. C. Escher's work (<u>http://hyperion.advanced.org/16661/index2.html</u>).
- (3) "The M. C. Escher Coloring Book," 1995, Harry N. Abrams, Inc.
- (4)

5. Allen Hunter's Papers That Contain an X-ray Crystallographic Component

Most of my papers have had a substantial crystallographic component. My current CV is available from my WEB site (<u>http://www.as.ysu.edu/~adhunter/Research/ADHpubs.html</u>) and lists these comprehensively.

E. WEB BASED MATERIALS.

1. WEB Based Instructional Materials

- (1) The IUCr Commission on Crystallographic Teaching WEB Site currently contain 19 html formatted pamphlets on crystallographic teaching that may be downloaded from (<u>http://www.iucr.ac.uk/</u>) and printed for individual study and use.
- (2) The IUCr WEB Site contains detailed instructions on CIF files and their preparation that may be downloaded from (<u>http://www.iucr.ac.uk/iucr-top/cif/index.html</u>).
- (3) Paul Boyle at North Carolina State University maintains a WEB page devoted to methods of growing singles crystals at (<u>http://laue.chem.ncsu.edu/web/GrowXtal.html</u>).
- (4) Kevin Cowtan maintains an excellent WEB site for the interactive teaching of Fourier transforms relevant to crystallography at (http://www.yorvic.york.ac.uk/~cowtan/fourier/fourier.html).
- (5) Kent Wilson at UCSD offers an excellent WEB site about diffraction and crystals at (<u>http://sdchemw1.ucsd.edu/education/xraydiff/xraydiff.html</u>).
- (6)

2. WEB Sites Devoted to Various Aspects of X-ray Crystallography

- (1) The American Crystallographic Association, ACA, home page has many valuable links at (<u>http://www.hwi.buffalo.edu/aca/</u>).
- (2) Access to the Cambridge Structural Database, CCDB, for small molecules is essential to all chemists and it is located at (<u>http://www.ccdc.cam.ac.uk/</u>).
- (3) The Protein Data Bank, PDB, is similarly essential for macromolecular crystallographers at (<u>http://www.pdb.bnl.gov/pdb-bin/pdbmain</u>).
- (4) Tony Day has produced an excellent WEB site detailing the Source of Stability in Proteins at (<u>http://www.cryst.bbk.ac.uk/PPS2/projects/day/TDayDiss/index.html</u>).
- (5) John C. Huffman at the Indiana University Molecular Structure Center has an *excellent set of links* on its WEB site and is a source of crystallographic data sets at (<u>http://www.iumsc.indiana.edu</u>).
- (6)

3. WEB Sites on Diffraction Hardware and Software

- (1) The IUCr maintains a comprehensive listing (currently 84 pages long) of software useful in X-ray crystallography, the SINCRIS list, at (http://www.iucr.ac.uk/).
- (2) Bruker AXS (Siemens) has a useful home page at (http://www.siemens-xray.com/).
- (3) The National University of Ireland at Galway has a freeware structure solution package including training tools at (<u>http://www.ucg.ie/cryst/software.htm</u>).
- (4) Steffen Weber at NIRIM in Tsukuba Japan has an freeware structure solution package available at (<u>http://www.nirim.go.jp/~weber/</u>).

- (5) The WebLab Viewer (and its free WebLab Viewer Lite version) from Molecular Simulations (i.e., at <u>http://www.msi.com</u>).
- (6) RasMol and Chime are available from (<u>http://klaatu.oit.umass.edu/microbio/rasmol/</u>).

(7)

CHAPTER XIII. A QUICK INTRODUCTION TO DOS COMMANDS

DOS is the basic underlying operating system of IBM compatible computers(i.e., Wintel computers). On our Gateway2000[®] Pentium computers, **DOS** is the operating system used by **XSCANS** and **SHELXTL** (we are currently installing **SHELXTL** on our WINDOWS NT machines, **XSCANS** runs only under DOS).

Common Commands You'll Use

- **a**: **[ent]** tells the CPU to read files, directories, etc., from the disk in the floppy drive which is designated as the "A" drive.
- **c: [ent]** tells the CPU to read files, directories, etc., from the hard drive which is designated as the "C" drive.
- cd c:\C832\YOURNAME\COMPOUND [ent] tells the CPU to change to the COMPOUND directory in the YOURNAME directory in the C832 directory.
- **cd** \ **[ent]** tells the CPU to go back to the main directory on the current drive.
- cd.. [ent] goes back one level.
- cd name [ent] goes up one level to the file with the name "name".
- **Copy** [ent] The copy command can be written with one or two arguments. If written with one, i.e., copy STUFF [ent] it tells the CPU to copy "STUFF" (which includes disk, directory, and filename info) to the current drive and directory, e.g., copy a:\HUNTER\pig.nut [ent] would copy the file pig.nut in the directory HUNTER in drive a to the current drive and directory. If written with two arguments, it copies from the first to the second, e.g., copy a:\pig.nut c:\NOSE* [ent] would copy the pig.nut file from drive a to the same name in directory NOSE on drive c. If the file names in the source and destination are different, the file is renamed while copying.
- **copy a:***.* **[ent]** tells the CPU to copy all of the files on the floppy drive to the current directory on the current (hard) drive.
- **copy a:\name.p4p [ent]** tells the CPU to copy the file name.p4p (or any other designated file you put in) from the disk in the floppy drive to the current directory on the current (hard) drive.
- **copy name.* a:*.* [ent]** tells the CPU to copy all of the files name.* (i.e., * is a wild card) to the disk in the floppy drive without changing their names.

- **copy name.ins a:\name.int [ent]** tells the CPU to copy the designated file (in this case name.ins) from the current directory of the current (hard) drive to the disk in the floppy drive and to rename it (to name.int in this case) while doing so.
- copy **name.p4p a:***.* [ent] tells the CPU to copy the designated file (in this case name.p4p) from the current directory on the current (hard) drive to the disk in the floppy drive without changing its name.

dir [ent] tells the CPU to give you the contents of the current directory.

dir a: [ent] tells the CPU to give you the contents of the "a" drive.

dir name.* [ent] tells the CPU to give you the names of all files name.* in the current directory.

edit name.* [ent] tells the CPU to open the specified file so that you can edit its contents.

- **md c:\C832\YOURNAME\COMPOUND [ent]** tells the CPU to make a directory (file folder) called COMPOUND in a directory called YOURNAME in a directory called C832 on drive "C". Each of these directory names can be up to eight alphanumeric characters long.
- **Print name.big [ent]** tells the CPU to print the file name.big (for the old **Windows/DOS** machines).
- **Copy name.big Prn [ent]** tells the CPU to print the file name.big (for **Windows** 95 machines even when they are running under **DOS**).
- rd c:\C832\YOURNAME\COMPOUND [ent] tells the CPU to delete the directory (file folder) called COMPOUND in a directory called YOURNAME in a directory called C832 on drive "C". The directory must be empty first.

ren name1 name2 [ent] tells the CPU to rename the file name1 as name2.

<u>CHAPTER XIV. GROWING SINGLE CRYSTALS SUITABLE FOR</u> <u>DIFFRACTION ANALYSIS</u>

A. GENERAL PRINCIPLES OF GROWING SINGLE CRYSTALS

Most synthetic chemists consider the growing of quality single crystals to be more of an art form than a science. To support this belief, they will point to many things: most often the high degree of chance that seems to be involved in getting such crystals and the fact that some people just seem to have "green thumbs." There is much truth to these contentions but experience has shown that a fuller understanding of crystal growth and solvent properties and careful analysis of past successes and failures can lead to more consistently positive results. Indeed, protein crystallographers have achieved excellent levels success in this area and we synthetic chemists could learn a lot from their thinking process.

1. Rates of Crystal Growth

The laws of thermodynamics tell us that the slower a crystal grows the lower the levels of entropy induced defects to its perfection. Dramatic evidence for this can be seen in the nearly perfect crystals often observed for mineral which crystallize over periods measured in years and millennia. In a lab setting, experience has shown that crystals suitable for diffraction analysis typically grow best over periods of days. Occasionally a quality crystal will be found that formed accidentally while one was taking a solution quickly to dryness, but such cases are the happy exception. Typically when one sets up a crystallization, the best crystals will have formed between one day and a week later. In my experience, the probability of a crystallization proceeding successfully drops off dramatically after the first few weeks, although again I have seen happy exceptions to this.

2. General Conditions for Crystal Growth

Most types of crystallization proceed best in areas of the lab where the temperature remains relatively constant, vibration levels are minimal, and the samples are in the dark. This is often a little used cupboard, closet, or back room. Remember, convection is generally your enemy so try to keep the temperatures relatively constant. In addition, convection is naturally lower in more viscous solvents, ones with less dependence of their density on temperature, and in narrow containers. Since crystallization always takes time and chemists are an impatient lot, there is a tendency to check the samples too often. While hard to avoid, the handling which results is generally detrimental to optimum crystal growth. I therefore recommend that one doesn't check their samples more than once a day.

3. Solvent Properties and Saturated Solutions

Crystals must be grown from saturated solutions. For optimum crystal growth, the compound should be moderately soluble under the crystallization conditions. If it is too soluble then at saturation one will tend to get crystals growing together in clumps. If it is not soluble enough, then there is not enough solute around to supply the growing crystal surface and one tends to get small crystals. To get the correct solubilities one should carefully match the solute and solvent. One can start this process by consulting the literature for parameters like solvent polarity and dielectric constant as well as one's own experience. However, the best procedure is to systematically try different solvents and solvent combinations until you find a half dozen or so where your sample is moderately soluble. In my experience with neutral (and a few ionic) organometallic, inorganic, and organic compounds, the solvents of choice varied dramatically with the class of compounds. However, I typically had the most success at growing single crystals with combinations of three solvents, namely: CH₂Cl₂, toluene, hexanes with a few others being successful less often, namely: CDCl₃, CH₃CN, acetone, ethanol, methanol, THF, and ether. With experience and careful experimentation, you will find a good combination for your system!

4. Master Several Favorite Methods

To get really proficient at growing crystals takes sufficient practice with a method that one masters it. When this happens, one gets very attuned to subtle clues and the rate of ones success increases dramatically. Because of this phenomenon, skilled crystal gardeners will tend to have two or three techniques with which they will get almost all of their success.

B. PROVEN METHODS FOR GROWING CRYSTALS

In the following sections, are listed some of the most commonly used and/or most promising methods for growing single crystals that I have used or considered using in my research.

Safety Tip: Most crystallizations involve one or more components that are moderately or extremely flammable Although crystallizations typically involve only small solvent quantities, one must still use the best safety procedures and equipment. In particular, flammable materials must be handled with care.

1. Crystallization by Slow Evaporation

Perhaps the most widely used method for growing single crystals is this one in which one takes a solution of your target molecule that is not quite saturated and slowly allows the solvent to evaporate. Once saturation is reached, crystals start to form and the continued evaporation provides a continual source of solute molecules to add to the growing faces.

Typical experimental methods include:

- One places the solution in a vial or tube in which the lid is pierced by a small pinhole to allow the solvent vapors to slowly diffuse out.
- One places the solution in a vial or tube in which the lid is made of a material which is somewhat permeable to the solvent vapors.
- For air sensitive compounds, one can carry out these procedures in an inert atmosphere (i.e., a glove box, glove bag, or a larger container such as a large jar or dessicator).
- •

2. Crystallization by Cooling

In almost all cases solubility decreases with temperature. One can take advantage of this by dissolving your solute in a solvent system to give a near saturated solution at one temperature and then letting the system cool to a lower temperature. If one is blessed with access to a water bath or crystal growing cabinet that has temperature ramp capabilities, cooling times of a day to a week or more are typically chosen. Surprisingly, the cooling times of only a few hours or over night which are all that one can normally get using "natural" thermal gradients are also often successful.

Typical experimental methods include:

- Dissolving the sample at some elevated temperature and then insulating the container (e.g., with cotton wool, metal foil, and/or a large thermal buffer) and letting the sample cool slowly to ambient temperatures.
- Dissolving the sample at or near room temperature and then placing the (perhaps) insulated container into an approved lab fridge or freezer.
- •

3. Crystallization Using Mixed Solvents and Solvent Diffusion in the Gas Phase

In this method, one slowly adjusts the composition of a mixed solvent system having two solvents. The solute should be moderately soluble in the "good" solvent but mostly insoluble in the "poor" solvent.

Typical experimental methods include:

- In one variant, you first dissolve the solute in the better solvent and then add the poorer solvent slowly.
 - Sometimes this can be done by dropwise addition of the poorer solvent.
 - Sometimes this can be done by using an extremely low velocity solvent pumps (i.e., typically a syringe pump) to add the second solvent.
- In another variant, you remove the better solvent.

- This can be done by having the better solvent evaporate out of the system because it is more volatile.
- This process is aided if one adds a selective adsorbent to a container holding the sample vial.
- In the third variant, the better solvent is removed while the poorer is added. One sets up the apparatus so that the second solvent is transferred into the mixed system (and the first solvent commonly diffuses out as well) by diffusion through the gas phase.
 - In the first apparatus, one takes a sample vial containing the solute and good solvent and places it into a second larger container having the poorer solvent in its bottom or a second sample vial.
 - In the second apparatus, two tubes are connected by a bridge through which the solvents can diffuse (i.e., this apparatus is shaped somewhat like a capital "H").

•

4. Crystallization by Solvent Layering

An important variant to the previous technique relies on the fact that solvents of substantially different densities mix remarkably slowly when they are not stirred. One can take advantage of this by dissolving the solute in the better solvent and then adding a (bottom or preferably top) layer of the poorer solvent. If this system is not stirred, shaken, or vibrated too much I have seen it take several days for the two layers to mix. The resulting slow diffusion of solvents across the boundary layer often results in excellent crystals growing there.

Typical experimental methods include:

- I commonly dissolve compounds in dense chlorinated solvents such as CH₂Cl₂ and then carefully add a top layer of less polar and less dense solvents (e.g. hexanes, ether, toluene).
- If your compound is water soluble, you can vary the density and solvent properties of the two water layers by having very different salt concentrations in each. Protein crystallographers use this technique widely.
- •

5. Crystallization by Diffusion Through Capillaries and Gels

Because of their inherent viscosities and in the absence of convection, solvents typically diffuse very slowly though narrow bore capillaries.

Typical experimental methods include:

• This general procedure can be done with equipment shaped either as a capital "H" with the capillary being the cross bar or as a vertical tube with a constriction in the middle. The second apparatus is generally easier to make and fill.

- I have typically dissolved my solute in a more dense solvent and placed this in the bottom half of the tube so that the solution just comes up to the middle of the constriction. I then add a second poorer solvent to the top.
- A major variant of this technique is to bridge the two solutions with a wider bore tube filled with a gel. This produces very slow diffusion and can be used to grow great crystals but tends to work very slowly.

•

6. Crystallization From Melts

If your compound is sufficiently thermally stable, one can often grow crystal from a homogeneous or even heterogeneous melt. Having careful control of the cooling rate is especially critical here. This method is widely used to grow crystals of high temperature solids such as metals and metal oxides and has recently become more popular for conventional ionic compound through the use of low temperature molten salts.

7. Crystallization by Sublimation

Compounds that are sufficiently volatile at accessible vacuums can be crystallized, often from crude mixtures, to give single crystals by sublimation. In my experience, I have only seen this work for relatively volatile solids like naphthalene, Ferrocene, $M(CO)_6$, and $(\eta^5 - C_5H_5)M(CO)_2(NO)$ (where M = Cr, Mo, and W) but I understand it works well for many other relatively non-polar compounds.

8. Crystallization Using Combinations

When these individual methods don't work, try combos. I particularly like using combinations of mixed solvent methods with cooling but many of these methods can be made to work well together.

9. Syntheses In Situ

Reactions at the interface between two solutions (e.g., different layers or at a capillary junction) can be used to generate a new product that is less soluble than either starting material and hence precipitates out as single crystals. If the reaction is slow enough, this can even happen in a single phase system. I have seen such methods work with both bond forming reactions and with redox reactions. In the latter case, one can often prepare single crystals of compounds that decompose almost instantly in solution at ambient temperature.

10. The Magic of NMR Tubes

If you've had occasion to search the data bases for crystal structures you may have noticed that an amazingly large number of structures are reported with deuterated solvents. This is not because people set out to crystallize from them but rather that crystals often grow "spontaneously" in NMR tubes. [Note: This is aided by the fact that many people don't clean out their NMR tubes until no clean ones are left in the lab and this beaker or "discarded" tubes it set somewhere out of the way where the boss won't see them and/or they won't cause guilt. This gives the solutions large blocks of time with no one disturbing them to grow crystals.] Most commonly, this happens because the NMR solvents one uses (e.g., CDCl₃) slowly diffuse out through the plastic caps.

11. Other Chance Methods

If all else fails, don't sneer at chance. Single crystals are often found in "purification" crystallizations, dishes waiting to be washed, and other unexpected places.

C. WHAT TO DO WHEN PROVEN METHODS FAIL

When your attempts at crystallization fail, there are a number of things that you should try.

1. Purify Your Material

Many times materials that are "analytically pure," are not pure enough for single crystal growth to be successful. Try an additional round of purification as this often improves your chances of success.

2. Seed Crystals

Because growing crystals pattern themselves on their initial substrate, seed crystals of the same or similar materials will often induce the growth of single crystals of the desired size. Such seeds are often formed inadvertently from droplets of crystallizing solution splashed on the container walls. However, they can also be added on purpose. One often uses a few of the best formed crystals from previous attempts where the crystals were too small by themselves. In some cases, one can use an isomorphous seed.

3. The Role of Extraneous Materials

Crystal growth typically requires a nucleating agent. Sometimes this is a seed crystal but often it is extraneous materials like dust, container walls, etc. Having just the right amount of nucleating agent is required to get great crystals.

a) Dust, dandruff, and grease

Unless "clean room" procedures are followed, every crystallization attempt will be effected by the presence to dust, dandruff, and other random particulates. A little normal lab dust will sometimes seed a crystal. I have also seen crystals that apparently were seeded by traces of grease on the flask walls!

b) Scratches and defects in the container walls

Tiny scratches and defects on the container walls are often the nucleating site for crystal growth. Sometimes if you can't get single crystals in a new container it pays to scratch it up a little. Alternately, if you are getting too many tiny crystals to grow you should use a less scratched container.

c) Surface treatments of the container walls

One trick that I have seen reported for improving crystal growth is to treat the surface of the container to change its chemical nature. This is most often done by reacting the surface with reagents such as Me_3SiCl .

4. Try, Try Again

The most important ingredients in the growing of quality single crystals are perseverance and patience. It is not uncommon to spend months or even years growing important crystals and succeeding after dozens or hundreds of failures.

a) Sequential crystal growing strategies

Most chemists employ sequential strategies where they try one or a few things at a time and then use the results to modify the procedures the next time. This typically takes only a fraction of your efforts each week to do but can be slow in terms of the number of months that pass before one is successful.

b) Systematic approaches to growing crystals and the exploration of crystallization: the multiplex advantage

Protein crystallographers have developed systematic methods to enhance crystal growing success. These typically involve careful explorations of the compound's "crystallization space." By this I mean the effects of temperature, time, solvent, etc., on crystal growing success. A key feature in this method is to use parallel approaches to crystal growth. For a small molecule chemist, this might translate into identifying five promising candidate solvents, and then simultaneously setting up 125 crystallizations (i.e., a 5 by 5 array to test various solvent mixtures made up five times with five different pin hole sizes in the lid). This does require more sample than sequential methods but can be done on very small scales (i.e., you only need one good crystal and this can grow from a fraction of a milliliter of solution) and will tend to give you successful results months sooner.

5. Make Derivatives

If your chosen compound just won't crystallize, one should often make a derivative of it. For example, I have made an ethyl rather than a methyl compound, a anisole rather than a benzene derivative, and a PF_6 rather than a BF_4 salt.

6. Solvates and Crystallization Agents

Many substances crystallize best as solvates. One can therefore add solvent molecules that are prone to forming such solvates (e.g., chlorinated organics such as CH_2Cl_2 , aromatics such as benzene and toluene, and water) to induce crystallization.

7. Inclusion Compounds and Supramolecular Complexes

Thiourea tends to form hollow channels of defined size when it crystallizes and if one adds a suitably sized substrate, it will often crystallize into these channels. Similarly, many bulky porphyrin compounds, cyclodextrins, calixarenes, and related molecules don't crystallize well in the absence of potential guest molecules. One can therefore sometimes induce the formation of host/guest supramolecular complexes by the purposeful addition of such hosts. Similarly, molecules such as crown ethers and cryptands can be added to modify the crystallization of ionic compounds.

CHAPTER XV. INDEX

It indexes the most important and/or commonly sought items in the manual, including: terms, concepts, commands, and symbols.

Dear Readers: Please feel free to suggest additional entries that should be added to this list.

#	
U - the absorption coefficient	11-42
λ - the wavelength of the incident ratiation	III-49
<i>a</i> alpha cell angle	III-49
<i>b</i> beta cell angle	III-49
X chi axis	I-25
ggamma cell angle	III-49
ω omega axis	I-25
φ phi axis	I-25
μ x r	II-43
$\lambda/2sin\theta$ limits on data for Direct methods	III-54
ψ-scan corrected data from XPREP	III-47
ψ-scan data	II-43
ψ-scan plots from data collection	II-43
ψ-scans and absorption corrections	II-43
ψ-scans and the name.chi file	I-35
ψ-scans set up using Chi90	I-34

\$E – this KEYWORD means apply the operation to all elements of this type ------ VII-115

\$

%
% probability of the displacement ellipsoidVII-112
&
&L120 – this parameter is changed to resize the Tables for XCIF – US PaperVIII-119, VIII-120 &L128 – this parameter is changed to resize the Tables for XCIF – European PaperVIII-119, VIII-120
(
$(\eta^{6}-1,2,3-(OMe)_{3}-5-(CO_{2}Me)C_{6}H_{2})Cr(CO)_{3})$ III-48, III-52, V-66, V-77, VII-84, IX-123, X-191
/L sends the output to the printer VII-116

]	
[C] \$ [F] \$ [N] \$ [R] \$ [S] 0	Set compound code number for tables Structure factor tables from .fcf Set next table number (currently 1) Use another files to resolve '?' items Change Structure Code	
[T] (Crystal/atom tables from .cif	VIII-118

 $|E^2 - 1|$ should be close to 0.968 (0.736) for centric (acentric) space groups ------III-54

<	
<pre><ctrl c=""> stop XS and XL immediatelyIII-49, \ <ctrl l=""> stop XS and XL at the next safe moment</ctrl></ctrl></pre>	V-71 11-49 V-71

¹ H scattering factors for neutron diffraction	I-29
¹ H scattering factors for X-ray diffraction	I-29

2

1

	1.54
θ angles required to get quality data for Direct methods	1-54
θ axis]	I-25
θ range]	I-36
¹⁸ U scattering factors for X-ray diffractionI	I-29
θ angle]	I-24
θ arm]	I-26

5	
512 by 512 wire array in multi-wire area detectors	I-26
⁵⁶ Fe scattering factors for neutron diffraction	I-20

9

95adh06e is the name under which the calctest and plottest data was collected------III-48

Α

<i>a</i> axial lengthIII-49
A centered unit cellIII-49
a: switch to the a drive in DOSXIII-237
absolute configuration determination by XL V-68
absolute structure - getting it correct and using the Flack parameter V-69
absolute structure - incorrect and the invt XE "invt command in XP usually converts the absolute structure" command V-69
absolute structure of your molecule or crystal V-68
absolute structures and the collection of Friedel pairs V-69
absorption coefficientII-42
absorption coefficient and data processionII-43

absorption coefficient in structure refinement table	XI-214
absorption coefficients higher for Cu than Mo	I-23
absorption correction	І-32, ІІ-39, ІІ-42, ІІ-43
absorption correction - effects of one that is poorly done	III-54
absorption correction by XPREP	II-41
absorption correction method in structure refinement table	XI-214
absorption correction require direction cosines in raw data	I-37
absorption corrections by XPREP	I-35
Absorption Corrections by XPREP	II-43
absorption corrections using XPREP	I-38
ACA – American Crystallographic Association	XII-235
accelerators as sources of thermal neutrons	I-29
acentric space group	III-54
acetone as a crystallization solvent	XIV-240
Acknowledgements	I-14
ACTA command in the name ins file for XS and XI	V-68 V-71 V-77 VIII-121 IX-170 IX-174
Acta Crystallographica	L36 XIL226
Acta Crystanographica	V 72
air conditioning	
All this KEVWOPD applies the command to all stoms	
ALL - Unis KET WORD applies the command to an atoms	VII-101, VII-115
antiguous space groups and hold commond of VD	I-18 VII 100
amide N-H groups and hadd command of XP	VII-100
analogue to digital converter	I-26
analysis of refined solutions using XP	1-38
analysis of trial solutions using XP	I-38
ang formatted tables	VIII-118
ANIS - this command gives anisotropic refinement	V-67, IX-159, IX-164
ANIS - this command gives anisotropic refinement in XL	V-72
anisotropic displacement parameters	IX-159, XI-219
anisotropic displacement parameters for "calctest", (η ⁶ -1,2,3-(OME) ₃ -5-(CO ₂ ME)C ₀	₅ H ₂)Cr(CO) ₃)XI-219
Anisotropic Displacement Parameters Table from XCIF	VIII-120
anisotropic model for all non-hydrogen atoms	V-77
anisotropic orientations of displacement ellipsoids for structural fragments	VI-81
anisotropic plots	IX-162, IX-184
anisotropic refinement	IX-155
Anisotropic Stage of the Refinement	V-67
annotated XSCANS manual	I-31
anomalous dispersion	V-69
anthrogenic crystals	I-36
anthrogenic crystals are typically ideally imperfect	III-51
anthrogenic crystals are typically refined using HKLF 4	V-73
arad – sets the atomic radii for space filling plots	VII-96
arbitrary cut off for refined reflections based on intensities	V-63
archiving raw data from diffractometer	I-29
area detectors – electronic and automated	L-26
area detectors – electronic and automated	
aromatics	VIV 246
art form than a science	Xiv-240 XIV 230
artificially lower the symmetry of the space group	ліv-239 ш 5с
ASCIL file	
ASCII file	IV-5/
ASCII IOIMat	viii-118
Assigned crystal data and atomic positions	
Atomic Coordinates and Equivalent Isotropic Displacement Parameters Table from .	асіг VIII-120
atomic vibrations	1-23
atoms that become unusually large	V-67
atoms that become unusually small	V-67
attached atom refinement of hydrogens	V-68
atyp this command sets display type of atom in plots	VII-96
average measured crystal diameter	II-43

axial views for plots with plottest -----X-192, X-207, X-208, X-209

В

В		
<i>b</i> axial length	ТП-49	
B centered unit cell	III-49	
Back Up Your Files	II-40	
backup copies of the INS file	II-44	
ball and stick plot	VII-112	
Ball and Stick plot	VII-85	
ball and stick plot for plottest	X-191, X-193	
Ball and Stick Plots	VII-85	
bang - produces an array of bond lengths and angles	VII-97	
bang - produces an array of bond lengths and angles	III-53, IV-60	
bang/L - prints the array of bond lengths and angles	IV-60	
bang/L - prints the array of bond lengths and angles'	VII-97	
basketball	I-19	
benzene as a solvate	XIV-246	
best solution number	III-55, IX-131	
blame the crystals if XS fails	III-55	
blowing up of atoms in refinement	V-68	
body centered (I) unit cell	III-49	
BOND \$H command to include hydrogens	V-68, V-72, V-77, VIII-121, IX-170	
bond angles can be checked with bang and proj	V-67	
BOND command for XL	V-68	
BOND command tells XL to save bond information	V-72	
Bond Lengths [A] and Angles [deg] Table	XI-216	
Bond Lengths and Angles Table from XCIF	VIII-120	
bond lengths can be checked with bang and proj	V-67	
bond radius	VII-112	
BONDTYPE parameter sets format of bonds in plots	VII-114	
book keeping	I-35	
Bravais Lattices - 14 types	II-39	
Brookhaven protein data base - PDB	V-75	
Bruker AXS (Siemens)	XII-235	
brute force with Direct methods	III-54	
bulk sample and powder diffraction	I-31	

С

c axial length	III-49
C centered unit cell	III-49
c: - change drive command	II-40
c: switch to the c drive in DOS	XIII-237
C14H14CrO8	IX-123
calctest	III-52, V-66
calctest.ins input file for XS	III-48
Calculate a Difference Electron Density Map	V-64
Calculate an Observed Electron Density Map	V-63
Calculate Partial Phases	V-63
calculated electron density map	III-46, IV-57
calculated positions for hydrogen atoms advocated by some	V-68
calixarenes as crystallization agents	XIV-246
Cambridge Crystallographic Data Base - CCDB	VIII-121
Cambridge Structural Database	XII-235
Cambridge Structural Database - CSD	II-42
cartesian coordinates for the atoms in a structure	VIII-121
Cartesian coordinates for the atoms in a structure	VII-107

CCD - charge coupled detectors and small molecule crystallographer	I-27
CCDB – Cambridge Crystallographic Data Base	VIII-121, XII-235
cd – change directory command	II-40
cd \ move back to the main directory level in DOS	XIII-237
cd change directory in DOS	XIII-237
cd., go back one directory level in DOS	XIII-237
CDCl ₃ as a crystallization solvent	XIV-240, XIV-244
CELL command for XS and XL	III-49, V-72, VII-116
cell command in XP displays the current unit cell parameters	VII-98
cell/L command in XP prints cell parameters	VII-98
cent in XP calculates and displays the centroids of groups of atoms	VII-98
cent/L command in XP prints the equation of the centroid	VII-98
cent/x places a dummy atom in a ring	VII-89 X-192
cent/x places a dummy atom in a ring for plottest	
central reflections (100) used to determine the unit cell perspectres	X-204 I 36
Containing of unit cell	п 20
containing of unit con	I 20
centering reneetions in ASCANS	ш 54 IV 126 IV 120
centric space group	$\Pi 42 V 60 V 74$
	II-42, V-09, V-/4
centrosymmetric space group and LAT I	
CEOM Continue Figure (Mark	III-53
CFOM - Combined Figure of Merit	II-42, III-55, IX-131
CH ₂ Cl ₂ as a crystallization solvent	XIV-240, XIV-242
CH ₂ Cl ₂ as a solvate	XIV-246
CH ₃ CN as a crystallization solvent	XIV-240
challenging structures represent 10 to 30% of typical crystals	I-18
change the lattice exceptions	II-42
charge coupled device, CCD, area detectors	I-27
checking the data for internal consistency	VIII-121
Checking your structure for chemical Reasonableness	VI-80
Chemical and Engineering News	XII-225
chemical interest criteria for pursuing tough crystallographic problems	I-18
chemical reasonableness	I-33, IV-60, VI-80
Chemical Reasonableness Criteria	VI-82
Chemistry 832: Solid State Structural Methods	I-16, XII-223
Chi90 for low temperature data sets	I-37
Chi90 for Psi Scans Set Up	I-34
Chime for molecular graphics	XII-236
chiral samples used to grow the crystals	II-42
chirality and special space groups	VII-102
chirality of the crystal	V-69
chlorinated organics as solvates	XIV-246
choices for other potential cells	II-41
Choosing the Correct Space Group	XII-234
CIF – Crystallographic Information Format	VIII-121
CIF files as used by XCIF to make tables	VIII-118
CIF files -useful things for any chemist to do with them	VIII-121
CIF format file of structure factors – name fcf	I-35
CIF format file of structure solution from XL – name cif	I-35
CIE format input into graphics programs like the Webl ab viewer	VIII-121
CIE formatted file from XPREP with data collection information name ncf	
CIE formatted file produced by XI	
CIE structure factor table from XCIE	v ш-121 VШ 110
close contacts	уш-119 ул оо
alose contacts located via the envi command	VII 00
alose intermologular contests	v II-99 лд оо
closed avala rafrigarators for the cooling as stream	v1-80
cosed cycle reingerators for the cooling gas stream	I-23
COLOR negeritation used in XD to modify graphics subject to	I-25
COLOR parameter used in AP to modify graphics output	vii-114
command in AP plots but does not save space filling models	VII-88
Command Lines for XL and XS	V-71
---	-----------------
connectivity table	VII-109
conservative assignment strategy	IX-137
constraints	V-73
constraints generated by AFIX	V-72
constraints to help with problem structures	V-70
convection is generally your enemy in single crystal growth	XIV-239
convection suppression in capillaries and gels	XIV-242
convergence - adjusting L.S. value to push it to completion	V-74
convergence – criterion for when it is obtained	V-69
convergence - iterative cycling using XL and XP	I-38
convergence - when it was obtained for calctest	IX-184
convergence and when to add the WGHT command	V-68
cooling water	I-28
coordination and organometallic compounds and the Patterson method	III-46
coordination polyhedra – XP commands used to generate them	VII-108
conv – detailed description of this DOS command	XIII-237
copy – the DOS command to duplicate a file	П-40
convine bio commande to deprede a me	
copyring this multidu	L2
cost allowable cost of this manual	
counting afficiency in and datactors	1-2 L-26
counting efficiency of point datestors	1-20 I 26
counting statistics and paint detectors	1-20 I 26
counting statistics and point detectors	I-20
counting statistics and their effect on scan time	I-20 VIV 246
crown enters and cryptands used to modify ionic crystanizations	AIV-240
cryogens for low temperature systems	I-23 VII 220
crystal - search on crystals from JCE	All-230
Crystal Data and Structure Refinement Parameters Table from XCIF	VIII-120
Crystal Data and Structure Refinement table for calclest	XI-214
crystal gardeners	XIV-240
crystal growth – typical times	XIV-239
crystal lattice – changing the type in XPREP	II-41
crystal quality - effects on diffracted intensity	I-23
crystal quality – methods for its evaluation	I-30
Crystal size entry in the crystal data table	XI-214
crystal size for neutron diffraction experiments	I-29
Crystal Structure Analysis for Chemists and Biologists by Glusker, Lewis, and Rossi	XII-223
crystal system – choice in XPREP	II-42
Crystal system in structure refinement table	XI-214
Crystal Systems – 7 types	II-39
crystal to detector distance	I-26
Crystallization by Cooling	XIV-241
Crystallization by Diffusion Through Capillaries and Gels	XIV-242
Crystallization by Slow Evaporation	XIV-240
Crystallization by Solvent Layering	XIV-242
Crystallization by Sublimation	XIV-243
Crystallization From Melts	XIV-243
crystallization space and systematic approaches to growing single crystals	XIV-246
Crystallization Using Combinations	XIV-243
Crystallization Using Mixed Solvents and Solvent Diffusion in the Gas Phase	XIV-241
crystallographic coordinates of the atoms in a structure	VII-107
crystallographic information file - using ACTA to save required parameters	V-71
Crystallographic Information Format - CIF	VIII-121
crystallographically interesting cases and novices	I-18
crystallography - papers on its educational aspects	XII-226
crystallography - search results from JCE	XII-227
crystallography - search results from JCE	XII-227
Crystallography Made Crystal Clear: A Guide for Users of Macromolecular Models by G. Rhodes	XII-223
CSD - Cambridge structural database - criteria for reasonable space group	II-42

Cu tube has much higer intensity than Mo tube	I-22
Cu tube wavelength of 1.54178 Å	I-22
cyclodextrins as crystallization agents	XIV-246

	-	_
		_

Data / restraints / parameters listing in structure refinement table	XI-214
data collection parameters	I-36
data collection time	I-24
data collection times for neutron diffraction experiments	I-29
data collection using XSCANS	I-38
data processing computers - suggested features	I-28
data reduction by XSCANS	I-36
data reduction using XPREP	I-38
data reduction using XSCANS	I-38
data to parameter ratio	V-67
DEC VMS workstations for macromolecular structure determinations	I-28
decay of crystals in the X-ray beam	I-35
def formatted tables	VIII-118
deletes stored planes	VII-106
DELTA parameter in XP using to modify distances	VII-115
DELU command for restraints in XL	V-72
DELU restrains all the named atoms to having the same displacement parameters	V-72
demo routine in XP	VII-98
demonstration "video"	VII-98
Density (calculated) in structure refinement table	XI-214
density of solvents and rates of their mixing	XIV-242
derivatives used to help get better crystals	XIV-246
dessicator used to grow crystals in an inert atmosphere	XIV-241
Determine or Input Space Group	II-41
Determine the Correct Space Group	II-41
DFIX command to fix distances in XL	V-72
diag is used to draw and display a labeled plot	VII-98
difference electron density map	V-64, V-65
diffracted intensities	I-23
diffraction search results from JCE	XII-228
diffractometer design and operation	I-21
diffractometer time limitations	I-19
diffractometers - funds to purchase the YSU systems	I-14
diffusion of solvents through plastic cap	XIV-244
diffusion through the gas phase	XIV-242
dir command for DOS- give the directory for this file	XIII-238
dir show directory contents command	П-40
Direct methods	III-46, III-48, III-52, III-54
Direct methods - how it can be finessed	III-54
Direct Methods and XS	III-46
Direct methods as starting point for calctest analysis	IX-137
Direct methods command is TREF for XS	Ш-50
Direct methods input file name ins for XS	Ш-48
Direct methods is the first choice for XS	<u>III-54</u>
Direct methods set up for XS	II-45
Direct methods to generate trial solutions	V-66
Direct methods trial solution for calctest	IX-124
Direct methods utility as a function of molecular structure	III-46
direction cosines and absorption corrections of raw data	I-37
disorder problems and help with problem structures	V-70
disordered atom – approach to drawing it	VII-116
displacement ellipsoid	VII-112. VII-116
displacement ellipsoid boundary ellipse	VII-116

displacement ellipsoid plot	VII-87
displacement ellipsoid plots	VII-112
displacement ellipsoid plots at 100% for plottest	X-191, X-195
displacement ellipsoid plots at 50% for plottest	X-191, X-194
displacement ellipsoid plots at 75% for plottest	X-191, X-196
displacement ellipsoid plots in stereo for plottest	X-191, X-199, X-201
displacement ellipsoid plots in stereo with unit cell for plottest	X-200
displacement ellipsoid plots without hydrogens for plottest	X-198
displacement ellipsoids - football or pancake shaped objects	V-67
displacement parameters	V-67
displacement parameters - default values based on temperature	V-75
DOS	I-28
DOS commands - a quick introduction	XIII-237
DOS computer to run P4 diffractometers	I-28
Doubt - when you're not sure don't assign atoms	IV-58
Doug Powell and Chi90	I-34
draw command used to change plotters	VII-99
drop off in intensities in Q peak list	IV-58
drop off of in intensities	V-67
dummy atoms	VII-116
dummy bonds	VII-89
duplicating this manual	I-2
dynamic diffraction model and ideal crystals	V-73
dynamic diffraction model and perfect crystals	III-51, V-62
dynamic range in multiwire area detectors	I-26
dynamic range of point detectors	I-26

Ε

EADP used to fix displacement parameters in XL	V-73
eden utility calculates electron density contours	VII-99
edit command in DOS used to change file contents	III-48, XIII-238
Editing Bonds and Adding Dummy Atoms	VII-89
electron density contours for planes calculated by eden	VII-99
electron density distributions as accounted for by displacement ellipsoids	V-67
electron density peaks calculated by XL	VI-82
electron density peaks referred to as Qs	III-46
Electron density synthesis with coefficients	IX-183
Electronic Submission to Acta Crystallographica	VIII-121
electronics maintenance requirements	I-28
electrons scatter X-rays	I-29
element symbols in SFAC command	III-50
ellipsoidal model of the crystal for absorption corrections	II-43
embedded processors	I-27
emergency backup	II-40
Empirical formula in data collection table	XI-214
enantiomer – changed using invt command	VII-93, VII-101
END command for XS and XL input files	III-48, III-51, V-73
entropy induced defects as a function of crystallization time	XIV-239
envi command for XP gives list of neighboring atoms and Qs	VII-99
EQIV command for XL gives symmetry information	V-73
equivalent isotropic displacement parameters	XI-215
equivalent molecules	VII-105, VII-112, VII-114
equivalent positions	III-50, V-75
equivalent positions in name.ins file	I-36
error rate in published crystal structures	VI-80
errors occur in up to 10% of published structures	VI-80
esd - the estimated standard deviations of the unit cell parameters	III-49
estimated standard deviation of intensity of each reflection	I-36

estimated standard deviations of unit cell parameters	V-76
ethanol as a crystallization solvent	XIV-240
ether as a crystallization solvent	XIV-240, XIV-242
Ethernet connections for data processing computers	I-28
European style paper and XCIF output files	VIII-119
evaporation of solvents and crystal growth	XIV-240
exceptional space groups and the invt command	V-69
exit command for XP	VII-99
exiting the XP routine	IV-61
EXTI command to refine extinction in XL	V-68, V-77, IX-170, IX-174
EXTI command to refine extinction in XL	V-73, IX-172, IX-186
extinction and its refinement by XL	V-73
Extinction coefficient in structure refinement table	XI-214
extinction parameter in name.ins file	I-36
extinction refinement at the end of the refinement process	IX-185
extinction refinement by XL	V-68, IX-170, IX-186
extinction's affects on the intensity - structure factor relationship	III-51, V-73
extraneous materials and the initiation of crystal growth	XIV-245
EXYZ command to put atoms in same position in XL refinements	V-73

F and $\sigma(F)$ and the HKLF code	I-36
F and $\sigma(F)$ and dynamic diffraction	III-51, V-73
F(000) in structure refinement table	XI-214
F^2 and $\sigma(F^2)$ and the HKLE code	I-36
F^2 and $\sigma(F^2)$ and kinematic diffraction	III-51 V-73
F4(1)32 – an exceptional space group	V-69
face centered (F) unit cell	
face index the crystal	II-43
face indexing and absorption corrections	II-43
Faculty Development Time	I-14
Faculty Improvement Leave	I-14
Edd2 – an exceptional space group	V-69
file command to save the XP results	IV-60
file command to save XP results	III-53. VII-99
film based methods as area detectors - manual	I-26
final plots for publication using XP	I-38
final tables for publication using XCIF	I-38
finesse Direct methods	III-54
fix the distance between two named atoms using DFIX	V-72
fixing displacement parameters to help with problem structures	V-70
fixing X-H distances to help with problem structures	V-70
Flack parameter and choice of correct absolute structure	V-69
FLAT command to make atoms coplanar in XL calculations	V-73
floppy groups and their displacement parameters	VI-81
floppy vs. rigid groups and their displacement parameters	VI-81
Flow Chart for a Typical Structure Solution	I-38
FMAP command for XS	III-50, III-52, V-77
fmol command for XP and establishing atomic connectivity	III-53, IV-58, VII-99
F _o – the observed structure factor	VI-82
F _o – the observed structure factor for dynamic diffraction and ideal crystals	V-62
Fo > 4 sigma(Fo) criteria for observed reflections	III-53, IX-147, IX-179
F_0 and $\sigma(F_0)$ intensity treatment using HKLF 3	V-62
F_0^2 – the observed structure factor squared for kinematic diffraction of typical synthetic crystals	V-62
F_0^2 and $\sigma(F_0^2)$ format for name.hkl from XSCANS	V-62
F _o ² proportional to intensity of typical anthrogenic crystals	V-62, VI-81
focusing optics and their effects on X-ray beam luminosity	I-24
football or pancake shaped displacement ellipsoids	V-67

F

Formula weight in data collection table	XI-214
Fourier peak calculation by XS	III-50
Fourier peak number in XS and XL set by PLAN command	III-51
Fourier refinement	V-63
Friedel pairs and appropriate data for refinement of absolute structures	V-69
fuse command in XP and the fusing of close atoms	VII-100

G

G. Rhodes – Crystallography Made Crystal Clear	XII-223
garbage peaks incorrectly assigned as real atoms	IX-137
Gateway2000 [°] computers	IX-124
Gateway2000 [®] computers in our computing labs	XIII-237
gem like facets	I-30
General Conditions for Crystal Growth	XIV-239
general positions formulae in SYMM codes	III-50, V-75
generate trial solutions using XS	I-38
George Sheldrick	I-17, I-32, V-62
ger formatted tables	VIII-118
ghost Qs having low intensities	IV-58
give two or more atoms the same displacement parameters using EADP	V-73
glass fibers used to mount crystals	I-25
glassy samples that look like crystals	I-30
global minimum solution	V-66, IX-137
glove bag used to grow crystals in an inert atmosphere	XIV-241
glove box used to grow crystals in an inert atmosphere	XIV-241
Glusker, Lewis, and Rossi and the Crystal Structure Analysis text	V-73
goniometer the heart of a diffractometer	I-25
goniometer head - where the fiber holding the crystal is attached	I-25
goniometer heads should be numbered	I-29
good solvents from which to grow single crystals	XIV-241
Goodness-of-fit on F^2 vale in structure refinement table	XI-214
GOOF - be careful in trusting it	VI-82
GOOF as a criterion of the progress of a refinement	V-65
GOOF as a criterion of the progress of a refinement, example in calctest	IX-179
graphical interface function of XP	IV-57
graphite crystal monochromator	I-24
grease and its effects on crystal growth	XIV-245
green thumbs and growing crystals	XIV-239
grow new crystals from a different solvent system	I-19
grow the atoms in fmol to generate complete molecules in XP	VII-100
growing of quality single crystals	XIV-239
growing single crystals	XIV-240
guest molecules required for crystallization	XIV-246

Н	
hadd command generates idealized atoms in XP	VII-100
hands on exposure to each of the steps in data collection	I-17
heat exchanger for cooling X-ray tubes	I-22
heavier elements and their effect on average atomic volumes	III-54
heaviest atoms as starting points for refinement	III-46
heavy atom substituents and Direct methods	III-46
help command in XP	VII-83, VII-101
hexanes as a crystallization solvent	XIV-242
HFIX command to constrain and generate hydrogens in XL	V-73, VII-101
highest symmetry space group	II-42
HKLF # command tells XS and XL how to interpret name.ins input intensities	V-73

Winter 1999 D1 Edition, For Instructional Use, Use Only With The Author's Permission

HKLF 3 command and refinement on F	I-36, III-51, V-73
HKLF 4 and refinement on F ²	I-36, III-48, III-51, V-73
HKLF command in XS and XL	Ш-51
homogeneous X-ray beam diameter	I-25
host/guest supramolecular complexes and crystallization	XIV-246
house keeping - the challenge of organizing the lab	I-29
HPGL - Hewlett Packard Graphics Language for plots	VII-99
Hydrogen Atom Assignment and Refining	V-68
hydrogen bonds located via the envi command	VII-99
Hydrogen Coordinates and Isotropic Displacement Parameters Table from XCIF	VIII-120
hydroxyl groups and hadd command of XP	VII-101

<u> </u>	
I – intensity of reflections	V-62
$I > x \sigma(I)$ cut off parameter for included reflections	V-63
I and $\sigma(I)$ information and its interpretation via the HKLF command	III-51, V-73
I and $\sigma(I)$ information in name.hkl	I-36, III-51, V-62, V-73
V_{σ} () ratio used as a cutoff in past refinement strategies	V-62
I>2sigma(I) value in structure refinement table	XI-214
I4(1) – an exceptional space group	V-69
I4(1)22 – an exceptional space group	V-69
I4(1)cd – an exceptional space group	V-69
I4(1)md – an exceptional space group	V-69
I4bar2d - an exceptional space group	V-69
IBM RS-6000 Unix workstations for macromolecular structure determinations	I-28
idealized coordinates for atoms from AFIX	V-72
idealized coordinates for hydrogen atoms from HFIX	V-73
ideally imperfect crystals and the kinematic diffraction model	III-51, V-62, V-73
imaging plate area detectors and macromolecular crystallographers	I-27
incident X-ray beam size set by pin hole diameter	I-25
incorrect assignments and failure in data refinement	V-66
Independent reflections in data collection table	XI-214
induce crystallization using solvates	XIV-246
inert atmosphere techniques for growing crystals	XIV-241
info command in XP used to list positions and equivalent isotropic displacement parameters	III-53, IV-58, VII-101
info/L command in XP used to print positions and equivalent isotropic displacement parameters	IV-58, VII-101
initial model from XS	III-55
Inorganic Chemistry	XII-226
inorganic molecules and the Patterson method	III-46
integrated intensity of each reflection	1-36
intensities almost proportional to F ²	1-36
intensities of each reflection	V-62
intensity drop off in list of Q peaks	111-53, 1V-58, V-67
intensity, relative, of X-ray and neutron beams	I-29
Interational Tables	VII-94 и 44 ш 50 У 75
International Tables of X ray Crystellography	
International Tables of A-ray Crystallography	All-223 VIII 121
intuition an evaluating how reliable a structure solution is	VIII-121 VI 82
invert each atom's coordinates	VII 100
Inverting Molecules	VII-93
inverting Molecules	VII-101
inverts atoms through the origin	VII-101
invt command in XP usually converts the absolute structure	V-69, VII-93, VII-101
invt command used to invert this plot for plottest	X-205
isotopes distinguished by neutron diffraction	I-29
isotropic displacement ellipsoids in plot	IX-153
isotropic displacement parameter chosen by HFIX	VII-101

isotropic displacement parameter refinement by XL	V-66
isotropic displacement parameters	-V-66, IX-143, IX-149, IX-151, IX-155, IX-159, XI-220
Isotropic Stage of the Refinement	V-67
isotropic to anisotropic conversion of displacement parameters	IV-58, V-72, IX-159
iterative approach to least squares refinement	V-62
IUCr - instructions on electronic submissions via this file format	VIII-121
IUCr - International Union of Crystallography	VIII-121
IUCr - WEB address for CIF instructions	XII-235
IUCr Commission on Crystallographic Teaching	XII-235
IUPAC names for compounds	IV-60

J. P. Glusker, M Lewis, and M. Rossi and the Crystal Structure Analysis text	XII-223
JCE - Journal of Chemical Education search of keywords, titles, and authors	XII-227, XII-228, XII-230
John C. Huffman and the Indiana University Molecular Structure Center	XII-235
join command used to add bonds to a plot for plottest	X-203
join command used to add bonds to a plot in XP	VII-89, VII-102
Journal of Chemical Education - JCE	XII-226
Journal of Chemical Education - online searches	XII-226
Journal of the American Chemical Society	XII-226

J

К	
Kevin Cowtan and his Fourier transforms in crystallography site	XII-235
KEYWORDS used by many XP commands	VII-115
kill command of XP used to delete specified atoms	IV-60, VII-102
kinematic diffraction model and ideally imperfect crystals	III-51, V-73
knocking the crystal off the goniometer head	I-25
Kα radiation produced in X-ray tubes	I-22
$K\alpha$ radiation selected by monochromator	I-24

L

L.S. command tells XL how many cycles to run calculation	V-74, V-77, IX-143
L.S. value increased near end of refinement	IX-186
labels on H and brackets on atom numbers	VII-103
labels on H and no brackets on atom numbers	VII-103
labl command tells XP how to label the plots	VII-84, VII-103
lamellar model of the crystal for absorption corrections	II-43
large displacement parameters	IV-59
large unit cells	I-26
larger crystals to improve S/N	I-24
Largest diff. peak and hole in structure refinement table	XI-214
late stage of refinement	V-77
LATT command tells XS and XL the lattice type	III-49, V-74
learn best with your hands	I-17
least squares planes calculated by XP	VII-94
LESS KEYWORD tells XP to omit subsequent atoms	VII-112
LESS this KEYWORD tells XP to omit subsequent atoms	VII-115
libr command tells XP to carry out a librational analysis	VII-103
library holdings of crystallographic references	XII-223
Licence Form: ADH-YSU X-ray Structure Solution Lab Manual	I-4
license form to be mailed to this manual's author	I-3
license terms for this lab manual	I-2
light atom positions from neutron diffraction	I-29
Limiting indices for data collection in data collection table	XI-214

line command used to calculate the equation of a line in XP	VII-94, VII-104
line/L command used to print the equation of a line in XP	VII-94, VII-103
link command used to attach two atoms with a dashed line in XP	VII-89, VII-104
linked parameters to help with problem structures	V-70
liquid nitrogen used to provide cooling for low temperature data collections	I-23
LIST command tells XS and XS to save and hkl file	V-74
local minimum solution	V-66
longer wavelength radiation increases the intensity of incident radiation for same tube power	I-24
Lorenz effects	I-35
Louis Pasteur and separating enantiomeric crystals by hand	V-69
low angle reflections distorted by beam stop	V-63
low temperature and its effect on S/N	I-24
low temperature data collections	I-34, I-37
low temperature system for data collection	I-23
lower symmetry space groups	III-50, V-75
Lp effects	I-35
luminosity of X-ray beams	I-24

Μ

macromolecular crystallographers and imaging plate systems	I-27
macromolecular crystallographers and their extension of CIF	VIII-121
macromolecular sample data from multi-wire area detectors	I-26
macromolecular structures require high end workstations	I-28
Main File Types	I-35
matr command in XP is used to orient molecular views to specified axes	VII-86, VII-91, VII-104, X-192, X-207
Max. and min. transmission values in structure refinement table	XI-214
maximum dimension of the crystals	I-25
maximum index values and data quality for Direct methods	III-54
maximum power of X-ray tubes set by cooling limitations	I-22
maximum power on the X-ray tube to increase its luminosity	I-23
maximum time for XS and XL calculations	V-75
md - make directory command in DOS	II-40, XIII-238
melting point, displacement ellipsoids, and low temperature data collection	I-23
mental health and the wisdom of attempting non-routine structures	I-19
merging of data by XPREP	I-35
met formatted tables	VIII-118
metal containing molecules and Direct methods	III-46
methanol as a crystallization solvent	XIV-240
methyl CH ₃ groups and hadd command of XP	VII-100
methyl groups and hadd command of XP	VII-101
mgen command generates symmetry equivalent molecules in XP	VII-105
microscopes used for crystal inspection	I-29, I-30
mineral crystals are typically refined using HKLF 3	V-73
mineral crystals grow over multiyear periods	XIV-239
mineral crystals may be close to perfect	III-51
minerals and treatment of intensity data	I-36, V-62
minimum power of the X-ray tubes	I-22
mirror optics and their effects on X-ray beam luminosity	I-24
Mo tube has much lower intensity than Cu tube	I-22
Mo tube wavelength of 0.71073 Å	I-22
model diffuse solvent molecules	V-75
modify the formula	II-42
molecular formula in name ins file	I-36
molecular fragments and the orientations of their displacement ellipsoids	VI-81
mono view of molecules	VII-90
MORE command modifies verbosity of Xs and XL output	III-51. V-74
moved to a bad position	IX-153
mpln command in XP is used to calculate planes	VII-94, VII-106

mpln/L command in XP is used to print planes	VII-95, VII-105
multiplex advantage from area detectors on S/N	I-24
multiplex advantage from area detectors yields quicker data collections	I-26
multi-user environment	I-35
multi-user facility	I-29
Multi-wire area detectors	I-26

Ν

name command of XP is used to rename atoms	VII-106
name compounds consistent with common usage in the field	IV-60
name. 1g	I-35
name.ang	I-33, I-35
name.chi	I-34, I-35
name.cif	I-33, I-35
name.def	I-33, I-35
name.fcf	I-33, I-35
name.hkl	I-32, I-35, III-51
name.inp	I-34
name.ins	I-32, I-36, II-44, III-49, IV-57, V-68
name.int	II-45
name.int - backup copy of name.ins file	I-36
name.inz	II-45
name.inz - second backup copy of name.ins file	I-36
name.lst	I-33, I-36
name.ort	I-33, I-36
name.p4p	I-32, I-36
name.p4t	I-36
name.pat	I-34
name.pcf	I-32, I-33, I-36
name.plt	I-33, I-36
name.pow	I-34, I-36
name.prp	I-32, I-36
name.psi	I-32, I-36
name.psr	I-34, I-37
name.pst	I-37
name.raw	I-32, I-37
name.rep	I-34
name.res	I-33, I-37, IV-57, V-68
name.sft	I-33, I-37
national labs as synchrotron X-ray sources	I-24
National University of Ireland at Galway	XII-235
Nature	XII-225, XII-226
Nature: Structural Biology	XII-226
nE and brute force Direct methods	III-55
neutron beam intensity	1-29
neutron data analysis by XL	V-79
neutron data analysis by XS	
neutron diffraction patterns	1-29
neutron diffractometer	1-29
next command in XP for recalling saved parameters	VII-106
	1-16, 1-28
NMK Iubes	XIV-244
no labeling on plots using XP labl command	VII-103
no labels on H and brackets on atom numbers	VII-103
no labels on H and no brackets on atom numbers	VII-103
non-centrosymmetric but nonchiral space groups	V-69
non-centrosymmetric space group	v-69, v-74
non-centrosymmetric space group and LATT	III-49

non-centrosymmetric space group and R	III-53
non-H atomic volume	П-42
non-hydrogen atom atomic volume - typical values	III-54
non-hydrogen atoms - located using XL and XP	V-66
non-hydrogen atoms located by TREF in XS	III-53
non-hydrogen atoms refined before EXTI command added for XL	V-73
nopl command in XP deletes list of stored lines and planes	VII-103, VII-106
normalized scattering factors	I-29
novice user is the target audience for this manual	I-18
NSF-RUI grant	I-14
nuclear reactors as sources of thermal neutrons	I-29
nucleating agent and the initiation of crystal growth	XIV-245
nuclei scatter neutrons	I-29
number of atoms of each type in the unit cell	III-50
number of copies to be made from 1998 through 2000	I-4
number of faculty and staff users	I-4
number of graduate student users	I-4
number of post-doc users	I-4
number of undergraduate student users	I-4

0

OBoR Action Fund grant	I-14
OBoR Investment Fund grant	I-14
Observed and calculated structure factors table for calctest	XI-221
observed structure factors and dynamic diffraction by perfect crystals	V-62
observed structure factors squared and kinematic diffraction by typical synthetic crystals	V-62
OCC – the Ohio Crystallography Consortium	I-24
occupancies -strategies for fixing to help with problem structures	V-70
ofit command is used to fit atoms to models in XP	VII-107
OH groups and hadd command of XP	VII-100
Ohio Board of Reagents grant	I-14
Ohio Crystallography Consortium - OCC	I-24
OMIT command tells XS and XL to omit specific reflections from calculations	III-51, V-63, V-74, IX-126
operating expenses for single crystal diffractometers	I-28
operating systems for data processing computers	I-28
optical isomer choice and XL	V-69
optically active crystals	V-69
order of the lines in XS and XL name.ins input file is critical	III-50
organic compounds and Patterson methods	III-46
organic molecules and Direct methods	III-46
organometallic molecules and the Patterson method	III-46
Organometallics	XII-226
orient molecular views using proj command in XP	VII-109
orientation matrix is specified by the matr command in XP	VII-105
ORTEP plots vs. displacement ellipsoid plots	VII-87
orth command in XP produces a table with the atoms in orthogonal(Cartesian) coordinates	VII-107
orthogonal coordinates for the atoms in a structure	VII-107, VIII-121
orthogonal(Cartesian) coordinates for the atoms in a structure	I-33, I-36
orthogonalized Uij tensor	XI-215

Ρ

pack command in XP is used to interactively set up packing plots	VII-91, VII-107, X-206
Packing Diagrams	VII-90, VII-91
page command in XP adds a blank page	VII-107
PARTn this KEYWORD is used to indicate fragments of a molecule	VII-115
PATT command for XS	III-48, III-50, IX-138, IX-139

PATT vs. TREF - choosing alternate XS method	III-53
Patterson method - with which molecules does it work best	III-46
Patterson method as starting point for calctest analysis	IX-137
Patterson method is the second choice for XS	III-54
Patterson method set up for XS	II-45, III-48
Patterson method should be tried when Direct method fails	
Patterson method to generate trial solutions	V-66
Patterson method used where Direct methods fail	IX-138
Patterson methods command is PATT for XS	
Patterson methods command is 1 A1 1 for AS	ш 48
Develo's WEP site on growing single crystels	ш-48 УП 225
how command of VD defines the size of the how to be filled with molecules	Ап-233 VII 01 VII 107
plots command of AF defines the size of the box to be fined with molecules	VII-91, VII-107
poor command used for packing plot for protest	A-200
PDB – protein data base	V-/5, All-255
peak power of the X-ray tube	I-28
peak profile information removed in name.raw	I-3/
peak profiles – scanning with point detectors	I-26
peak profiles observed with XSCANS	1-30
Pentium class chips for data processing computers	I-28
Pentium computer used for calctest calculations	IX-124
perfect crystals and the dynamic diffraction model	III-51
pers command gives ball and stick view on the screen using XL	VII-85, VII-108
personal computers are excellent for solving small molecule structures	I-28
pgen command is used to generate coordination polyhedra in XP	VII-108
phase problem and approaches to refining data	V-62
phase problem and XS	III-46
Philosophy for teaching crystallography	I-17
phosphors used for X-ray detectors	I-26
photomultiplier tube	I-26
Physics Today	XII-225
pick command and the interactive assignment of Os in XP	III-53, IV-59, VII-108
pick/H command labels all atoms including the hydrogens in XP	VII-108
pin hole diameter sets X-ray beam diameter	I-25
PI AN command sets number of O neaks from XS and XI	
Plot of Example with only Non-Hydrogen Atoms	IX-150
noint detectors	L25 L26 L28
point detectors	
polarizing light	I 20
Polaroid rotation photographs	1-30 I 20
rolation for drawing accordination polyhodra in VD	I-30 УЛ 109
poly command for drawing coordination polyhedra in XP	VII-108
poly command for drawing coordination polynedra in AP	VII-108
Polycrystal Book Service	I-2 III 54
polycyclic aromatic hydrocarbons and their effects on average atomic volumes	III-54
poor solvents used to cause single crystals to grow	XIV-241
porphyrin compounds as crystallization agents	XII-233, XIV-246
positive and negative signs of neutron scattering factors	I-29
post command of XP is used to make posters	VII-108
posters via the XP post command	VII-108
postscript format for plots	VII-99
powder diffraction pattern	I-31
powder X-ray data from multi-wire area detectors	I-26
precise answer that is actually wrong	VI-80
prev command of XP returns molecule to its previous orientation	VII-108
previous orientation returned using the XP prev command	VII-108
primitive (P) unit cell	III-49
prin command in XP prints the output files	VII-108
print command in XP prints the output files	VII-108
print the following file in DOS	XIII-238
print the specified filename in black and white using rast	VII-110
print the specified filename in color using rast/c	VII-110

professional crystallographer	I-14
proj command in XP is used to orient molecular views	III-53, VII-85, VII-109
protein crystallographers	XIV-239, XIV-242, XIV-246
Protein Data Bank	XII-235
Proven methods for growing crystals	XIV-240
prun command in XP removes all bonds to an atom	VII-89, VII-109
publication quality plots	I-33
purification of materials as an aid to their crystallizations	XIV-244
push command is used to shift atoms in the unit cell	VII-109

Q	
O peak information from the info command	IV-58
Q peak number from XS and XL set by PLAN code	III-51
Q peaks and the residual electron density map	IX-143
Q peaks assigned by pick	VII-108
Q peaks assigned during the calctest refinement	IX-149
Q peaks cut off based on intensity drop	V-67
Q peaks deleted with the kill command	IV-59
Q peaks identified as hydrogens	V-68
Q peaks in the fmol list	VII-99
Q peaks near a defined atom listed by envi command	VII-99
Q peaks number set by the PLAN command in the name.ins file	V-74
Q peaks observed directly from XS	III-46
Q-peaks	I-37
quality crystals and their effect on S/N	I-24
quit command in XP stops any printer output	VII-109

r - the average crystal diameter for absorption correction	П-43
R – the residual index – be careful in trusting it	
R – the residual index use in monitoring the refinement	V-65
R factor	III-53
R factor criterion for correct chirality	V-69
R factor for calctest	IX-143, IX-152, IX-156, IX-160, IX-166, IX-172
R indices in structure refinement table	XI-214
R values	V-63, V-66
R(int) - the agreement between the intensities of equivalent reflections	II-43
R(int) for calctest	XI-214
R(int) ideal values	III-54
R. E. Marsh	XII-234
R1 - the simulated residual parameter	IX-179
R1 - the simulated residual parameter based on Fo and $F_o > 4\sigma(F_o)$	VI-81
R1 - the simulated residual parameter based on Fo	VI-81
R1 - the simulated residual parameter based on Fo and all data	VI-81
RAM required for data processing computers	I-28
RAM used for the calctest calculations	IX-124
random statistical fluctuations in the peak intensities	III-54
RasMol for molecular graphics	XII-236
rast command is used by XP to send a black and white plot	VII-85, VII-110
rast/c command is used by XP to send a color plot	VII-85, VII-110
rated power of the X-ray tubes	I-22
Rates of Crystal Growth	XIV-239
rd- deletes a directory in DOS	XIII-238
read command loads atoms into XP from a specified file	VII-110
reap command loads atoms and Qs into XP from a specified file	VII-110
recalcitrant data sets and novices	I-18

Winter 1999 D1 Edition, For Instructional Use, Use Only With The Author's Permission

reciprocal space plots in XPREP	II-44
reduced data set in the name.raw file	I-37
reduced reflection data in the name.hkl file	I-35
reference materials for crystallography	XII-223
Refinement method in structure refinement table	XI-214
refining against F ² superior for all conventional crystals	V-62
Refining Atomic Positions	V-62
refining of occupancies with the total occupancies for sites fixed	V-70
refining of solvent occupancies to help with problem structures	V-70
Reflections collected in data collection table	XI-214
registered user	I-2, I-4
relative geometry of fragments from XS is reliable	III-46
REM command is used to comment to oneself in name.ins files	III-51, V-74
remove bonds between atoms	VII-113
ren - rename the file in DOS	XIII-238
Renninger reflections and problem structures	V-70
reports and publications	VIII-117
representative nature of the bulk sample	I-31
Research Professorships	I-14
residual electron density V-64, IX-143, IX-151, IX-155, IX-159,	IX-164, IX-170, IX-186
residual electron density map	VI-82
residual index	III-53
residual parameter	VI-81
resolution of data restricted by SHEL command	V-74
resolution of the data and its relationship to 20 angle	I-24
resolution requirements and their effects on S/N	I-23
resolved samples for use in growing crystals	II-42
restrained GOOF	IX-179
restraints to help with problem structures	V-70
restraints using DELU command	V-72
rhombohedral obverse unit cell	III-49
riding models to help with problem structures	V-70
rigid body models may be used when the quantity of data is low	V-67
rigid body models to help with problem structures	V-70
rigid groups and their displacement parameters	VI-81
rigid vs. floppy groups and their displacement parameters	VI-81
rotating anode source for luminous X-rays	I-24
rotation photographs taken with Polaroid camera to evaluate crystals	I-30
routine crystal structures are food for novices	I-18
routine structures represent 70 to 90% of typical crystals	I-18
RTAB command gives information on symmetry	V-73, V-74
Rw - the weighted residual index - be careful in trusting it	VI-82
Rw - the weighted residual index use in monitoring the refinement	V-65

S	
S/N ratios – how they can be increased	I-23, I-24
SAFETY TIP	<i>XIV-240</i>
samples should be kept in the dark for single crystal growth	
saturated solutions required for crystallization	XIV-241
save command used to back up your work in XP	VII-110
scale and merge data sets	I-32
scanning of peaks by point detectors	I-26
scattering power of each atom type is called by SFAC	III-50
scattering power range is narrow for neutrons	I-29
scattering power range is wide for X-rays	I-29
Science	XII-225, XII-226
sealed tube X-ray generators	I-22, I-28
Search for Higher Metric Symmetry	II-41

secondary CH ₂ groups and hadd command of XP	VII-100
seed crystals used to induce single crystal growth	XIV-244
Selected Bond Lengths and Angles Table from XCIF	VIII-120
selective adsorbent to aid removal of better solvent	XIV-242
Semi-empirical from psi-scans – absorption correction type for calctest	XI-214
semi-invariants and direct methods	IX-131
semi-invariants and Direct methods	III-55
sequential strategies for growing crystals	XIV-245
serial detectors and the size of the data files they produce	I-26
several atoms occupying the same or very close sites	V-70
SFAC command tells XS and XL which element as present	III-50
SFAC command tells XS and XL which elements are present	III-52, V-74, V-77, VII-106, VII-116
sfil command used by XP to make space filling plots	VII-88, VII-110
sfil space filling plot for plottest	X-192, X-210
sfil space filling plot in stereo for plottest	X-192, X-211
space mining plot in series to protect	VII-111
sgen/fmol hutton on proi	
SGI Unix workstations for macromolecular structure determinations	I-28
Solve and Bake to help with problem structures	V-70
SHEL command is used to restrict the resolution of the data in XL and XL	V-74
SHEL command is used to restrict the resolution of the data in XE and XE	Π-44
SHELXTE input Thes	I-32
SHELATE Software package	
	VIII-118
SHELXTL XTEXT format and metric	VIII-118
SHELXTL-97 version of the program	1-32
shift/standard – maximum allowable value at convergence	V-69
shifts coordinates by dx dy dz	VII-109
signal to noise criteria for quality data	V-68
signal to noise ratio dependence on experimental parameters	I-22
signal to noise ratios	III-51
signal to noise requirements of Direct methods	III-54
SIMU command is used to restrain displacement parameters in XL	V-75
simulated .hkl file	I-36
Simulated Powder Patterns	I-34
simulated residual parameter	VI-81
simulated weighted residual parameter	VI-82
SINCRIS list of crystallographic software	XII-235
sliding rail upon which detector is mounted	I-26
solubilities – ideal values for crystallization	XIV-240
solubility decreases with temperature	XIV-241
solvates often induce crystallization	XIV-246
solvent density and layering	XIV-242
Solvent Effects in Organic Chemistry by Reichardt	XII-233
Solvent Properties and Saturated Solutions	XIV-240
solvent pumps for slow solvent addition	XIV-241
solvents - choosing solvents for growing single crystals	XIV-241
sort this XP command sorts atoms as specified	VII-111
sort/H this XP command sorts atoms without placing hydrogens after their parents	VII-111
sort/N this XP command sorts atoms by their numbers	VII-111
Sorting atom lists	IV-60
space filling molecular model	VII-110
space filling molecules displayed by spix command	VII-111
Space Filling Plots	VII-88
space group	V-69
space group - changing you choice	II-44
space group – choices given	II-42
space group – effects of the wrong choice	III-54
space group – input known group	II-42
space group and SYMM codes	III-50

space group choice and LATT	V-74
space group choice and SYMM	V-75
space group class choices indicated by LATT	III-49
space group determination using XPREP	I-32, I-38, II-41
Space Group Determination Using XPREP	II-41
space group determination using XSCANS	ІІ-39
space group for calctest(plottest)	IX-123
space group in name.ins file	I-36
Space group in structure refinement table	XI-214
space group should be checked if XS fails	III-55
Space Groups - 230 types	ІІ-39
Space Groups and their origins in symmetry	II-39
Special Orientations	VII-86
speed of calculations	I-32
speed of data analysis	I-32
spherical electron density models	V-66
spix command in XP plots but does not save space filling models	VII-111
spix space filling plot for plottest	X-192, X-212
Stages of an XL Refinement	V-66
standard deviation of these intensities	V-62
standard reflections	I-36
Steffen Weber at NIRIM	XII-236
stereo displacement ellipsoid plots for plottest	X-191, X-199, X-201
stereo displacement ellipsoid plots with unit cell for plottest	X-200
stereo plotting parameters in XP	VII-112
stereo view	VII-112
stereo view distance	VII-112
stop at the next safe moment	III-49, V-71
stop immediately	III-49, V-71
stopping printer output using the quit command in XP	VII-110
streaking in rotation photographs	I-30
strong peaks in the Q peak list	IV-58
strongest peaks and point detector scanning	I-26
structure factor table – when to print it	VIII-117
Structure Factor Table from XCIF	VIII-120
structure factors - printed from XCIF before publication	VIII-119
structure factors and their relationship to intensity data	V-62
structure factors listed in name.sft file	I-37
structure refinement	I-32
structure refinement using XL	I-38
substructures you know as starting points for refinement	III-46
SUMP command is used to restrain sit occupancies in XL	V-75
supplemental air conditioning	I-27
Supramolecular Complexes	XIV-246
surface treatment of container walls for growing single crystals	XIV-245
SWAT command is used to model diffuse water in XL calculations	V-75
SYMCODES are the code numbers for symmetry related molecules	VII-111
SYMM command tells XS and XL about the unit cell symmetries	III-50, V-75
symmetry elements near atoms in the unit cell	III-54
symmetry equivalent atoms	VII-100
synchrotron source for luminous X-rays	I-24
Syntheses In Situ	XIV-243
synthesize a derivative of the molecule of interest	I-19
synthetic chemist	I-14
synthetic chemists and the growing of single crystals	XIV-239
systematic absence information in XPREP	íl-42
systematic absences – check that they match	11-44
systematic methods to enhance crystal growing success	XIV-246

Т	
Table 1 Crystal data and structure refinement for "calctest" $(n^{6}-1/2)^{3}-(OME)^{2}-5-(CO_{2}ME)^{3}-(CO_{2})^{3}$	XI-214
Table 2. Atomic coordinates and equivalent isotropic displacement parameters for "calctest", (η^{-1} ,2,3-(OM	IE) ₃ -5-
$(CO_2ME)C_6H_2)Cr(CO)_3)$	XI-215
Table 3. Bond lengths and Angles for "calctest", $(\eta^{\circ}-1,2,3-(OME)_{3}-5-(CO_{2}ME)C_{6}H_{2})Cr(CO)_{3})$	XI-216
Table 5. Hydrogen coordinates and isotropic displacement parameters for "calctest", $(\eta^{\circ}-1,2,3-(OME)_{3}-5-$	
(CO ₂ ME)C ₆ H ₂)Cr(CO) ₃)	XI-220
Table 6. Table of Structure Factors for "calctest", $(\eta^{\circ}-1,2,3-(OMe)_3-5-(CO_2Me)C_6H_2)Cr(CO)_3)$	XI-221
TABLE OF CONTENTS	I-5
telp command sets up plot files for plottest	X-200
telp command sets up plot files in XP	VII-85, VII-111
TEMP command is used to tell XS the data collection temperature	V-/5
temperature and its effect on default displacement parameters	V-/5 VI 214
temperature in data collection table	XI-214 VIV 220
temperature must remain relatively constant for single crystal growth	VIV 241
temperature ramping and slow crystal growing	VII 110
terminal CH, or NH, groups and hadd command of VD	VII 101
tertion: C II groups and hadd command of VD	VII-101
The Journal Of Chamical Education	VII-100 VII-225
thermal gradients	VIV 241
thermal neutron wavelengths of about on Å	L 20
	I-29
thermal neutrons used for diffraction studies	I-29
Theta range for data collection in data collection table	XI-214
theta/2theta data collection mode	I-36
THF as a crystallization solvent	XIV-240
I nings to try when Direct methods fails	III-54
thiourea form host channels to induce crystal formation	XIV-246
three dimensional structures viewable with proj command	V-6/
TIME command sets the maximum time for XS and XL calculations	III-51, V-/5
TILL command gives name and space group in AS and AL	Ш-49, V-/5 VII 112
TO this KENWORD defines a list of stores	VII-115 VII 115
To this KET word defines a list of atoms	1.24 I.27
toluone on a gristallization soluent	VIV 240 VIV 242
toluene as a crystanization solvent	-AIV-240, AIV-242 VIV 246
Tony Day's WEB page on protein folding	VII 235
tors command of XP calculates torsion angles	XII-233
tors/L command of YP prints torsion angles	VII 113
torsicn angles calculated by YD	VII 04
torsion angles from the tors command	VII-113
total power of the X-ray tubes	I_22
transition element compounds and Direct methods	Ш-46
transition metal compounds and the Patterson method	ш-46
transmission factors _ minimum and maximum	ш-43
TREE 10000 50 command for XS	II-45
TREF 2000 command for XS	
TREE command for XS	-54 IX-124 IX-125
TREF -solution # - changing to get additional Direct methods solutions	
TREF vs. PATT - choosing alternate XS solution method	III-53
Trial Solution from XS	
trial solutions evaluation by XP	
trial solutions from Direct methods	III-46
trial solutions from XS for calctest	IX-124
trial solutions to the phase problem from XS	I-32
tutorial manual for XSCANS	II-39
TWIN command used to refine twinned data is XS and XL	V-75

twinned crystal effects on XS success	III-54
twinned crystals and novices	I-18
twinned crystals and the TWIN command	V-75
twinned data set refinement to help with problem structures	V-70
TYPE command is used to modify how atoms are plotted	VII-116
TYPEn this KEYWORD from XP is used to designate atom types	VII-115

U

uniq command in XP prunes the atom list	VII-114
unit cell axial lengths	III-54
unit cell axial lengths and angles	III-49
unit cell axial lengths and angles from CELL command	V-72
unit cell contents	I-32, II-42
unit cell determination in XSCANS	I-30
Unit cell dimensions in data collection table	XI-214
unit cell outline	VII-109, VII-112
unit cell parameters - esd values from ZERR	V-76
Unit cells and their relationships to space groups	ІІ-39
UNIT command tells XS and XL how many of each element are present	III-50, V-75, V-77
UNIT command tells XS and XL how many of each element type are present	III-52
unusual bond distances and angles	VI-80
user friendly XSCANS manual	I-19

۷

verbosity level of XS and XL output set by the MORE command	V-74
vibration levels need to be minimal for single crystal growth	XIV-239
view command can be used to look at any specified plot file	VII-114
viscosity of gels	XIV-242
Volume of crystal in data collection table	XI-214
volume of the unit cell per non-hydrogen atom	III-54

W

wandering off of atoms in refinement	V-68
water as a solvate	XIV-246
Wavelength in data collection table	XI-214
wavelength of the radiation from CELL command	V-72
wavelength of the radiation in the diffraction	III-49
weak peaks in the O peak list	IV-58
weaker peaks and point detector scanning	I-26
WebLab Viewer for molecular graphics	XII-236
WebLab Viewer input files in CIF format	VIII-121
weighted residual parameter	VI-81
weighting function	IX-170
weighting function and refinement by XL	V-76
Weighting of the calctest solution	IX-179
weighting parameters in name.ins file	I-36
WGHT command tells XL how to treat weightingV-68, V-	76, V-77, IX-159, IX-167, IX-174, IX-186
white board for tracking goniometer heads	I-29
white board for tracking goniometer heads	I-25
Windows NT workstations for macromolecular structure determinations	I-28
Wintel computers	XIII-237
workstations for macromolecular structure determinations	I-28
WPDB causes the data to be saved in PDB format after XL	V-75
wR - the weighted residual index	V-65, VI-81

wR2 the simulated weighted residual parameter	IX-179
write protect you backup disks	II-40
wrong absolute structure warning and the invt command	V-69
wrong space group effects on XS success	III-54

X	
ХСГЕ	XI-213
XCIE – Generating Tables for Publication	VIII-117
XCIF – input data from ACTA command	V-71
XCIF – Using it to generate Tables	VIII-117
XCIF for Table Preparation	I-33
XCIF is used to prepare tables for publication	V-68
Xenon detector gas	I-26
XFOG to Simulate hkl files	I-34
XFOG used to Simulate hkl files	I-36
XL	V-77
XI – Example Adding in the Hydrogens	IX-164
XL - Example finding remaining Non-Hydrogen Atoms	IX-151
XL – Example of calculation gone to Convergence	IX-186
XL – Example of finding most Non-Hydrogen Atoms	IX-143
XL - Example refining all non-hydrogen atoms	IX-155
XI – Example refining non-hydrogen atoms as Anisotropic	IX-159
XL - Latter Stages of Refinement	V-77
XL - Summary of Commands	V-71
XL an Introduction	V-62
XL and XS use many of the same command	III-49
XL for Structure Refinement	I-33
XP – using it to generate plots	VII-83
XP and the assignment of atoms	IV-57
XP Commands - Alphabetical Listing	VII-96
XP for Data Analysis and Graphics	I-33
XP starting this routine	IV-58
XP to illustrate a least squares planes calculated by XP	X-191
XPOW is used to calculate powder patterns	I-36
XPOW to Calculate Powder Patterns	I-34
XPOW/XFOG used to calculate powder patterns	I-31
XPREP - Preparing Your Data	II-41
XPREP and Introduction	II-39
XPREP for Data Preparation	I-32
XPREP used to define unit cell contents	II-42
XPS for Fragment Searchs	I-34
XPS to find a solution	III-56
XPS to help with problem structures	V-70
X-ray beam intensity	I-29
X-ray crystallography "gods"	V-75
X-ray diffractometer components	I-21
X-ray generator	I-23
X-ray generator power levels	I-22
X-ray tube	I-24
X-ray tubes cooled by a heat exchanger	I-22
XS - and Evaluating the Quality of its Results	III-53
XS - Example of Finding a trial solution with Patterson methods	IX-138
XS - Example of its use with Direct methods	IX-124
XS - Summary of Commands	V-71
XS - the program	III-46
XS - the role of R factors in evaluating its success	III-53
XS - the role of XP in evaluating its success	III-53
XS - Using it to find trial solutions to the Phase Problem	III-46

XS fails	III-54
XS for Trial Solutions	I-32
XS name [ent]	III-52
XS solutions - when are they worth pursuing	III-53
XS Trial Solution Searches	III-52
XSCANS	I-32
XSCANS Software Tutorial/Users Guide	I-30
XSCANS Technical Reference Manual	I-30
XTEXT format	I-35

Z	
Z - the number of formula units in the unit cell	III-49
Z number in name.ins file	I-36
Z number of molecules in unit cell - in data collection table	XI-214
Z parameter in ZERR line	V-76
Z value	II-42
ZERR	III-49
ZERR command tells XS and XL the Z value and esd values of unit cell parameters	V-76
ZIP drives for data processing computers	I-28

Winter 1999 D1 Edition, For Instructional Use, Use Only With The Author's Permission