

Absorption images.

dence weakly contrasted details using the weakest radiation In Fourier transform, significative magnitudes near origine

• small details \Rightarrow expected resolution 50 μm

• $\Delta \approx 0.01 > \sigma \Rightarrow \text{counts} \gg 10^4 \Rightarrow 14\text{--}16 \text{ bits}$

operate at high energy (80 keV) : high Z sensor needed (GaAs) MEDIPIX (CERN) Logart IEEE-THS 2002 MPEC (Bonn) Lindow MM 200

* Experimental resolution increases the required dynamic ™ I_{Bro} $_{aa} > 10^9 \nu/s$ (BM2@ESRF) \Rightarrow saturation ou atténuation

■ $F \propto \sqrt{I} = \sqrt{\text{dynamique}(I)}$.

XPAD2 detector : 8 modules × 8chips

- Removing fluorescence Due to charge sharing on pixel borders rejecting E = 1keV create dead zones on this border with size $d \approx 60\mu m$: the flatfield will look like the yellow surface. =vertricted to pixel size D > d: dead area $\propto 2d/D$
- Removing harmonics needs a energy window with upper edge More complicated : 2E photons in the border zone are counted as Ephotons Ratio reduced only by $\propto d/D \Rightarrow$ optics are more efficients!

Powder diffraction application (1)

With 0-D detector pipes rem ing, background level partly pipes on 2d-detector. nove diffuse scatter-removed with conic Raw images with Bragg lines, low and high angles.

Multilayers

Challenging applications on material science beamlines consist in anomalous mapping of layered materia

local structure of self organized layers (Qdots...)

A new detector using last XPAD2 chips.

The detector build in winter 2004 has some defects and few chips were dam-aged by some experiments.
A new one was assembled using spare chips and best remaining modules. It was mainly used for the small animal tomog-raphy project.

Small animal tomography : few (18/72) from a mouse rotated in lab ri, C. Morel, F. Peyrin, D. Sappey-Marinier, S. Valton...

Resulting counts Y on pixel $p: Y_p = N_p^{-1} \Sigma f_q$, $y_{q,i}$ counts on image i of pixel q_i . f_i flattied of pixel q_i : Pixel $q \in Image_i \rightarrow p \in Image_{argupt}$: q = q(pMinimistation: $\sum_{i}(Y_p - N_p^{-1}) \sum_{i}(I_q y_{q_i})^2$ Powder lines: $Y_{p(zmq - Y Zmq)}$ $\sum_{Bing} (Y_{Ring} - N_{Ring}^{-1} \sum_{\substack{n \in Bing \\ i \in Bing}} \sum_{i} f_q y_{q,i})^2$ 11 Reconstructed Debye-Scherrer film --Powder diagram + flatfield extraction 00055200 occ65550 Multilayers measurements

Epitaxly grown multilayer are now common sample to characterize : they need mapping of the reciprocal space which is time consuming. At the time such maps are recorded with sitts and fixed (h.k.f.) point of the reciprocal lattice, attenuator are often required near the substrate. 2-D detection allows an im-portant improvement in these acquisition but it need to be able to manage high dynamics and to transform your reciprocal slices into reciprocal maps.

CDs compared to hybrid pixels					
	direct CCD	FO CCD	XPAD2		
X ray detector	silicium 20µm	fluo screen 50µm	silicium 330µm		
coupling		optical (+intens)	electric		
1ν @ 10keV	3000e ⁻	$1 - 5e^{-}$	3000e		
saturation	$10^{2}\nu$	$10^{5}\nu$			
Energy resol.	10%		10%		
Read	90% dead time	$\approx 1s$	$\approx 0.01s$		
Flux Max	$10^4 \nu/s/detector$		$10^6 \nu/s/pixel$		
Shutter	X	X/optical	integrated		
Dynamic		14-16b			
Sensitivity	$0.001\nu/s/pixel$	$0.5\nu/s/pixel$	$0.01\nu/s/pixel$		
Measurement	counting	Integration	counting		
Limitations		dark removing	counting rate		
		blooming effect			
Opt. usage	Speckle	Structure	Mat. Sciences		

Data from M. de Boissieu, see Phil. Mag. Let. (2001) 81, 273-283 and (2003) 83, 1-29

Dynamical range (XPAD1)

JV

d ar ny mili

Diffuse scattering in icosaedral quasi-crystals : 7 orders of magnitude are necessary to measure this signal. Dynamic extended by **attenuators**, time consuming mapping

D²Am D2AM/CF

Structure collection (PX).

 \bullet very big surface : a few 10^6 pixels required

Kinetics : low resolution powders

Very quick reactions, for solid state scientists, do not require such a high resolution but more flux and better detectors. Laser melting and solidification of oxides. • Magnetic induction melting and solidification of metals. • Self-Propagation High Temperature Synthesis of alloys.

e systems are badly triggered and memory buffers must ensure to record nort phenomenon, most transformations occur in $\approx 100 \, ms$ but the whole ss takes a few seconds ($\approx 10 \, s$).

Fo study such phases diagram, various setups can be considered. • Moving films (IP) are often too slow.

moving imms (ir/) are often too blow.
 Gas detections with indicated acquisition electronics (256 frames of 10 ms, no read out
 Sas detections with indicated acquisition electronics (256 frames of 10 ms, no read out
 Sas detections), the same of the same o

Powder diffraction application (2)

SD3 compared to hybrid pixels				
	direct CCD	FO CCD	XPAD2	
X ray detector	silicium 20µm	fluo screen 50µm	silicium 330µm	
coupling		optical (+intens)	electric	
1ν @ 10keV	3000e	$1 - 5e^{-}$	3000e	
saturation	$10^{2}\nu$	$10^{5}\nu$		
Energy resol.	10%		10%	
Read	90% dead time	$\approx 1s$	$\approx 0.01s$	
Flux Max	$10^4 \nu/s/detector$		$10^6 \nu/s/pixel$	
Shutter	X	X/optical	integrated	
Dynamic		14-16b	-	
Sensitivity	$0.001\nu/s/pixel$	$0.5\nu/s/pixel$	$0.01\nu/s/pixel$	
Measurement	counting	Integration	counting	
Limitations	-	dark removing	counting rate	
		blooming effect		

SAXS camera Powder diffraction application (3) Can be applied to complex materi ality powder pattern can be exne reduced by 20

Multilayers slice / integration

A PBT superlattice / MgO has been scanned allong the (001) direction. Images of 200s have been recorded from 5.95 to 4.05 with a l step of 0.05 these was prefered to direct integration of this space as it allows to measure more accuratly the shape of the lower peaks.

from XPAD2 to XPAD3

e of the AMS-CMOS $0.8 \mu m$ technology used for XPAD2

• A new XPAD3 using $0.25\mu m$ technology with $25\mu m$ bumps					
	XPAD2	XPAD3	comments		
polarization	both	e ⁺	2 chips : Si, CdTe		
pixel size	330 µm	130 µm			
chip size	$8 \times 10 mm^2$	$10 \times 15 mm^2$	→ reduce tiling		
counting rate	$2.10^{6} ph/s$	$2.10^{5} ph/s$	≡ count/surface		
energy range	(5) $15 \rightarrow 25 keV$	$7 \rightarrow 25 keV$	new analog chain		
pixels/chip	$24 \times 25 = 600$	$80 \times 120 \approx 1.10^4$			
pixels/module	$8\times 600\approx 5.10^3$	$\approx 1.10^5$			
pixels/detector	$\approx 4.10^4$	$\approx 5.10^{5}$			
geometries	8×8 or 2×5	7 × 8 and ?			

Chip design has been carried out

• Prototype is expected for mid 2006

Powder diffraction application (4)

Multilayers ; Ferroelectric superlattice 27 (17 PbTiO3,17 BaTiO3) superlattice / MgO : large lattice mismatch \rightarrow in-plane polarization \rightarrow tetragonal dis

our of such con

