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peak sites and new atoms positioned at the bcc pit
sites.

• The number of peaks, passes, pales, and pits in a unit
cell (i.e., in a 3-torus S1×S1×S1) obeys the Euler-
Poincare relationship for Euclidean space, i.e., peaks -
passes + pales - pits = 0, and the following Morse
inequalities:

 pits ≥ 1
 peaks ≥ 1
 pales - pits ≥ 2
 passes - peaks ≥ 2
 passes - pales + pits ≥ 1
 pales - passes + peaks ≥ 1

• The inequalities are too weak to be of much value in
practice; thus, there is a definite need for much
stronger inequalities that incorporate space group
specific invariants based on equivariant topology and
can be applied to the wrapped-up asymmetric unit
(i.e., orbifold) rather than the wrapped-up unit cell
(i.e., 3-torus cover).

• The total number of critical points of a given type
belonging to an asymmetric unit (fundamental do-
main) of a crystallographic unit cell can be calculated
by dividing the sum of Wyckoff site multiplicities for
all sites occupied by critical points of that type by the
Wyckoff site multiplicity for the general position site.
For simple high symmetry structures, this number is
often less than one.

• Since the Betti numbers for the 3-torus are 1,3,3,1,
the minimum number of critical points possible in a
crystallographic unit cell is 8, (i.e., 1,3,3,1 in P 1 with
critical points on the 8 inversion centers). Betti num-
bers are topological invariants used in the derivation
of the Morse inequalities.2,3,5

• The inequalities are still of little practical value; thus,
there is a definite need for much stronger inequalities
that incorporate space group specific invariants based
on equivariant topology and can be applied to the
wrapped-up asymmetric unit (i.e., orbifold) rather
than the wrapped-up unit cell (i.e., 3-torus).

4. Critical Nets on Orbifolds

In Sect 3. we saw that critical net drawings can be-
come rather complex even for very simple examples such
as the body-centered cubic (bcc) structure. In the present
section, we introduce critical nets on orbifolds, which re-
duce both the graphical and interpretation complexity as-
sociated with critical nets while including valuable space
group topology information as well.

4.1 Body-Centered Cubic Orbifold

The orbifold for Im 3m, the parent space group for bcc
structures, is derived from the fundamental domain shown
in the lower left of Fig. 4.1. The space group coordinates
for the vertices of the fundamental domain are given in

parentheses as fractions of the unit cell lengths. The ar-
rows denote the down density critical net paths leading
from the peak at (a) to the pit at (b). Wyckoff identifica-
tion letters (a-k) are shown on the asymmetric unit draw-
ing, and the ITCr1 information on most of those Wyckoff
sites is listed in the columns labeled “Wyckoff Set” in the
middle of the figure. The tetrahedral fundamental domain
has three sides bounded with the top (k) and bottom (j)
mirrors with (k) bridged over the 3-fold axis as described
in Sect. 1.6, but the fourth side is open (unbounded) with a
2-fold axis (i) extending from one corner of the open end
(c) to the center (d) of the opposite face, which contains
another 2-fold axis (g).
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Figure 4.1. Construction of Im 3m orbifold
from asymmetric unit and superimposition

of body-centered cubic lattice complex
to form linear critical graph.

Visualize the tetrahedral asymmetric unit as a single-
pole pup tent, covered by a silvered rubber reflective
sheet, with a support pole (i) in the entrance. A horizontal
“threshold” pole (g) with a hinge in the middle (d) lies
across the front of the tent floor with the hinge attached to
the bottom of the support pole. To close the tent, we grab
the two corners of the rubber sheets (j and k) at the two
ends (b) and (b') of the hinged threshold pole (g) and bring
them together stretching the extensible and flexible tent
floor poles (e) and (h) in the process. We then zipper the
edges of the sheet (k) together to form the bounded orbi-
fold shown in the lower right drawing of Fig. 4.1.

The underlying topological space of this 3-orbifold is
a 3-ball. Using the notation in Fig. 2.3, the orbifold has
two singular points of type j, 4'3'2' at (a) and 4'2'2' at (b),
and two singular points of type i, 23' at (c) and 22' at (d).
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4.2 Linearized Critical Nets on Orbifolds

Critical nets are actually Morse functions that are
defined in terms of a mathematical mapping from Euclid-
ean 3-space to Euclidean 1-space (i.e., a single valued 3-
dimensional function). Taking this requirement literally,
we deform the orbifold so that the Euclidean 1-space of
density is vertical in the page (i.e., peak height > pass
height > pale height > pit height). This adds a welcome
constraint to the drawing of orbifolds that in general have
no inherent topological constraints to guide the illustrator.
The topologist would probably tend to draw it as a solid
sphere, but we are not violating any topological principles
in forming the linearized critical net on orbifold (i.e., lin-
ear critical graph) shown at the top of Fig. 4.1.

The multiplicity for each Wyckoff site is given as a
column in the table and the preceding column shows the
integer ratios of the multiplicities in adjacent rows, which
are by design the adjacent elements in the critical net
graph. These ratios tell us the coordination numbers of
critical net components around other critical net compo-
nents, thus summarizing much of the structural topology
information you would obtain by examining ORTEP-III
critical net stereo drawings or calculating and evaluating
long tables of intercomponent distances and angles. Note
the abbreviated orbifold critical set notation in the linear
critical graph of Fig. 4.1 where 3'3' becomes 3', and sta-
tionary points such as 4'3'2' are denoted by the labels on
the lines intersecting at that point.

4.3 Resolution of the Critical Net Versus Tiling
Discrepancy

The coordination numbers also provide a method for
applying topological constraints in that there must be ex-
actly two peaks around a pass and two pits around a pale.
This particular combinatorial constraint holds for the til-
ing approach of Dress, Huson, and Molnár34 as well as for
our critical net Morse function approach. Fig. 4.2 shows
two solutions satisfying that constraint based on the orbi-
fold topology for space group Fd 3m with atoms (i.e., til-
ing vertices in the Dress approach, peaks in the critical net
approach) on the two 43m sites of Fd 3m. Fig. 4.2 com-
pares the two configurations assuming both are linearized
critical nets on the Fd 3m orbifold. The columns of num-
bers are sums of Wyckoff set multiplicities for each level
of the critical net and integer ratios of neighboring rows.
Only the connections between adjacent levels are
summed. An ORTEP drawing of the configuration labeled
bcc derivative is shown in Fig. 3.4. A similar drawing
cannot be made for the special rhombohedral tiling given
by the second configuration since the two pales are far
from collinear with the pit.

What’s going on here? First, we note that the left con-
figuration has seven nodes while the right has only six,
but the six in common are on the same Wyckoff sites and
point positions. We then note that on the orbifold drawing,

in the lower right of the figure, the h2 axis lies directly
between the (e) and (f) sites. Since a separatrix line can
never traverse more than one isometry zone (i.e. Wyckoff
site zone), there has to be another critical point at point
(h). According to the special rhombohedral indexing, this
point would have to be a degenerate critical point with a
cubic (triple point) algebraic dependence rather than quad-
ratic along the (e) to (f) vector since the density is heading
downhill along that vector. We can always decompose a
degenerate critical point into several nondegenerate criti-
cal points, but then we would be in trouble satisfying the
Euler-Poincare relationship described in Sect. 3.10. The
obviously related (c) and (d) Wyckoff sites must be as-
signed to the same Morse function levels, which then pro-
duces the correct configuration shown in the left-hand
drawing.

 In other situations, missed critical points may make
one of the critical points found appear to be degenerate. In
our experience to date, a critical net that is not a Morse
function has always been traceable to misindexing caused
by the omission of valid critical points. Once the peak
positions have been assigned by positioning atoms and
assigning their Gaussian thermal motion parameters, the
rest of the critical net is fixed; it is just a case of deter-
mining what it is. In the simple structures we are discuss-
ing in this treatment, the thermal motion probability den-
sity is either constrained by symmetry to be isotropic or
assumed to be isotropic and in any case has little effect on
critical net details. Thus we omit smearing functions from
the discussion other than to say they are isotropic, Gaus-
sian, and mildly overlapping.

Special
Rhombohedral

Tiling

e3'

e3'

e3'
h2

Fd3m Orbifold

96

16

128

64

384

96

192

48

96

6

8

2

6

4

2

4

2

128

16

96

48

288

48

96

16

128

8

6

2

6

6

2

6

8

e3'
e3'

e 3'

h2
i 1

i 1

BCC
Derivative

g1'

i1

f2'

1'g

Critical Net
Coordination

192
96
96
48
32
16
16
8
8

i
h
g
f
e
d
c
b
a

1
22
1'
2'2'
3'3'
23'
23'
3'3'2'
3'3'2'

Fd3m
_Wyckoff Set

Valid
Morse Function

Invalid
Morse Function

e3'

h2

h2

e3'
e3'

g1'
e3'

f2'

e3'

f2'f2'

ab

c

d

a b

c e d

h

f

a b

c e

d

f

e

ff2'

h

Figure 4.2. Comparison of critical net
and tiling results.
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5. Lattice Complexes on Critical Nets on
Orbifolds

Critical nets on orbifolds, as presented in Sect. 4,
provide a wealth of local topology information about the
parent space group and simple structures on that space
group. The global topology information is also there, en-
coded in the macrodetails of the combined critical net
graph and orbifold, but sometimes we need a more spe-
cific summary of the global picture. A simple example
concerns the difference between face centered cubic (fcc)
and hexagonal closest packing (hcp) which have identical
substructures as indicated by the coordination vector as
shown in Figs. 5.2 and 5.4. Lattice complexes are con-
venient for the next step up past the coordination vector.
In fact, the fcc and hcp configurations have their own lat-
tice complex symbols F and E, respectively.

5.1 Lattice Complex Background

Lattice complexes have over a 75 year history in
crystallography. We find much of the literature on lattice
complexes more complex than we need for our applica-
tion, but there is an introductory paper40 that describes the
basics we use. Once those basics are understood, certain
key tabulations in Fischer, Burzlaff, Hellner, and Don-
nay;41 Koch; 42 and Fischer and Koch43 become useful. The
definition given in the most recent reference43 is that a
lattice complex is the set of all point configurations that
may be generated within one type of Wyckoff set. Hell-
ner’s definition40 is that a lattice complex is an arrange-
ment of equivalent points (or equipoints) that are related
by space group symmetry operations, including lattice
translations. Example applications of lattice complexes
are given by Hellner, Koch, and Reinhardt.44

The “characteristic space-group type” of a lattice
complex is defined as the highest symmetry space group
that can generate the lattice complex. All other space
groups with the same lattice complex are subgroups of
that characteristic space group, but not all the subgroups
contain the lattice complex (i.e., being a subgroup is a
necessary but not sufficient condition). For lattice com-
plex I, the characteristic space-group type is Im 3m; and
the “characteristic space-group site” is m 3m at Wyckoff
position a in space group Im 3m, which is a fixed point
with zero degrees of freedom.

5.2 Lattice Complex Notation

Any lattice complex that has its characteristic space-
group site on a fixed point is called an invariant lattice
complex. Those with one degree of freedom are called
univariant lattice complexes, etc. Among the 36 invariant
lattice complexes, 11 are rotational or stereometric iso-
mers of others. The remaining 25 listed in order of the
number of points [n] per cell in a lattice complex are: [1]

P; [2] C, E, G, I; [3] J, N, +Q, R; [4] vD, F, +Y; [6] J*, W;
[8] D, vT, +Y*; [9] M; [12] S, +V, W*; [16] T, Y**; [24]
S*, V*. The lattice complex W* for example is called a
twelve pointer. All the points are on an 8×8×8 sublattice
within the unit cell (12×12×12 sublattice for hexagonal
unit cell). Those equivalent to Bravais lattices are P, C, I,
R, and F.

In Figs. 2.8, 5.1, 5.2, 5.3, 5.4, and A1, the lattice
complex symbols with subscript 2, ab, or c denote cell
doubling in three, two, or one dimension(s). A superscript
digit (1, 2 or 3) denotes the positional degrees of freedom
for sites not on fixed points.

Lattice complexes (LC) provide convenient nomen-
clature, classification, and data management representa-
tions for space-group orbifolds and critical nets. As an
example, the 3-orbifold I 43m (#217), shown in Appendix
Fig. A.1, is described in our extended Wyckoff notation
as:

 2-a-3'3'2'-   [I]
 6-b-22'-      [J*]
 8-c-3'3'-  ae:[(I4)3'{P1

2}3'&]
12-d-20-       [W*]
12-e-2'2'-  ab:[(I6)2'(J*2)]
24-f-22-    bd:[(J*4)2(W*2)]
24-g-1'-    ec:[(I6)2'(J*2)+((I4)3'{P1

2}3'&)]1'
48-h-1-     fg:[f(d@RP2)+g@D2]@D3

where (a,b,d), (c,e,f), (g) and (h) are invariant, univariant,
divariant, and trivariant LC, respectively. The structuring
(pq:) is hierachical with invariants in univariants, invari-
ants and univariants in divariants, etc.

The most general LC (the trivariant LC (h) in this
example) describes the total orbifold, or if no singular set
is present, the manifold. In (h) the underlying 3-ball (D3)
topological space has a mirror 2-disk boundary (D2), con-
taining (g), and a single suspension RP2 antipodal surface
representation with cone point (12-d-20) and cone axis
(24-f-22). The univariant LC notation for (8-c-3'3'), (12-e-
2'2'), and (24-f-22) includes coordination numbers from
Wyckoff multiplicity ratios as calculated in Fig. 4.1. The
notation [(I4)c3'(P1

2)3' &] in (c) describes a site on the 3'-
axis called an invariant limiting lattice complex.41,43,45 {P1

2}
(which has the multiplicity of the 3'-axis site (c) on which
it lies). The 3'-axis then loops back (denoted by &) to the
starting point (2-a-3'3'2') through a second ((I4)3') con-
nection. All limiting lattice complexes are omitted from 3-
orbifold Figures 2.8 and A.1, but several univariants are
included in Figures 5.1-5.4.

5.3 Lattice Complex Splitting Equations

The lattice-complex splitting equations40,41 for the
cubic lattice complexes interrelate the lattice complexes.
These include F=P+J, P2=I+J*, W2=V*+S*, I=P+P",
P2=F+F", J*=J+J", W*=W+W", D=F+F', D"=F"+F"',
I2=D+D", V*=+V+–V, S*=S+'S, F2(@ 1/8,1/8,1/8)=T+T",
I2=P2+P2', Y**=+Y*+–Y*, +Y*=+Y++Y", and –Y*=–Y+–Y"
with ', ", and "' denoting translations along a body diago-
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nal by (1/4,1/4,1/4), (1/2,1/2,1/2), and (3/4,3/4,3/4), re-
spectively. In our analysis of critical nets, these equations
relate a lattice complex in one net to a path between two
lattice complexes in a net at a lower level. In Fig. 5.1, for
example, the P2 lattice complex in Im 3m is related to the
two F lattice complexes in Pn 3m and the 3-fold path be-
tween them by P2=F+F".

5.4 BCC Symmetry Breaking Family

In order to point out some additional properties about
orbifolds and critical nets on orbifolds, we examine a se-
ries of related cubic space group orbifolds that accommo-
date the body-centered cubic critical net. The series of
cubic space group orbifolds that are related by group/
subgroup relationships starting with Im 3m is shown in the
linearized critical nets of Fig. 5.1, which includes the ce-
sium chloride and body-centered cubic critical net crystal
structure types.
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Figure 5.1. Body-centered cubic and CsCl
critical nets superimposed onto

cubic space group orbifolds.

Notes on orbifold Figs. 5.1, 5.2, and 5.3:

• A straight arrow between graphs points toward a
normal subgroup, a straight arrow within a graph
points toward a site of “lower density”, an arrow be-
tween adjacent levels within a graph indicates a criti-
cal net Morse function separatrix, and an arrow be-
tween nonadjacent levels within a graph indicates a
symmetry axis of the space group orbifold that is not
embedded into the critical net Morse function.

• A number greater than 1 labeling a line of a graph
indicates a 2-, 3-, 4-, or 6-fold crystallographic rota-
tion axis while 1 indicates a path within a general po-
sition zone.

• A primed number indicates the path lies in a mirror.
• A thick circle indicates a projective plane suspension

point arising from an inversion point not in a mirror
(i.e., types b and e of Fig. 2.3).

• For a group/subgroup pair, each axis within the parent
graph is either split into two identical axes or reduced
in group order by one half (e.g., 4' → 4' + 4', 4' → 4,
or 4' → 2') in the subgroup graph.

• A superscript number on a lattice complex symbol
denotes the degree of positional freedom at that site.

• Mult, the sum of Wyckoff multiplicities for a row of
elements in a graph, is the same for all groups in the
illustration except Fd 3c (#228), which has 8 times
that number because of its multiple cell (e.g., I → I2)
lattice complexes.

• Integer ratios of adjacent multiplicities provide the
coordination vector.

• The odd-order 3-fold axis in an orbifold is the only
operator that can:
• Continue through a 332 or 3'3'2' junction
• Bridge a mirror over itself without breaking the

mirror if it is 3'3'
• Permit a 2-fold axis to continue through a 322 or

3'2'2' junction
In other words, separate edges of a graph can repre-
sent different segments of the same Wyckoff site if a
3-fold axis is present.

Notes specific to Fig. 5.1:

• By adding the shortest peak-to-pit path (4' for #229)
to the graph, we also obtain the number of peaks
around pits (2) and pits around peaks (6) as coordina-
tion numbers. The extended coordination vector [e.g.,
(6)(8,2,6,4,2,4)(2) for bcc] can be used as a local
topological description of critical net coordination to-
pology for simple critical nets.

• The underlying topological spaces for Fig. 5.1 are the
3-ball in #229, #221, #224, and #223; S3 in #211 and
#208; RP3 in #197; doubly suspended RP2 in #222,
#201, #218, and #228; and 3-ball plus singly sus-
pended RP2 in #204 and #217.
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5.5 Additional Cubic Space Group Examples

 The face-centered cubic and the diamond families are
shown in Figs. 5.2 and 5.3, respectively.
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Figure 5.2. Face-centered cubic critical net

superimposed onto cubic space group orbifolds.
 
See “Notes on orbifold Figs. 5.1, 5.2, and 5.3” following
Fig. 5.1.
 
Notes specific to Fig. 5.2:
 
• Graph nodes that are blank (i.e., without a lattice

complex descriptor) are still lattice complexes but do
not have a parent on an invariant fixed position and
thus do not have a standard crystallographic name.

• The 3' axis in orbifold #216 and the 3-fold axis in
#196 extend through all four F lattice complexes,
3'3'2' and 332, respectively, to form loops.

• A single mirror covers orbifold #216.
• The underlying topological spaces are the 3-ball in

#225, #216 and #202 and the 3-sphere in #209 and
#196.
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Figure 5.3. Diamond and ZnS critical nets
superimposed onto cubic space group orbifolds.

Note specific to Fig 5.3:

• The underlying topological spaces are the 3-ball in
#227 and #216, the 3-sphere in #210 and #196, and
the doubly suspended projective plane in #203.

5.6 Hexagonal Space Group Examples

Fig. 5.4 shows the critical nets for graphite, hexago-
nal diamond, and hcp, which all crystallize in the same
hexagonal space group, P63/mmc. The Wyckoff set and
orbifold for that space group also are shown.

The nodes of the critical net graphs in Fig. 5.4 contain
the appropriate Wyckoff symbol rather than the lattice
complex symbols. The Wyckoff to lattice complex map-
ping is a,b → Pc; c,d → E; and g → N, where Pc stands
for primitive with doubling along the c axis.

The upper left drawing of Fig. 5.4 is the orbifold that
has a single 2' axis, h, extending around the upper edge of
the kitchen measuring-scoop shaped basin. There are three
3' axis intersections (b, c, & d) that h traverses to form a
complete loop. The leading end of the scoop has a single
3' axis half-loop, f, while the support spine along the back
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of the scoop is a second 3' axis, e. The bottom point, a, at
the spine, e, gives rise to a 2 axis that goes through open
space from point a to point g in the forward end of the
scoop. Everything below the 2' axis, h, is covered by mir-
ror floor, k, while that above h has a mirror ceiling, j.

The hcp critical net in the upper right has the multi-
plicities shown for each critical net component and the
coordination vector (8)(12;2;4;3;2;8,4)(6,1), which is
identical to that for fcc in Fig. 5.2. The summed hcp mul-
tiplicities are all smaller than those for fcc by a factor of
two because of the supercell in fcc caused by repeating
after three layers in fcc versus two layers in hcp.
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Figure 5.4. Three different critical nets on the
hexagonal space group P63/mmc orbifold.
An interesting feature of critical nets is duality in

which the critical point set’s peaks, passes, pales, and pits
can be relabeled in inverse order to produce a dual critical
net. We note that the diamond structure critical nets
shown in Fig. 5.3 are self dual in that there is mirror
symmetry relating the top and bottom halves of the critical
nets. The face-centered cubic critical nets in Fig. 5.2 and
the body-centered cubic critical nets in Fig. 5.1 are not
self dual; consequently we can turn those critical nets up-
side down to produce different families of critical nets.

The bottom two critical-net drawings in Fig. 5.4 il-
lustrate the duality of graphite and hexagonal diamond.
Note that the coordination vector (4)(4,2,6,6,2,4)(4) is
identical to that for diamond in Fig. 5.3 while the summed
multiplicity vector (16)(4,16,8,48,8,16,4)(16) is half that
of diamond, which tells us there are more layers in real
diamond but the averaged local topology is identical.

The x and z values given under the critical net in Fig.
5.4 provide the variable position parameters for occupied
univariate and divariate Wyckoff sites. We felt it neces-
sary to make some slight metric adjustment in going from
graphite to hexagonal diamond based on empirical in-
spection of stereoscopic ORTEP diagrams. We have not
done any analytical positioning of critical points based on
the Gaussian density Morse function calculations since for
most simple examples studied to date except basic beryl-
lium acetate, the space groups usually provide enough
fixed points to define the critical net details. That will not
be the case for more complex crystal structure problems
where many of the critical points are on general rather
than special positions.

5.7 Critical Nets Versus Dirichlet Partitioning

Dirichlet partitioning of 3-space around a lattice-
complex point is carried out by placing planes normal to
vectors between neighboring points of the complex at
midpoints of the vectors. This forms a convex polyhedron
around the origin site in which all points within the poly-
hedron are closer to the origin site than to any other site of
the complex. The vertices of a Dirichlet polyhedron are
sometimes called interstices, implying holes between
spherical atoms.

For the invariant lattice complex P, which represents
simple cubic packing, the center, face, edge, and vertex
barycenters (centroids) fall on the peak, pass, pale, and pit
critical points of the critical net, respectively, as expected.
For the body-centered lattice complex I, this correlation
does not hold since the bcc peaks, passes, pales, and pits
are on the center, 8 hexagonal faces, 24 vertices, and 6
square faces, respectively, rather than on the center, 14
faces, 36 edges, and 24 vertices of the bcc truncated octa-
hedron Dirichlet polyhedron.

Because of such discrepancies, we recommend that
critical nets be used in place of Dirichlet polyhedra tiling
when practical. The Dirichlet partitioning algorithm is not
based on Morse theory topology principles. Thus the bcc
rhombohedral dodecahedron coordination polyhedron (12
faces, 24 edges, 14 vertices) is not dual to the bcc trun-
cated octahedron Dirichlet polyhedron, 46 and it serves as a
classic counterexample to the postulated duality between
corresponding coordination and Dirichlet polyhedra,
which the unwary may assume to be present.

6. Where do we go from here?

Since there is little crystallographic background lit-
erature available to provide guidance for future research,
we present our list of research needs in crystallographic
topology. The current state of the art can only be charac-
terized as exploratory. As Walt Kelly’s comic strip char-
acter Pogo once said, “We are faced with insurmountable
opportunities.”
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6.1 Interpretation of Macromolecule Electron
Density Maps

We first got into crystallographic topology in 1976
using critical point analysis as a representation method for
heuristic reasoning interpretation of protein electron den-
sity maps.39 The ORCRIT computer program we wrote at
that time was “decommissioned” for 15 years but has re-
cently been reactivated and used successfully in a series of
feasibility study by Janice Glasgow, Suzanne Fortier, and
their Queens’ University colleagues.47 The ORCRIT pro-
gram is more oriented toward numerical analysis (i.e., 3-D
linear blending interpolation and Newton iteration) and
graph theory (i.e., minimal spanning trees) than topology.
It uses only the peak and pass critical points to construct
what might be called ridge lines which tend to trace the
polymeric backbone and sidechains.

If we rewrite ORCRIT today, we would use Eric
Grosse’s spectral spline method48 to find the critical point
set, then numerically trace the separatrices. From the re-
sulting critical net we can determine volume, integrated
density, and topological shape descriptors for the chemical
cages for computational comparison with related archived
peptide and protein structure results. ORCRIT relied en-
tirely on distance, angle, and critical-point eigenvector
metric details, which are intrinsically less robust than in-
tegrated quantities and topological descriptors.

6.2 Critical Net Software Needs

We need to develop computer programs to determine
routine critical nets for small molecule crystal structures
such as basic beryllium acetate, shown in Fig. 3.5. We
present a “wish list” of what we would like to develop or
see developed by others. We need to:
• Write a modified ORCRIT program that, through

summation of crystal space Gaussian density func-
tions, can calculate density and its first two deriva-
tives at any point in an asymmetric unit. ORCRIT can
then do its pattern search for critical points without
storing or interpolating density maps on grids.

• Write a “twisted H” search function for ORTEP
based on the comments in Sect. 3.9 to assign critical
net indices and separatrices.

• Modify ORTEP-III to more automatically plot critical
net drawing given the critical points and separatrices.
The current features are minimal.

• Write a matroid49 program to resolve hierarchically
the orbifold singular set in one direction and the
crystal structure critical net in a second direction.
Such a program could provide a representation for
crystal structure classification, archiving, and query-
ing. This “dimatroid” could also serve as a
“blackboard representation” in heuristic programming
for stepwise conversions of Fd 3 (in Fig. 5.3) to the
full basic beryllium acetate critical graph, for exam-
ple.

6.3 Orbifold Atlas

The orbifold atlas we have mentioned several times is
needed for both pedagogical and research reference pur-
poses. For each space group the atlas might include two
identical orbifold singular sets drawings with Wyckoff
site symbols on one and lattice complex plus axis order
numbers symbols on the other. Perhaps the simplest pos-
sible linearized critical net graph(s) for that space group
might also be presented. There should also be a list of
coordinates for the fundamental domain (asymmetric unit)
vertices used based on the ITCr1 space group drawing se-
lected. A brief description of the underlying topological
space and the key orbifolding steps used to close the fun-
damental domain should also be included.

In addition to a sequential ordering of orbifolds based
on the standard space group numbers, subgroup/lattice-
complex trees of linearized critical net graphs such as
Figs. 5.1, 5.2, and 5.3 could be made for the various crys-
tal families. A nomenclature system based on such graphs
would be useful in crystal structure classification.

Graphics automation of singular set drawing would
certainly be welcome and perhaps essential since the ex-
isting computer-assisted drawing programs such as Adobe
Illustrator are very labor intensive when applied to this
task. One approach is to use a graphics techniques of knot
theory where Möbius energy functions based on Cou-
lomb’s law are applied to space curves, links, knotted
graphs, surfaces, and other submanifolds. 50 Programs such
as Scharein’s KnotPlot, Brakke’s Surface Evolver and the
Geometry Center’s GeomView, which are all described on
the World Wide Web, might be adapted to this task.

6.4 Interactive Data Base for Space Groups and
Orbifolds

Existing commercial space group data base programs
have not been useful in our research. We would like to see
a noncommercial World Wide Web site that provides the
key information of the ITCr1 for any space group includ-
ing Wyckoff sites and subgroup family data. An interac-
tive orbifold atlas could be implemented through addition
of database retrieval for topological orbifold data.

The computer algebra system GAP,51 which stands
for Groups, Algebra and Programming, was developed by
Joachim Neubueser and coworkers of Lehrstuhl D für
Mathematik, RWTH, Aachen, Germany. GAP now con-
tains a crystallographic library for two, three, and four
dimensional space groups based on the tables of Brown et
al.52 A WWW server might be feasible that would com-
bine orbifold data bases and the GAP system to provide
interactive answers to both standard and research level
inquiries about crystallographic groups and orbifolds.
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6.5 Orbifold Covers Based on Color Groups

The bicolor Shubnikov space groups and other crys-
tallographic color groups26 have both symmetry and anti-
symmetry group elements with the symmetry elements
carrying out the normal positional transformation opera-
tions. The antisymmetry elements of an n-color group are
essentially the elements of a group that are deleted in go-
ing from a group to one of its index-n normal subgroups.
The color groups are often used in crystal physics appli-
cations such as the description of magnetic patterns in
crystal structures, but they can be used here to describe
the cover of an orbifold or to derive one Euclidean 3-
orbifold from another 3-orbifold when their parent space
groups have a group/n-index normal subgroup relation-
ship.

We have derived graphical representations for the 58
bicolor spherical 2-orbifolds to supplement Fig. 2.3 and it
would not be difficult to extend this to the bicolor plane
groups. Full bicolor illustrations of the 1191 nontrivial
Shubnikov space groups are given in Koptsik53 but the
complexity of those illustrations is quite overwhelming.
An atlas of Euclidean bicolor 3-orbifold drawings is per-
haps feasible but not a trivial project.

Using GAP, it should be possible to rederive the
Shubnikov space groups computationally and from them
derive the ordinary Euclidean 3-orbifolds in space group/
subgroup families starting from a small number of top
level orbifolds in each family derived with normal geo-
metric topology cut-and-paste methods.

6.6 Analytical Topology

Although there is a huge analytical topology literature
that should seemingly be applicable to crystallographic
topology problems, the only equation that we have found
really useful in practice is the Euler-Poincare equation,
which states that the alternating sum for the numbers of
the sequential critical point types is zero for Euclidean
manifolds of all dimensions. We need equivariant invari-
ants for characterization of orbifolds, underlying topologi-
cal spaces of orbifolds, and crystallographic Morse func-
tions on space groups and orbifolds. We anticipate that
such invariants probably involve cohomology.7,31,32,33

Thurston16,17,54 conjectures that each closed 3-manifold
can be decomposed (by connected sums and splitting
along incompressible tori) into pieces, each of which has a
geometric structure modeled on one of eight types of 3-
dimensional geometries—H3, Sol, S3, E3, S2×R, H2×R, Nil,
and (the universal cover of) SL(2,R). Structures on Seifert
manifolds account for the last six of the eight geometries.
Several of the underlying spaces for orientable 3-orbifolds
have S3 (for dihedral point groups) and S2×R (for cyclic
point groups) as underlying spaces, and the 10 Euclidean
manifolds have Seifert manifolds as underlying spaces.
Are there any formal theorems that give all the underlying

spaces for Euclidean 3-orbifolds in terms of specific
classes of geometries or manifolds?

At times we need to trace geodesic paths in orbifolds
corresponding to general straight lines in Euclidean crys-
tal space. For Euclidean and spherical 2-orbifolds, con-
formal mapping, using the Schwarz-Christoffel transfor-
mation from an arbitrary circle or half plane (orbifold) to
an n-gon (fundamental domain), and analytic continua-
tion, based on Schwartz’s principle of reflection, will
work assuming the reverse transformation also is avail-
able. However, our problems are mainly 3- rather than 2-
dimensional. The literature on Riemannian orbifolds (e.g.,
Riemannian geometry of orbifolds55) should be followed
for its relevance to this problem.

Appendix

The 36 cubic crystallographic space groups are dif-
ferent from the remaining 194 space groups in that they
each have body diagonal 3-fold axes arising from their
tetrahedral and octahedral point groups. These body di-
agonal 3-fold axes make their orbifolds a less understood
topology problem in that the Siefert fibered spaces ap-
proach of lifting from a base Euclidean 2-orbifold is inap-
plicable since fibration along the required orthogonal
projections become tangled together by the 3-fold axes.
On the other hand, many aspects of the cubic groups orbi-
folds are more straightforward than for the simpler space
groups that are based on cyclic and dihedral point groups.

The 36 Euclidean 3-orbifolds for the cubic space
groups (i.e., the cubic 3-orbifolds) are illustrated in Figs.
2.8 of Sect. 2 and A.1 of this Appendix. The 12 cubic 3-
orbifolds in Fig. 2.8 have S3 as their underlying topo-
logical space. For the 24 cubic orbifolds in Fig. A.1, the
first 11 have a 3-ball underlying space, the next two have
singly suspended projective 2-planes (RP2) with mirror
boundary, followed by 10 with doubly suspended projec-
tive 2-planes (RP2). The final cubic 3-orbifold in Fig. A.1
has a projective 3-plane (RP3) underlying space.

The small circles at the points of each projective
plane cone in Fig. A.1 denote projective plane suspension
points which arise from mirror-free inversion centers of
the space groups. The dashed lines around the circum-
ference denote the antipodal relationship for points half-
way around each circle on the cone surface. The dashed
line around the RP3 sphere denotes an antipodal gluing
relationship for all points on any great circle of the RP3

spherical representation. Orbifolds having an RP2 or RP3

underlying space may be drawn in several different ways
because of the sliding antipodal gluing relationship for
projective planes discussed in Sect. 2. For the RP2 exam-
ples in Fig. A.1, drawings with the least possible number
of singular-set components on the antipodal surface are
shown. The symbols at the vertices of the singular set
graphs in the orbifolds denote invariant lattice complexes
defined in Sect. 5. An extension of this notation to de-
scribe the complete orbifold for I 43m (#217) is given in
Sect. 5.3.
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Figure A.1. The 24 cubic 3-orbifolds that do not
have S3 as the underlying topological space.

Each cubic group has an index-4 rhombohedral based
trigonal subgroup and an index-3 orthorhombic or tetra-
gonal subgroup. There are only seven rhombohedral space
groups: R3 (3), R32 (32), R 3m and R 3c ( 3m), R3m and
R3c (3m), and R 3 ( 3) where the symbol in parentheses is
the corresponding trigonal point group. Thus it seemed a
reasonable approach to order the cubic groups in columns
according to their index-4 rhombohedral subgroups and in
rows according to their index-2 cubic subgroups. After
some additional partitioning of R 3m and R 3c columns we
arrived at the subgroup graph shown in Fig A.2. We thank
John H. Conway of Princeton for an e-mail exchange ex-
plaining his related “odd-subroutine” approach to the
group classification problem that he has applied to a num-
ber of group classification problems including the crys-
tallographic space groups.

Fig. A.2 uses the subgroup, group normalizer, and
lattice complex information given in the ITCr.1 Each box
contains the cubic space group symbol in the upper right
subbox, the index-3 orthorhombic or tetrahedral subgroup

in the middle, and their respective ITCr sequence numbers
on the bottom line. The upper left subbox contains the
simplest lattice complex of the cubic space group. Orbi-
folds for the index-3 subgroups of the cubic groups can be
used to derive the cubic orbifolds. Boldface type identifies
group normalizers, and group normalizer basins are identi-
fied by bold solid lines leading down from cubic (but not
orthorhombic) group normalizers.

The seven rhombohedral trigonal subgroups of the
cubic groups are shown in the bottom row of the figure
with their space group symbols and simplest lattice com-
plex in the top row of each box. The index-3 subgroups
(monoclinic/triclinic) of the rhombohedral groups are in-
dicated on the middle line and the respective ITCr num-
bers on the bottom line of each box. The divider strip be-
tween the cubic and rhombohedral groups gives the point
groups for all the space groups involved in each column,
with the cubic/orthorhombic (or tetragonal) to the left and
the rhombohedral/monoclinic (or triclinic) to the right.

Two boxes in a row that are not separated by a space
belong to a specific column. To minimize clutter in the
drawing we use the convention that whenever a subgroup
connection line goes to the midline separating adjacent
boxes, both boxes are involved in the subgroup relation. If
that line goes to another pair of adjoined boxes, the right
goes to the right and the left to the left except when there
is a loop in the subgroup relation line, which indicates a
right-left interchange. All solid lines join order-2 sub-
groups and pertain to the cubic, orthorhombic/tetragonal,
rhombohedral, and monoclinic/triclinic sets of groups in-
dividually. The orthorhombic space group set forms pairs
of duplicates.

The dashed lines leading to a dashed box two levels
further down is an index-4 subgroup relationship. Note
that each dashed box is a repeat of the regular box three
levels up in the same column, reflecting the Bravais lattice
repetition I, P, F, I, P which occurs in each column as de-
noted by the initial letters in the space group symbols.
This relationship only holds for the cubic space groups in
the figure and not for the orthorhombics/tetragonals. Since
Fig. A.2 is meant to be used mainly for orbifold applica-
tions, it does not include explicit information on how
many unit cells are required for each space group/sub-
group relationship.

Note that for order-2 subgroups, there are two inde-
pendent cubic space group families, one starting at Im 3m
and ending at F23, and the second starting at Ia 3d and
ending at P213. The ending space groups are the only two
cases of space groups without order-2 subgroups. The two
series are sometimes called the A and B cubic space group
families, respectively.
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Figure A.2. Cubic space group/subgroup graph.

Solid lines = index 2; dashed lines and rhombohedral column subgroups = index 4; space groups in lower
parts of boxes = index 3.
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