Heegaard Splitting of Critical Nets on Orbifolds
 Carroll K. Johnson and Michael N. Burnett Oak Ridge National Laboratory

What is a Critical Net? - A way of summarizing the relevant topological features into a single graph. Simply represent each atom by its thermal-motion density and then find the critical points and their topological connections. Minimum gradient:

$$
\text { Peak } \rightarrow \text { Pass } \rightarrow \text { Pale } \rightarrow \text { Pit }
$$

Maximum gradient:

$$
\text { Peak } \rightarrow \text { Pit }
$$

What is an Orbifold? - A way to eliminate symmetry repetition. Simply divide Euclidean 3 -space by the space group symmetry to obtain a wrapped-up asymmetric unit without discontinuities. The geometric symmetry elements appear as a singular-set graph in the orbifold. Critical nets may be superimposed onto orbifolds. What is Heegaard Splitting? - A Heegaard surface separates the peaks + passes from the pales + pits. It splits the orbifold into a pair of handlebody orbifolds.

Example Heegaard Splitting of Orbifold

Orbifold (left) and critical net on orbifold (right).
The Heegaard surface is a 2 -orbifold joining two handlebody 3-orbifolds to form the Euclidean 3-orbifold.

\#225 Fm3̄m

This 3-orbifold is bounded by the mirror faces of the $\mathrm{Fm} \overline{\mathrm{3}} \mathrm{m}$ tetrahedral asymmetric unit. Symbols and integers denote invariant lattice complex sites and symmetry axes numbers, respectively.

NaCl critical net on $\mathrm{Fm} \overline{3} \mathrm{~m}$ orbifold with circled critical points on sites F,F/J2'/J2/P2. Na and Cl are on the two F critical point sites.

The 24 Cubic Orbifolds that Do Not Have S^{3} as an Underlying Space

Tetrahedral Euclidean 3-Orbifolds

Left figure - axis-order integers (primed if on mirror) and lattice complex symbols. Right figure - Wyckoff site letters in [] if mirrors. Arrow denotes index-2 subgroup.

Underlying Space D^{3}

221 Pm3̄m

225 Fm $\overline{3} \mathrm{~m}$

$216 \quad F \overline{4} 3 \mathrm{~m}$

Underlying Space S^{3}

209 F432

196 F23

Normal Quadrilateral Heegaard Surfaces for the Three Nonorientable Tetrahedral Cubic Orbifolds
(Labels = Structure Type-Heegaard Surface-Critical Point Set)

CsCl
H4'2'4'2'm \{ 1$\}$
PP/P2/W*/JJ

NaCl H3'3'2'2'm \{1'\} $\mathrm{FF} / \mathrm{J}_{2} / \mathrm{J}_{2} / \mathrm{P}_{2}$

NaCl
H3'3'3'3'm \{ 1$\}$
$\mathrm{FF} / \mathrm{J}_{2} / \mathrm{J}_{2} / \mathrm{FF}$

H3'2'3'2'm\{1\}
FF/T/T/FF

FCC Heegaard Splitting of the F23 3-Orbifold

Critical Points
F/J J_{2} TT/FFF
(1) (2) (3) (4) (5)(6)(7)
$32<3>2<3>32$ (-) handlebody
H33222\{11\} Heegaard surface
$332<1>22 \quad(+)$ handlebody
Note: A partitioning along (1),(2),(5) forms subtetrahedra (1),(2), (5), (7) and (1),(2),(5),(6, which can each undergo a quadrilateral normal surface splitting. When the pieces are properly recombined, the Heegaard splitting shown here is produced. Arbitrarily complex critical nets (crystal structures) on any crystallographic space group 3-orbifold can be split into tetrahedra for normal (or "almost normal") surface analysis.

The Simple-Cubic Heegaard Surface Approximates Schwartz's P Surface (A Triply Periodic Minimal Surface)

Unit cell drawing from Brakke's Surface Evolver program Reference:http://www.susqu.edu/FacStaff/b/brakke/evolver /examples/periodic/periodic.html

Heavy lines are mirrors of $\operatorname{Pm} \overline{3} \mathrm{~m}$. Note the H3'2'2'2'm surface motif.

Frames Option for Viewing Cubic Orbifold Atlas

http://www.ornl.gov/ortep/topology/atlas/cubcsfr.html

Online Cubic Euclidean 3-Orbifold Atlas

http://www.ornl.gov/ortep/topology.html
Two singular set 3-orbifold drawings on each orbifold with singular set and invariant lattice complex symbols. The following data provide analytical support for the drawings.

1. Underlying topological space.
2. Orbifold drawing pseudo-symmetry.
3. Wyckoff sets (of Wyckoff sites) based on group normalizer.
4. In-, uni-, di-, and trivariant lattice complexes and limiting lattice complexes grouped into characteristic (symmetry) and non-characteristic (pseudo-symmetry) singular sets.
5. Heegaard splitting examples.
6. Space group coordinates for invariant and limiting invariant lattice complex points.

Orbifold Atlas
 $201 \operatorname{Pn} \overline{3}$

Underlying Topological Space: RP 2 double suspension; Figure Pseudo-Symmetry (FPS): 2 mm Euclidean 3-Orbifold with Invariant-Lattice-Complex Letters (left), Wyckoff Site Letters
(right)

F

b
FPS Mult Lattice Comp Group Graph Wyckoff Set 2[4]Cover

$2-1$	I	332	a
$4-2$	F	30	$\mathrm{~b}, \mathrm{c}$
$6-1$	$\mathrm{~J}^{*}$	222	d
$8-2$	$\mathrm{I} 4[-] \mathrm{F} 2$	$32<3>0$	$(\mathrm{e} 1: \mathrm{b}-\mathrm{a}, \mathrm{e} 2: \mathrm{a}-\mathrm{c})^{1}$
$12-1$	$\mathrm{I} 6[-] \mathrm{J}^{*} 2$	$33<2>22$	$(\mathrm{f}: \mathrm{a}-\mathrm{d})^{2}$
$12-1$	$\mathrm{~J} * 2[\mathrm{~W} *] \&$	$2<2>\&$	$(\mathrm{~g}: \mathrm{d}-\mathrm{d})^{3}$
24		1	$\mathrm{~h}: \mathrm{efg}$

2 24-1 $\quad \mathrm{I} 12\left[\mathrm{~J}_{2}\right] \mathrm{J} * 4$

$$
\begin{gathered}
2^{*}=332<1>222 \\
2^{*}=30<1>30 \\
2^{*}=30<1>30 \\
\mathrm{~m}^{*} \\
\mathrm{~m}^{*}
\end{gathered}
$$

$$
(\mathrm{h} 1: \mathrm{a}-\mathrm{d})^{4}
$$

\#222(h)
24-1 F6[J $\left.{ }_{2}\right]$ F6
24-1 F6[-]W*2
m 24-1
m 24-1

Struct-Mult Critical Points Heegaard Surf Wyckoff Cut
BCC - 1 I/FF/W*/J* HP ${ }^{2} 200\{11\} \quad$ f
Lattice Points: (1) $0,0,0+(1 / 4,1 / 4,1 / 4) \times 2$; (2) $1 / 4,1 / 4,1 / 4+(0,1 / 2,1 / 2) ;(3) 1 / 4,3 / 4,3 / 4+$ $(-1 / 4,0,0) \& ;(4) 1 / 4,1 / 4,1 / 4+(0,-1 / 4,-1 / 4) x 2$: (5) 1/4,y,z; (6) x,x,z

Heegaard Splitting of BCC Critical Net on $\operatorname{Pn} \overline{3}$ 3-Orbifold

Topological Space: Double Suspension Real Projective Plane (RP^{2})

Antipodal Cone
Double Suspension

Critical Net on Orbifold
$\left[\mathrm{W}^{*}=\left(\mathrm{W}^{*}\right), \mathrm{J}^{*}=\left(\mathrm{J}^{*}\right)\right.$, $2=(2)]$

Summary and Conclusions

Orbifold Atlas

- At http://www.ornl.gov/ortep/topology.html
- Scope- Cubic space groups (at present)
- Contents for each space group

Orbifold singular set topology drawings Tabular data on

Characteristic singular set
= Space group symmetry
Non-characteristic singular set
$=$ Space group pseudo symmetry
Wyckoff splitting examples
\rightarrow Possible basis set for all structures
Theory (or Understanding) Needs

- Heegaard transmutation methods
- Normal surface equations

Computer Automation Needs

- Orbifold data for remaining space groups
- Critical net derivation for known structures
- Heegaard transmutation mechanics
- Normal surface mechanics

