7. ORTEP EXAMPLES

This section includes several example structures that illustrate a number of the capabilities found in ORTEP-III. The ORTEP input file for each example is provided.

7.1 CELL PACKING – 5-HYDROXY-5-PHENYLNORBORNANONE

Two illustrations of 5-hydroxy-5-phenylnorbornanone are provided here. The data were obtained from a neutron diffraction study at room temperature.²⁴ The first illustration shows one complete molecule, and the second shows the contents of the unit cell.

The input file of the first structure illustrates ORTEP's original format for the symmetry operators. The atom parameter lines were taken directly from the output of a least squares refinement, and information is included there that is not needed by ORTEP. The extra information lies in card fields that are not required for ORTEP's operation and is ignored by the program. Note that the atoms are individually labeled with 901 instructions.

Fig. 7.1. Single molecule of 5-hydroxy-5-phenylnorbornanone.

PHENYL H	YDROXYL NO	ORBORNANO	NE							
10.331	10.646	10.099	0.0	283810	0.0					
	.0 1	0 0		.0 0 1	0		.0	0	0	1
	.0 -1	0 0		.0 0 -1	0		.0	0	0	-1
	.5 -1	0 0		.5 0 1	0		.5	0	0	-1
1	.5 1	0 0		.5 0 -1	0		.5	0	0	1
C1	0.661000	1.000000	0.224802	0.001638	0.901515	0.0				
0.011930	0.006750	0.011647	0.000642	0.003989	0.000860			0	1	0
C2	0.661000	1.000000	0.335043	0.050840	0.844329	0.0				
0.010432	0.007831	0.012112	0.001274	0.003947	-0.000264			0	1	0
C3	0.661000	1.000000	0.327553	0.192798	0.850375	0.0				
0.009129	0.007883	0.013469	-0.000262	0.003784	0.000058			0	1	0
C4	0.661000	1.000000	0.206609	0.213473	0.908171	0.0				
0.008568	0.006819	0.009641	-0.000310	0.002118	-0.001032			0	1	0

	CE	0 661000	1 000000 0	074610	0 177102	0 706077	0 0			
	0 008590	0.001000	1.000000 0.	000670	0.177193	0.790977	0.0	0	1	Λ
	C6	0.661000	1 000000 0	001004	0.002500	0.790120	0 0	0	-	0
	0 011368	0.001000	1.000000000000000000000000000000000000	001403	0.003143	_0 001297	0.0	0	1	Λ
	0.011300	0.661000	1 000000 0	222670	0.003143	1 010406	0 0	0	Ŧ	0
	0 011040	0.001000	1.000000 0.	001/02	0.102901	1.010400	0.0	0	1	Λ
	0.011040	0.009377	1 000000 0	001423	0.002835	0.000040	0 0	0	Ŧ	0
		0.001000	1.000000-0.	000100	0.210149	0.034431	0.0	0	1	0
	0.008328	0.00/955	0.008995-0.	175006	0.002374	0.001216	0 0	0	T	0
	0.9	0.661000	1.000000-0.	1/5896	0.15/400	0.769638	0.0	0	-	~
	0.008481	0.012396	0.011267-0.	001406	0.0016//	0.001394		0	T	0
	CIU	0.661000	1.000000-0.	296122	0.195813	0.795042	0.0		-	
	0.008526	0.016481	0.014906-0.	000226	0.002743	0.004954		0	1	0
	C11	0.661000	1.000000-0.	295600	0.294171	0.886394	0.0		_	
	0.011357	0.014259	0.016607 0.	003003	0.006602	0.005712		0	1	0
	C12	0.661000	1.000000-0.	175266	0.352517	0.950755	0.0			
	0.012936	0.012232	0.018491 0.	002923	0.008046	0.001071		0	1	0
	C13	0.661000	1.000000-0.	055392	0.314579	0.925104	0.0			
	0.010921	0.009871	0.014343 0.	000394	0.005261	-0.001410		0	1	0
	01	0.577000	1.000000 0.	414647-	-0.009305	0.801699	0.0			
	0.014915	0.010743	0.020270 0.	002523	0.008903	-0.001350		0	1	0
	02	0.577000	1.000000 0.	068052	0.227607	0.664516	0.0			
	0.010744	0.010771	0.008919-0.	000196	0.003244	0.001269		0	1	0
	H1 -	-0.375000	1.000000 0.	236869-	-0.096021	0.933996	0.0			
	0.020624	0.008781	0.019162 0.	002373	0.007156	0.003208		0	1	0
	H3A -	-0.375000	1.000000 0.	318029	0.234292	0.749440	0.0			
	0.015989	0.012191	0.019604 0.	000563	0.008507	0.003596		0	1	0
	НЗВ -	-0.375000	1.000000 0.	419746	0.227078	0.923493	0.0			
	0.011065	0.013144	0.022925-0.	001035	0.003225	-0.001808		0	1	0
	H4 -	-0.375000	1.000000 0.	205933	0.307044	0.952030	0.0			
	0.012786	0.009537	0.016431-0.	000243	0.003014	-0.003491		0	1	0
	нба -	-0.375000	1.000000 0.	092339	0.004576	0.685888	0.0			
	0.019268	0.012340	0.014229-0.	000125	0.002520	-0.004920		0	1	0
	нбв -	-0.375000	1.000000 0.	009600-	-0.018900	0.814691	0.0			
	0.014224	0.009647	0.026857-0.	003061	0.006299	0.000168		0	1	0
	H7A -	-0.375000	1.000000 0.	316741	0.107454	1.094270	0.0			
	0.016598	0.016936	0.012393 0.	003607	0.001040	0.000321		0	1	0
	Н7В -	-0.375000	1.000000 0.	138340	0.092052	1.052878	0.0			
	0.017074	0.014780	0.014417 0.	001660	0.007380	0.002011		0	1	0
	Н9 -	-0.375000	1.00000-0.	177376	0.080634	0.699229	0.0			
	0.014017	0.019179	0.019187-0.	004154	0.001724	-0.005322		0	1	0
	н10 -	-0.375000	1.000000-0.	389010	0.146805	0.746257	0.0			
	0.010867	0.027857	0.025083-0.	003438	0.003403	0.001062		0	1	0
	H11 -	-0.375000	1.000000-0.	387954	0.322178	0.907661	0.0			
	0.015401	0.023080	0.028789 0.	005406	0.011698	0.006558		0	1	0
	Н12 -	-0.375000	1.000000-0.	172867	0.427707	1.023741	0.0			
	0.021232	0.019665	0.030399 0.	002995	0.013356	-0.006345		0	1	0
	Н13 -	-0.375000	1.000000 0.	036386	0.362903	0.977271	0.0			
	0.015325	0.017015	0.026705-0.	002320	0.007502	-0.010296		0	1	0
	но2 -	-0.375000	1.000000 0.	071033	0.317748	0.672629	0.0			
1	L0.013588	0.011864	0.013832-0.	001003	0.004119	0.003274		0	1	0

	201									
	301	7.2		5.4		12	1.0			
	401	155501	-295	55501						
	501	555501	65	55501	2	55501	255501	355501		0
	502	2		28		1	2.7			
	604						1.00			
	601	4.0		1.5						
2	1001									
		1 29 1	29	3	.80	1.6	.05			
	716									
2	812									
		1 29 1	29	3	.80	1.6	.05			
	901	155501						.10	05	22
	901	255501						.10	+.10	22
	901	355501						.10	+.17	22
	901	455501						.10	+.05	212
	901	555501						.10	20	12
	901	655501						.10	17	22
	901	755501						.10	25	03
	901	855501						.10	063	22
	901	955501						.10	27	07
	901	1055501						.10	+.05	30
	901	1155501						.10	25	17
	901	1255501						.10	+.27	+.07
	901	1355501						.10	12	+.27
	901	1455501						.10	+.02	30
	901	1555501						.10	+.22	185
	901	1655501						.10	0.00	+.27
	901	1755501						.10	+.10	27
	901	1855501						.10	+.35	+.05
	901	1955501						.10	0.00	+.27
	901	2055501						.10	+.05	265
	901	2155501						.10	40	+.10
	901	2255501						.10	+.35	0.00
	901	2355501						.10	40	0.00
	901	2455501						.10	33	07
	901	2555501						.10	0.00	33
	901	2655501						.10	05	30
	901	2755501						.10	+.30	+.12
	901	2855501						.10	+.012	+.32
	901	2955501						.10	475	0.00
	202									
	-1									

This second example shows the packing of the norbornanone molecules in a unit cell. The unit cell contains four molecules, but six have been drawn. The hydrogen atoms have been omitted for clarity, and the carbon and oxygen atoms have been drawn with different representations for easier visual identification. (The oxygen atoms are the ellipsoids with the shaded octant.) The input shows the new format for the symmetry operators that is available in ORTEP-III. In the atom parameters, dummy atoms have been provided for a corner of the unit cell (atom #16 at 0.,0.,0.) and one for its center (atom #17 at .5,.5).

87

Fig. 7.2. Packing diagram of 5-hydroxy-5-phenylnorbornanone.

	PHENYL HY	DROXYL NO	ORBORNANON	IE						
1	10.331	10.646	10.099	0.0	283810	0.0				
	x,y,z									
	-x,-y,-z	Z								
	1/2-x,1/	/2+y,1/2-2	z							
1	1/2+x,1/	/2-y,1/2+:	z							
	C1	0.661000	1.000000	0.224802	0.001638	0.901515	0.0			
	0.011930	0.006750	0.011647	0.000642	0.003989	0.000860		0	1	0
	C2	0.661000	1.000000	0.335043	0.050840	0.844329	0.0			
	0.010432	0.007831	0.012112	0.001274	0.003947-	-0.000264		0	1	0
	C3	0.661000	1.000000	0.327553	0.192798	0.850375	0.0			
	0.009129	0.007883	0.013469-	-0.000262	0.003784	0.000058		0	1	0
	C4	0.661000	1.000000	0.206609	0.213473	0.908171	0.0			
	0.008568	0.006819	0.009641-	-0.000310	0.002118-	-0.001032		0	1	0
	C5	0.661000	1.000000	0.074610	0.177193	0.796977	0.0			
	0.008590	0.006732	0.008260-	-0.000670	0.002360	0.000103		0	1	0
	C6	0.661000	1.000000	0.091094	0.031659	0.790120	0.0			
	0.011368	0.006963	0.012116-	-0.001403	0.003143-	-0.001297		0	1	0
	C7	0.661000	1.000000	0.223679	0.102901	1.010406	0.0			
	0.011840	0.009377	0.008981	0.001423	0.002835	0.000648		0	1	0
	C8	0.661000	1.000000-	-0.053735	0.216149	0.834431	0.0			
	0.008328	0.007955	0.008995-	-0.000100	0.002374	0.001216		0	1	0
	C9	0.661000	1.000000-	-0.175896	0.157400	0.769638	0.0			
	0.008481	0.012396	0.011267-	-0.001406	0.001677	0.001394		0	1	0
	C10	0.661000	1.000000-	-0.296122	0.195813	0.795042	0.0			
	0.008526	0.016481	0.014906-	-0.000226	0.002743	0.004954		0	1	0
	C11	0.661000	1.000000-	-0.295600	0.294171	0.886394	0.0			

89

0.011357 0.014259 0.016607 0.003003 0.006602 0.005712 1 0 0 C12 0.661000 1.000000-0.175266 0.352517 0.950755 0.0 0.012936 0.012232 0.018491 0.002923 0.008046 0.001071 1 0 0 0.661000 1.000000-0.055392 0.314579 0.925104 0.0 C13 0.010921 0.009871 0.014343 0.000394 0.005261-0.001410 0 1 0 01 0.577000 1.000000 0.414647-0.009305 0.801699 0.0 0.014915 0.010743 0.020270 0.002523 0.008903-0.001350 1 0 0 02 0.577000 1.000000 0.068052 0.227607 0.664516 0.0 0.010744 0.010771 0.008919-0.000196 0.003244 0.001269 0 0 1 ORIGIN 0.0 0.0 0.0 .01 CENTER 0.5 0.5 0.5 1 201 301 5.4 5.4 12 1.0 # Store unit cell corners for cell outline 401 1655501 -1666601 # Find and store all atoms within 5.5 A of unit cell center 402 1755501 17 1 15 5.5 # Reiterative convolution around found atoms to complete molecules 406 1 15 15 2. 1 501 1655501 1655501 1656501 1655501 1655601 0 502 3 180 1 10 2 -10 604 503 2 2.7 1101 1001 2 1 2 1 15 1 15 3 .80 1.6 .03 10. .01 16 16 16 16 1 11. # Different representations for carbons (1-13) and oxygens (14-15) 702 1 1 13 1 701 14 15 2 802 .80 2 1 15 1 15 3 1.6 .03 16 16 16 16 1 10. 11. .01 1102 202 2.375 503 2 -2.7 1103 202 -1

7.2 HELICAL STRUCTURE – POLY-L-ALANINE

The structure of poly-L-alanine was published by Elliott and Malcolm in 1959.²⁵ The Pauling and Corey right-handed alpha helix repeats after 13 turns and 47 residues and can be represented in ORTEP by 47 symmetry cards with N = 47; M = 13; L = 0, 1, ..., 46; $T_1, T_2, T_3 = 0$. The input atom list then contains the contents of one residue. In this example there are 48 symmetry cards with operator 1 and operator 48 related by one cell translation along c.

Fig. 7.3. 47/13 α -Helix of poly-L-alanine. The thin "vertical" lines between nitrogen and oxygen atoms indicate a hydrogen bond path.

I	POLY-L-ALAN	NINE 47/	13 HELIX	ELLIC	OTT AND M	ALCOLM	(1959)			
	0.55	0.00	10.5	90.	90.	120.		0	12	47
								1	13	47
								2	13	47
								3	13	47
								4	13	47
								5	13	47
								6	13	47
								7	13	47
								8	13	47
								9	13	47
								10	13	47
								11	13	47
								12	13	47
								13	13	47
								14	13	47
								15	13	47
								16	13	47
								10	13	47
								10	⊥3 1 2	4/
								19	13 12	4/
								∠∪ 21	12	4/
								21	13	47
								23	13	47
								2.4	13	47
								25	13	47
								26	13	47
								27	13	47
								28	13	47
								29	13	47
								30	13	47
								31	13	47
								32	13	47
								33	13	47
								34	13	47
								35	13	47
								36	13	47
								37	13	47
								38	⊥3 1 2	4/
								39	13 13	47
								40	12	4/
								42	13	47
								43 43	13	47
								44	$\frac{13}{13}$	47
								45	13	47
								46	13	47
1								47	13	47
				1.63	94.9	40		3		
	.1							7		

20.7 -.81 2.29 3 .1 7 R 3.17 0. 0. 3 .3 7 49.7 .06 3 1.49 Ν .3 7 3 0 1.98 104. -1.58 .35 7 ORGN 0 .0 .5 1 # Initialize plotting 201 # Landscape drawing orientation 301 8.5 2.0 15 0.5 # Rotate lettering for landscape orientation -90 302 # Store atoms to be drawn 401 155501 -555548 # Define coordinate system 501 655501 155501 155601 155501 165501 # Rotate structure for landscape orientation 502 1 90. # Automatic position and scale 604 # Shift plot origin for left eye view 202 0 5 # Stereo rotation for left eye view 503 1 2.5 # Start save sequence 1101 # Calculate overlap 2 1001 2 1 5 1 5 1 1.1 1.6 .050 4 4 5 5 1 2.7 3.0 .010 # Draw atoms and labels 714 .07 .03 # Draw covalent bonds and inter-residue hydrogen bonds 2 812 2 1 5 1 5 1 1.1 1.6 .050 4 4 5 5 1 2.7 3.0 .010 # End save sequence 1102 # Stereo rotation for right eye view 503 1 -2.5 # Shift plot origin for right eye view (view separation = 2.375 in.) 202 0 2.625 # Repeat save sequence 1103 # Terminate plotting 202 # Terminate ORTEP -1

7.3 COORDINATION POLYHEDRA – POTASSIUM PERXENATE NONAHYDRATE

The crystal structure of this hydrated ionic material was published by Zalkin *et al*. in 1964.²⁶ The only covalent bonds are between the xenon and oxygen atoms in the perxenate anions (the darker bonds in Fig. 7.4). To see better how the oxygens of the perxenate anions and water molecules coordinate around the potassium and atoms, lines have been drawn from the potassiums to all oxygens within a distance of 3.3 Å.

Fig. 7.4. Coordination polyhedra in potassium perxenate nonahydrate.

1	POTAS	SIUM	PERXENATE	9-HYDRATE/A.	ZALKIN	ET AL	(1964) JACS	86,3569
T	9. v v	049	10.924	15.000	90.	90.	90.	
		,4 v 1/2)+7					
	-A,-	y,⊥/2 /2	-					
1	-x,1	/ Z+y,	1 / 0					
T	x,⊥	/2-y,	1/2+z				0.5.0	
	XE			•	.249	.988	.250	
		.10						7
	К1				.628	.987	.339	
		.30						7
	К2				.846	.238	.958	
		.30						7
	K3				.307	.227	.026	
		.30						7
	К4				.877	.989	.139	
		.30						7
	01				403	101	251	
	01	20					1201	7
	02	.20			094	878	253	7
	02	20		·	.071	.070	. 2.3.5	7
	0.2	.20			1 2 0	000	210	1
	03	2.0			. 1 3 0	.096	.310	-
		.20						/
	04				.⊥′/6	.058	.151	

		.20											7	
	05								.323	. 9	918	.351		
	00	.20							260	c	0.1	100	7	
	06	. 20							.360		38T	.188	7	
	Wl	.20							.654	. 8	339	.190	,	
		.20											7	
	W2	2.0							.850	.1	L36	.297	-	
	wЗ	.20							873	۶	329	369	/	
	NS	.20							.075		525	. 309	7	
	W4								.692	. (046	.506		
		.20							0.0 7				7	
	W5	20							.997	• 2	243	.111	7	
	Wб	.20							.967		980	.972	/	
		.20											7	
	W7								.376	• 4	170	.002	_	
	T-T O	.20							402	-	161	006	7	
	WØ	20							.493	• 4	202	.880	7	
	W9	.20							.606	.1	L50	.124	,	
		.20											7	
C	ORGN	Γ							.250	. 5	500	.400		
		.10							000			000	7	
1		03							.000	. (000	.000	7	
-		201											,	
		301		2	.6		3	.6	15	0.	.25			
#	Loc	ate a	nd	sto	re	Κā	and	Xe ato	oms					
	~	404			21	6		21	1	,	5	.13	.52	.57
Ħ	Con	volute 405	e s	phe:	re 1	ΟĬ	enc	Losure	e with	each d	20 20	ral atom		
#	ва	xix h	ori	zon	ta]	L, (C ax	is ve	rtical	. viewe	ed a	long -A axis	3	
		501	21	555	01	21	1555	01 23	156501	21555	501	2155601		1
		604									2.			
		503			2			3						
	C	1101			1									
	∠ 2	TOOT	1	1	1 6	11	З	18	19	04				
	2		2	5	6	20	1	2.6	3.3	.01				
	1	714										.04		
									2		20			
#	Хe	not la	abe	eled										
	T	/14							1		1			
	2	812							T		т			
	2		1	1	6	11	3	1.8	1.9	.04				
			2	5	б	20	1	2.6	3.3	.01				
		1102		0 -										
		202		2.3	75			2						
		503			2			- 5						

1103 202 -1

In the following representation of the same structure shown in Fig. 7.4, only the xenon and potassium atoms have been explicitly drawn. (The xenon atoms are the smaller circles.) The oxygen atoms are shown implicitly as the vertices of polyhedra centered on the potassium and xenon atoms. As in the previous case, oxygens within 3.3 Å of the potassium are treated as making up the coordination polyhedron. Only the instruction portion of the input file is provided. The input lines that precede these are the same as those in the previous case.

Fig. 7.5. Coordination polyhedra in potassium perxenate nonahydrate.

```
201
      301
                2.6
                         3.6
                                    15
                                           0.25
# Locate and store K and Xe atoms
      404
                21
                          21
                                     1
                                              5
                                                      .13
                                                                .52
                                                                         .57
# Convolute sphere of enclosure with each central atom
      405
                           5
                                             20
                  1
                                     1
                                                     3.30
# B axix horizontal, C axis vertical, viewed along -A axis
      501
           2155501 2155501
                              2156501 2155501
                                                  2155601
                                                                           1
      604
      503
                  2
                           3
     1101
# Draw xenon and potassium atoms only
  1
      714
                                              5
                                     1
# Use polygon radii to limit bonds drawn
  2
      813
  2
           6 11
                 6 11
                            2.5
                                   2.8
                                                 -1
                                                        1
                                                            1.8
                                                                   1.9
           6 20
                 6 20
                            2.6
                                   4.6
                                                 -2
                                                        5
                                                            2.6
                                                                   3.3
     1102
      202
             2.375
      503
                  2
                          -3
```

1103 202 -1

7.4 ATOM FEATURES – LYSOSOME MUTANT POLYPEPTIDE

The data for this example were taken from the Protein Data Bank #216L. The header information from that file is provided below.

HEADER	HYDROLASE(O-GLYCOSYL) 10-MAY-94 216L
COMPND	LYSOZYME (E.C.3.2.1.17) MUTANT WITH SER 44 REPLACED BY TRP,
COMPND	2 CYS 54 REPLACED BY THR, CYS 97 REPLACED BY ALA (S44W,
COMPND	3 C54T, C97A)
SOURCE	BACTERIOPHAGE T4 (MUTANT GENE DERIVED FROM THE M13
SOURCE	2 PLASMID BY CLONING THE T4 LYSOZYME GENE)
AUTHOR	M.BLABER,B.W.MATTHEWS
REVDAT	1 31-JUL-94 216L 0
SPRSDE	31-JUL-94 216L 116L
JRNL	AUTH M.BLABER, X J. ZHANG, B.W. MATTHEWS
JRNL	TITL STRUCTURAL BASIS OF ALPHA-HELIX PROPENSITY AT TWO
JRNL	TITL 2 SITES IN T4 LYSOZYME
JRNL	REF SCIENCE V. 260 1637 1993
JRNL	REFN ASTM SCIEAS US ISSN 0036-8075 0038

Only the first 63 amino acids (500 atoms) of the protein were used for this example since that is the size used in the dimension statements in ORTEP-III. The first 500 ATOM lines were extracted from the PDB file and placed unaltered in a file named ATOMS.DAT. A few of the lines are shown below.

ATOM	1	Ν	MET	A	1	82.486	23.405	25.378	1.00	29.06	216L	127
ATOM	2	CA	MET	А	1	81.291	22.758	24.885	1.00	15.78	216L	128
ATOM	3	С	MET	А	1	80.495	23.789	24.150	1.00	33.32	216L	129
ATOM	4	0	MET	А	1	80.951	24.925	24.017	1.00	29.09	216L	130
ATOM	5	CB	MET	А	1	80.556	22.168	26.090	1.00	14.87	216L	131
ATOM	б	CG	MET	А	1	79.353	21.283	25.811	1.00	44.92	216L	132
ATOM	7	SD	MET	А	1	78.906	20.301	27.306	1.00	34.12	216L	133
ATOM	8	CE	MET	А	1	80.536	19.686	27.844	1.00	7.96	216L	134
ATOM	9	Ν	ASN	А	2	79.348	23.416	23.650	1.00	7.39	216L	135
ATOM	10	CA	ASN	А	2	78.619	24.379	22.897	1.00	14.21	216L	136
						•		•				
•			•			•						
•			•									
ATOM	491	CB	GLU	А	62	69.880	12.430	7.589	1.00	6.64	216L	617
ATOM	492	CG	GLU	А	62	70.251	11.994	6.135	1.00	1.34	216L	618
ATOM	493	CD	GLU	А	62	69.487	10.795	5.671	1.00	27.84	216L	619
ATOM	494	OE1	GLU	А	62	68.805	10.091	6.416	1.00	19.47	216L	620
ATOM	495	OE2	GLU	А	62	69.547	10.652	4.368	1.00	34.69	216L	621
ATOM	496	Ν	ALA	А	63	70.531	13.275	10.600	1.00	32.33	216L	622
ATOM	497	CA	ALA	А	63	70.126	13.774	11.873	1.00	6.04	216L	623
ATOM	498	С	ALA	А	63	70.877	15.054	12.241	1.00	55.04	216L	624
ATOM	499	0	ALA	А	63	70.278	16.027	12.662	1.00	13.24	216L	625
ATOM	500	CB	ALA	А	63	70.323	12.701	12.964	1.00	18.46	216L	626

96

Since these atom data are not in the standard format used by ORTEP, subroutine READIN was written to read this particular format. It is shown below. As each atom is read by READIN, the subroutine sets the value of FEATURE #2 (id2) for the atom to the sequence number of the amino acid containing the atom. FEATURE #1 (id1) is set to a value that indicates the type of atom:

```
peptide link N
      1
            alpha carbon
      2
      3
            carbon of C=O in peptide link
      4
            oxygen of C=O in peptide link
      9
            all other atoms
      subroutine readin(iu,chem,id1,id2,x1,x2,x3,it,is,b1,b2,b3,b4,
     1
                        b5,b6,btype)
      integer*2 id1,id2
      character*1 chain
      character*3 res
      character*4 atom
      character*6 rec
      character*8 chem
      b1=.1
      b2=0
      b3=0
      b4=0
      b5=0
      b6=0
      btype=7.
      id1=0
      id2=0
      it=2
      read (iu,201) rec,iserno,atom,res,chain,id2,x1,x2,x3,occ,tf
  201 format(a6, i5, 1x, a4, 1x, a3, 1x, a1, i4, 4x, 3f8.0, 2f6.0)
      id1=9
      if (atom.eq.' N ') id1=1
      if (atom.eq.' CA ') id1=2
      if (atom.eq.' C ') id1=3
      if (atom.eq.' 0 ') then
         id1=4
         b1=.15
      end if
      chem=atom(2:4)//res
      is=0
c *** check if another data record is available
      read (iu,202,end=203) rec
  202 format(a6)
      backspace(iu)
      return
  203 is=1
      return
      end
```

The ORTEP input file contains the instructions for producing three different illustrations. Each begins with a 201 instruction and ends with a 202. The second and third sets make use of the assigned atom features to select particular atoms for drawing. In the input file, a "2" in column 1 of the final symmetry card tells ORTEP (1) that the atom data are in a separate file and (2) to use subroutine READIN to read the data.

Fig. 7.6. First 63 amino acids of lysosome mutant protein.

Fig. 7.7. First 63 amino acids of lysosome mutant protein with side chains eliminated.

Fig. 7.8. First 13 amino acids of lysosome mutant protein, looking through α -helix.

]	LYS	DZYME I	MUTZ	ANT	PR	OTE	IN	DATA	BANK	#21	бL -	BLA	BER	AND	MATTHEWS
1	110	5.500	54	4.4	00	5	9.5	00	90.0	0	102.	30		90.00)
		Χ,Υ,Ζ													
		-X,Y,	-Z												
		X+1/2	,Y+1	1/2	, Z										
2		-X+1/	2,Y-	+1/	2,-	Ζ									
#	Pol	lypept	ide	CO	nta	ini	ng	first	63 a	min	lo aci	.ds	of	prote	ein.
		201													
		301		5	.0		3	.5	15	5.		.4			
		401	15	555	01-	500	555	01							
		506													
		502			3			90		1		35			
		604										2.			
		503			2		2	.7							
		1101													
	2	1001						1							
	2		1	4	1	4	5	0.9	2.	0	.08				
	2		1	4	5	9	1	0.9	2.	0	.02				
			5	9	5	9	1	0.9	2.	0	.02				
	1	714													
										1		9		-	L
	2	812					_	1		_					
	2		1	4	1	4	5	0.9	2.	0	.08				
	2		1	4	5	9	1	0.9	2.	0	.02				
			5	9	5	9	1	0.9	2.	0	.02				
		1102		~	~										
		202		2	.3		~	_							
		503			2		-2	• 1							
		TT03													
	60	202			-				. 1	-	1. 1		- ·		1
Ħ	63	amino	ac	ια	bot	ype	ptı	ae wi	th si	.ae	cnair	is e	ттш	inate	ea.

7.5 CRITICAL NET – SODIUM CHLORIDE

ORTEP-III can produce "critical net" illustrations that depict some canonical topological characteristics of the global ensemble of overlapping atomic-thermal-motion Gaussian density

functions in a crystal. Non-degenerate critical points occur where the first derivative of the global density is zero and the second derivative is a 3×3 symmetric matrix with a non-zero determinant. The signs of the three eigenvalues of the second derivative matrix specify the types of critical points, which are termed peak (-,-,-), pass (+,-,-), pale (+,+,-) and pit (+,+,+). Peaks correspond to density maxima, pits to density minima, and passes and pales to saddle points in the density function. The four types of critical points represent 0 (e.g., vertex), 1 (e.g., edge), 2 (e.g., face), and 3 (e.g., body) dimensional cells in the topological Morse function CW complex (i.e., C for closure finite, W for weak topology), simply called a critical net, and correspond with the number of + signs in the sign signature for each critical point. The most gradual up-density path from a pit to a peak follows the sequence pit \rightarrow pale \rightarrow pass \rightarrow peak. A discussion of critical nets can be found on the World Wide Web at http://www.ornl.gov/ortep/topology/critnet.html.

Fig. 7.9 illustrates the critical net for NaCl with the larger corner spheres representing Cl peaks; the smaller corner spheres, Na peaks; the elongated "cigar-shaped" ellipsoids, passes; the flattened "pancake-shaped" ellipsoids, pales; and the smallest sphere in the center, a pit. The paths connecting the critical points, shown by the connection "bonds" in Fig. 7,9, are topologically unique.

New in ORTEP-III is the method for specifying the orientations and sizes of the elongated and flattened ellipsoids without giving their quadratic form coefficients. The temperature factor card following the atom parameter card for a pass or pale has the format:

Columns	
1	A sentinel $\neq 0$ if last atom
2-9	Unique axis length (Å)
10-18	Second (and third) axis length (Å)
19-27	VDC ₁ (from)
28-36	VDC_1 (to)
37-45	[VDC ₂ (from)
46-54	VDC ₂ (to)]
55-63	7

 VDC_1 is a vector parallel with the unique axis of the cigar-shaped pass or pancake-shaped pale and VDC_2 is a second vector *not* parallel with VDC_1 such that $VDC_1 \times VDC_2$ is a second principal axis of that ellipsoid. If VDC_1 and VDC_2 are parallel, VDC_2 is replaced by a suitable lattice translation vector. VDC_2 may be omitted from the input if desired, and the program will choose one of the three lattice vectors for VDC_2 .

This example illustrates an important point about the relationship between the symmetry operators and atom input data unrelated to the fact that this is a critical net drawing. Sodium chloride crystallizes in space group $Fm\overline{3}m$, which has 192 symmetry operators. Of these, 48 are "unique", and the others may be obtained from these by adding the centering translations. The centering translations in this space group are (0,0,0), (0,.5,.5), (.5,0,.5), and (.5,.5,0). As discussed earlier (see 3.2.3), if all the symmetry operators are not provided in the ORTEP input file, each unique atom will require multiple entries with those centering translations added that are not provided in the symmetry cards. In this case only 48 symmetry operators have been included (although ORTEP-III allows a maximum of 96). As a consequence, each atom has four entries, obtained by adding the centering translation values to the atom's positional coordinates. If 96 operators had been included, each atom would have required two entries. The symmetry operators are provided in ORTEP's original format.

Fig. 7.9. Sodium chloride critical net.

NaCl	Fm3m	peak-a	ı,b=	-m3n	n; pit	c=4bar3m;	pa	ale-	-d=n	ımm ;	pass-e=4mm				
10.	.0000	10.00	000	10	0.0000	0.			.0		0.				
		0.	1	0	0		0.	0	1	0		0.	0	0	1
			0	0	1			1	0	0			0	1	0
			0	1	0			0	0	1			1	0	0
			1	0	0			0	0	1			0	1	0
			0	1	0			1	0	0			0	0	1
			0	0	1			0	1	0			1	0	0
		0.	1	0	0		0.	0	-1	0		0.	0	0	-1
			0	0	-1			1	0	0			0	-1	0
			0	-1	0			0	0	-1			1	0	0
			1	0	0			0	0	-1			0	-1	0
			0	-1	0			1	0	0			0	0	-1
			0	0	-1			0	-1	0			1	0	0
		0.	-1	0	0		0.	0	1	0		0.	0	0	-1
			0	0	-1			-1	0	0			0	1	0
			0	1	0			0	0	-1			-1	0	0
			-1	0	0			0	0	-1			0	1	0
			0	1	0			-1	0	0			0	0	-1
			0	0	-1			0	1	0			-1	0	0
		0.	-1	0	0		0.	0	-1	0		0.	0	0	1
			0	0	1			-1	0	0			0	-1	0
			0	-1	0			0	0	1			-1	0	0
			-1	0	0			0	0	1			0	-1	0
			0	-1	0			-1	0	0			0	0	1
			0	0	1		_	0	-1	0			-1	0	0
		0.	-1	0	0		Ο.	0	-1	0		0.	0	0	-1
			0	0	-1			-1	0	0			0	-1	0
			0	-1	0			0	0	-1			-1	0	0

			$ \begin{array}{r} -1 \\ 0 \\ -1 \\ 0 \\ -1 \\ 0 \\ -1 \\ \end{array} $	0 0 -1 0 0 -1 0 0 0 1 1 0 0 0	C	$\begin{array}{cccc} 0 & 0 \\ -1 & 0 \\ 0 & -1 \\ 0 & 0 & 1 \\ -1 & 0 \\ 0 & 0 \\ 0 & 0 \end{array}$	-1 0 0 0 0 1 1	0.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
			0 0.1 0 0 -	1 0 0 1 0 0 0 1 -1 0	C	$\begin{array}{ccc} -1 & 0 \\ 0 & 1 \\ 0 & 0 & -1 \\ 1 & 0 \\ 0 & 0 \\ 0 & 0 \\ \end{array}$	0 0 0 1	0.	$\begin{array}{ccccccc} 0 & 0 & 1 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \\ \end{array}$
1			0 - 0 0 1 0 0 1 0 0	$\begin{array}{cccc} 0 & 0 \\ -1 & 0 \\ 0 & 1 \\ 0 & 0 \\ -1 \\ 1 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & -1 \end{array}$	C	$\begin{array}{cccccc} 0 & 0 \\ 1 & 0 \\ 0 & -1 \\ 0 & 0 & 1 \\ 1 & 0 \\ 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{array}$	1 0 0 0 0 -1 -1 0 0	0.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	Na	.10			.0	.0	.0	7	
	Na	10			.0	.5	.5	7	
	Na	. 10			.5	.0	.5	1	
	Na	.10			.5	.5	.0	7	
h	0 1	.10			F	0	0	7	
D	CI	.15			. 5	.0	.0	7	
b	Cl	15			.5	.5	.5	7	
b	Cl	• ± 5			.0	.5	.0		
b	Cl	.15			.0	.0	.5	7	
~	D:++	.15			25	25	25	7	
C	PIL	.05			.25	.25	. 25	7	
С	Pit	05			.25	.75	.75	7	
С	Pit				.75	.25	.75		
С	Pit	.05			.75	.75	.25	7	
	Daga	.05			25	0.0	0.0	7	
	Pass	.18	.04	155501	555501	.00	.00	7	
	Pass	.18	.04	155501	.75	.50	.00	7	
	Pass				.75	.00	.50	1	
	Pass	.18	.04	155501	555501	. 50	. 50	7	

104	

	.18			.04	1	.555	01	55550	1				7	
Pa	le							.25	0	. 2	50	.000		
	.03	.15 1		.555	01	15560	1				7			
Pa	le							.75	0	. 7	50	.000		
			.15	1	.555	01	15560	1				7		
Pa						.750		.250		.500				
	.03			.15	5 155		01	15560	1				7	
Pa							.25	0	.7	50	.500			
			.15	155501		01	15560	1				7		
cent	er							.25	0	. 2	50	.250		
1	.02												7	
	201													
	301			3.2		3	. 2	1	2	0	. 5			
	404	4 2155501 1 2155501 2 2 2		501	2155501		01		1		20	.26	.26	. 26
	501			155501		01	165501		1555	501	156501		1	
	502			2	20		20				20			
	503			2		2	.5							
	604			0.			0.	0		4.	00			
	1101													
2	1001													
2		1	8	13	16	4	2.	0 3.	б	.07				
2		9	12	17	20	2	2.	0 2.	б	.04				
		13	16	17	20	1	2.	0 2.	6	.03				
1	716													
									1		12			
1	712													
								1	3	:	20			
2	812													
2		1	8	13	16	4	2.	0 3.	6	.07				
2		9	12	17	20	2	2.	0 2.	6	.04				
		13	16	17	20	1	2.	0 2.	6	.03				
	1102													
	503	2		-2.5		.5								
	202		2.	375										
	1103													
	202													
	-1													