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Abstract

Crystal growth experiments were conducted using potassium alum and calcite crystals in

aqueous solution under both non-stirred and stirred conditions to elucidate the mechanism for

size-dependent (proportionate) and size-independent (constant) crystal growth.  Growth by

these two laws can be distinguished from each other because the relative size difference between

crystals is maintained during proportionate growth, leading to a constant crystal size variance

(β2) for a crystal size distribution (CSD) as the mean size increases.  The absolute size difference

between crystals is maintained during constant growth, resulting in a decrease in size variance.

Results of these experiments show that for centimeter-size alum crystals, proportionate growth

occurs in stirred systems, whereas constant growth occurs in non-stirred systems.  Accordingly,

the mechanism for proportionate growth is hypothesized to be related to the supply of reactants

to the crystal surface by advection, whereas constant growth is related to supply by diffusion.

Paradoxically, micron-size calcite crystals showed proportionate growth both in stirred and in

non-stirred systems.  Such growth presumably results from the effects of convection and

Brownian motion which promote an advective environment and hence proportionate growth for

minute crystals in non-stirred systems, thereby indicating the importance of solution velocity

relative to crystal size.  Calcite crystals grown in gels, where fluid motion was minimized,

showed evidence for constant, diffusion-controlled growth.  Additional investigations of CSDs of

naturally occurring crystals indicate that proportionate growth is by far the most common

growth law, thereby suggesting that advection, rather than diffusion, is the dominate process for

supplying reactants to crystal surfaces.
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Introduction

An understanding of the mechanisms of crystal growth and resultant crystal size

distributions (CSDs) is important because geological information can be deduced from the shapes

of CSDs if the relations between these shapes and the underlying geological processes are

understood.  Although a considerable amount of research has focused on studying crystal growth

based on CSDs, results have been inconsistent, leading to contradictory interpretations of crystal

growth mechanisms.  Attempts to model crystal growth mathematically have fared little better; they

often fail to predict either the commonly observed lognormal size distribution or the associated

crystal size variance (Eberl et al. 2002a).

One controversy surrounding earlier studies involves interpretation of crystal growth in

terms of size-independent (constant) vs. size-dependent (proportionate) growth (Eberl et al. 2002a).

This paper will explore the origins of these two growth mechanisms, how these types of growth

affect the CSD shape, and how they can be affected by environmental conditions.  These growth

mechanisms, investigated with experiments using potassium alum and calcite crystals grown in both

unstirred and stirred aqueous solutions, are presumed to have occurred under conditions of supply-

controlled growth, when the rate-controlling step is the supply of reactants to the crystal surface,

either by diffusion or by advection.  This type of growth contrasts with surface-controlled growth,

where the supply of reactants exceeds the growth rate.

Three CSD shapes commonly are formed early in the crystallization process:  lognormal,

asymptotic, and a "universal steady-state" shape consistent with a process of Ostwald ripening

(Eberl et al. 1998; Kile et al. 2000).  The initial CSD shape then may be modified during

subsequent supply-controlled growth that can be described by constant growth, by

proportionate growth, or by some combination of the two; usually it is during this phase of

growth when most of the crystal mass is added.  Several other growth laws are possible (see

below), but have not been detected in our experiments.
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Growth Equations

Constant growth was described by McCabe in 1929, who postulated a "∆L law",

whereby crystallographically equivalent faces on similar crystals would grow at the same rate.

This growth law has been approximated by dr/dt = k (Nordeng and Sibley 1996; Kile et al. 2000),

where r is the crystal radius and k is a constant.

Constant (size-independent) growth can be simulated mathematically by

Xj+1 = Xj + kj, (1)

where Xj  is the crystal diameter after j time intervals, or steps (or j iterations of the equation),

and kj  is a constant that is approximately equal for crystals of all sizes after growth for a given

interval of time, but not necessarily constant through time.  In other words, Equation 1 states

that all of the geometrically similar crystals in a system, regardless of their size, will grow by the

same linear amount (i.e., add a layer of material with the same thickness) during a given time

interval.  The origin of this type of growth has been ascribed to several crystal growth

mechanisms, including surface-reaction-limited polynuclear growth and spiral growth (Nielson

1964; Ohara and Reid 1973; Nordeng and Sibley, 1996).  These mechanisms are consistent with

classical spiral crystal growth theory as described by Burton, Cabrera and Frank (i.e., the BCF

model as described in Bennema 1967, 1984), and with the three-step model of crystal growth

(e.g., as cited in Mullin 1972), whereby growth proceeds by a two-step process:  (1) a diffusion

step, wherein growth is regulated by a boundary layer, the thickness of which is controlled by

solution velocity, etc., and (2) a surface integration step, with rates being controlled by the

density of spiral growth centers or hillocks that provide energetically favorable sites for

monolayer deposition.  Surface integration rates also can be controlled by crystal solubility and

by environmental factors such as solution temperature.  The overall growth rate for a given

crystal is dependent on which of these two steps becomes rate limiting.

The constant growth law has been the foundation of many attempts to model crystal

growth; it underlies the population balance equation used in petrology (e.g., Marsh 1988), the

growth models proposed by Kretz (1966), the classic Johnson, Mehl, and Avrami (JMA)

approach (discussed in Kirkpatrick 1981), and the population balance model proposed by

McCoy (2001), among others.  However, there is a growing body of literature that contradicts

the constant growth law.  Proportionate growth, evidenced in both natural and synthetic crystal

systems, appears to better account for observed CSDs, and has been found in a variety of

synthetic crystal systems studied by Canning and Randolph (1967), Mullin and Gaska (1969),

Garside and Jancic (1976), Jones et al. (1986), Tai and Yu (1989), and Tai et al. (1993).
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Proportionate growth also has been noted in geologic systems, e.g., Nordeng and Sibley (1996),

Kile and Eberl (1999), Makowitz and Sibley (1999, 2001), and Meth and Carlson (2002).  Simple

mathematical arguments that favor proportionate rather than constant growth for most natural

systems have been presented by Eberl et al. (2002a).

Proportionate (size-dependent) growth can be approximated by

Xj+1 = Xj + kjXj. (2)

This equation indicates that the amount a crystal will grow through a certain time interval will be

proportional to its initial size.  Proportionate growth (which has been approximated as dr/dt =

kr) has been ascribed to an accelerated solution velocity around larger crystals (McCabe and

Stevens 1951), to a greater density of dislocation defects on the surfaces of larger crystals

(Garside et al. 1976; Ristic et al. 1991; Jones and Larson 1999, 2000), and to the effects of lattice

strain as a function of crystal size (Ristic et al. 1997; Jones and Larson 1999, 2000).

Equation 2, and by analogy Equation 1, are considered to be approximations because kj

may contain inherent randomness.  This randomness can be expressed using an equation similar

to Equation 2, known as the Law of Proportionate Effect (LPE), where kj is replaced by a

random number (εj) that varies between limits (usually 0 to 1).  Such randomness is required to

produce a lognormal CSD, which is one of the most commonly observed CSD shapes.  A

computer program (Galoper; Eberl et al. 2000) uses the LPE to simulate the development of

CSDs for many types of minerals (Eberl et al. 1998; Kile and Eberl 1999; Kile et al. 2000; Srodon

et al. 2000) by both surface- and supply-controlled growth.  For example, supply-controlled

growth can be simulated by mathematically limiting the volume available for growth during each

iteration of the LPE.  The mathematical effect of limiting supply is that εj will vary between zero

and a very small number; growth approximates dr/dt = kr after many growth cycles.

Constant growth (Eq. 1) can be distinguished from proportionate growth (Eq. 2) by the

effects these growth mechanisms have on the shapes of CSDs.  Constant growth maintains the

absolute size difference between crystals as mean size increases, because such growth is

described by adding the same layer thickness to each crystal per unit time.  For example, if one

crystal is two microns smaller than another at the beginning of growth, this two-micron size

difference will be maintained throughout the growth process.  Proportionate growth, however,

maintains the relative size difference between crystals because growth is modeled by multiplying

each size by a constant.  In other words, if one crystal is twice the size of another at the

beginning of proportionate growth, it will remain twice the size as growth proceeds.
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The overall effect of Equation 1 on the CSD is to cause its natural log-based crystal size

variance (β2) for a given population of crystals to decrease as mean size increases, whereas

growth by Equation 2 leads to a constant β2 for supply-controlled growth.  Only proportionate

growth can generate and maintain a lognormal CSD, and only proportionate growth can maintain

the theoretical shape for the universal steady-state curve expected from Ostwald ripening, after

ripening (which occurs only at small crystal sizes) has ceased (Kile et al. 2000; Eberl et al.

2002a).  Galoper simulation shows, however, that constant growth will cause the lognormal and

Ostwald CSDs to narrow with respect to their corresponding theoretical curves as growth

proceeds (Eberl et al. 2002a).

Experimental

We hypothesized that proportionate growth is likely due to a hydrodynamic effect that

results from a faster solution velocity around larger crystals (analogous to the Bernoulli effect), as

documented, for example, by McCabe and Stevens (1951) and Mullin and Gaska (1969).  In free-

flowing systems, larger crystals also could cause a greater disturbance to flow, leading to greater

turbulence and therefore to greater mixing in the vicinity of the crystal.  To test the hypothesis,

the rate of crystal growth was studied in both non-stirred and in stirred systems for two

minerals: (1) centimeter-size potassium alum crystals having different initial sizes, for which the

growth rate of each crystal could be measured based on weight change, and (2) micron-size calcite

crystals, for which growth rate could be determined by direct microscopic measurement of size to

determine the CSD shape.  Three types of experiments were designed accordingly to assess the

effect of growth conditions on growth law:

1.  Alum crystals were grown by evaporation, under both static (unstirred) and dynamic (stirred)

conditions, in multi-crystal systems.

2.  Calcite crystals were grown in bulk aqueous solution without stirring; results from this

experiment were compared to results from stirred experiments conducted by Kile et al. (2000).

3.  Calcite crystals were grown in a silica-gel medium to minimize the effects of solution

advection on crystal growth.

Also investigated were two natural occurrences of minerals thought to have grown in

static systems.  Therefore, the shapes of their CSDs should reflect to some extent crystal growth

that is constrained by diffusion-limited reactant supply.  The first occurrence is calcite crystals

found as small rhombohedra (mean diameter 13.5 µm) within minute fractures in a "molar tooth"

structure in the Precambrian, Proterozoic Helena Formation of the Middle Belt Carbonate,
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Montana (Furniss et al. 1998).  The second occurrence is crystals (possibly greigite, an iron

sulfide) that grew within pennate diatom silica exoskeletons from a single species found in

sediment core samples (at a depth of 4 to 5 cm) collected from Pyramid Lake, Nevada.  These

crystals (mean diameter = 3.6 µm) presumably formed in reducing environments within the

diatoms in response to decomposing organic matter in a recently deceased organism.

The growth of individual crystals is emphasized in the present study because of

complications inherent in batch methods of crystallization, e.g., mixed-suspension mixed-product

removal (MSMPR) or fluidized-bed crystallizers.  In contrast to single-crystal studies, agitated

batch crystallizers obscure the growth mechanism and rates for individual crystals.  For example,

agitation in batch crystallizers has been shown to be a source of secondary nucleation.

Moreover, crystal damage resulting from particle collisions can presumably lead to additional

growth spirals and consequent apparent size-dependent growth effects; this effect may be

magnified for larger crystals which are more likely to have increasingly energetic collisions.

Alum was chosen for the present work because its high solubility gives a substantial yield

per unit volume of water evaporated, and because of the relative ease of growing large crystals

with minimal imperfections.  An additional advantage is that crystal mass can easily be

quadrupled during the course of the experiment, minimizing measurement errors.  The

disadvantage in working with a few large crystals is that randomness inherent in the system (e.g.,

as caused by variations in flow rates around crystals, heterogeneities in solution composition and

in crystal surface structure, etc.) may tend to obscure growth tendencies when only a few

crystals are measured.

Alum crystals [KAl(SO4)2
.12H2O; A.C.S. Certified Reagent, Fisher Scientific] were grown

by evaporation from saturated aqueous solution, using procedures modified from Holden and

Singer (1960).  Both temperature-controlled and ambient-temperature experiments were carried

out.  Temperature-controlled experiments were conducted using a water-jacketed crystallization

vessel of about 6L capacity which accommodated from 10 to 12 crystals (Fig. 1).  Temperature

control was maintained with a circulating refrigerated/heated water bath, with a temperature

setpoint of 29.7 ± 0.2 oC.  Ambient temperature experiments were carried out in a 4-L single-wall

glass chromatography vessel, which held from 4 to 6 crystals.  Crystals were suspended from a

Plexiglas platform by nylon threads, and also mounted with Epoxy on 2-mm diameter glass rods

(using a pre-drilled hole in the crystal) which were attached to a Plexiglas plate on the bottom of

the vessel.  The solutions in these experiments were stirred with a variable speed stirrer and



7

propeller that was positioned in the center of the vessel; the speed was varied between 122 and

272 RPM.  One experiment was stirred using a magnetic bar (see Table 1).

Saturated alum solutions were filtered (Gelman Metricel¨ 45 µm membrane filter) and

equilibrated for approximately 24 h prior to the addition of seed crystals.   Supersaturation was

maintained at a constant level through controlled evaporation, the rate of which was adjusted by

raising or lowering the height of a Plexiglas lid on the water-jacketed crystallizing vessel, or by

varying the distance between two shutters that were positioned on top of a hole in this lid.  For

the unstirred experiments, conducted at about 29 oC, the rate of evaporation varied from 1.81 to

6.06 mL/h.  The rate of evaporation for stirred experiments, conducted at 29.7 oC, varied from

6.14 to 7.17 mL/h.

The level of supersaturation (σ), monitored for most experiments, is defined as:

 
σ = −C C

C

*

*
, (3)

where C is the solution concentration and C* is the equilibrium concentration at saturation, in g/g

solution.  Solution concentration was determined both gravimetrically and by refractometry.  The

equilibrium solution concentration was approximately 143.5 g/g solution at 29.7 oC, whereas the

average solution concentration for stirred experiments was measured at 151.0 g/g solution; the

average σ was therefore 0.052.

Alum, an isometric mineral, grows in a predominantly octahedral {111} form, with {100}

modifications.  Assuming symmetrical growth of these forms, crystal volume can be

approximated from weight by modeling a spherical shape.  Crystal size for alum was accordingly

determined by weight, with the diameter being calculated based on crystal density (alum =

1.757).

The effect of stirring on calcite CSDs was investigated by synthesizing calcite crystals in

aqueous solution by mixing equimolar solutions of CaCl2
.2H2O and Na2CO3, and allowing

crystallization to proceed without stirring.  These experiments are in contrast to earlier

experiments that documented CSDs obtained from stirred solutions (Kile et al. 2000).

Accordingly, solutions of 0.00835 M CaCl2.2H2O and Na2CO3, with 0.50 M NaCl to inhibit

vaterite formation, and 0.05 M KNO3 to control ionic strength, were mixed and filled to

overflowing in a 120 mL vessel, which was capped and allowed to sit without stirring for

approximately 17 h.  The calcite precipitate then was filtered through a 0.45 mm cellulose nitrate

filter (Millipore) and air dried.  Crystals were mounted in Canada balsam on a glass slide, and the
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crystal size was measured across the long diagonal of the rhombohedral form.  The diameters of

the micron-size calcite crystals were measured using a polarized-light microscope with a

calibrated filar micrometer ocular.  Microscopic measurements eliminate errors that can be

introduced when using automated methods.  For example, laser-light scattering instruments such

as a Coulter counter may measure crystal aggregates as a single crystal (Kile et al. 2000), leading

to an overestimation of size and consequently to inaccurate determinations of CSD shape.

The relative initial concentration of the solution (Ω) was approximately 500, where Ω =

Q/Ksp, and Q = [H+]/[Ca2+][HCO3
-].  Values in brackets refer to activities in solution, and Ksp is the

solubility product of calcite crystals in the standard state.  Further details are given in Kile et al.

(2000).

Calcite crystals also were grown in a silica-gel matrix by the method of Henisch (1988), a

method that is presumed to minimize reactant transport by advection.  Both a U-shaped tube and

a straight column were used in these experiments.  A 15-mm inside diameter U-shaped tube was

partly filled with a sodium meta-silicate gel (0.2 M Na2SiO3
.9H2O; J.T. Baker Analyzed Reagent,

pH adjusted to ~7 with acetic acid).  The gel, after solidifying, was overlain on one end with a

0.16 M solution of (NH4)2CO3 (EM Science), and on the other end by a 0.16 M solution of

CaCl2.2H2O (Fisher, A.C.S.).  Movement of the reactants through the gel from opposite ends of

the tube ultimately resulted in crystal nucleation which was followed by growth that continued

for 6 to 8 weeks.  This gel method yielded macroscopic calcite crystals, the sizes of which were

determined by measurement of linear dimensions from a photograph.  Crystals formed within the

U-shaped column occurred in two distinct Liesegang rings (Liesegang rings are characterized by a

series of concentrically developed rings, with regularly developed spacings between them), each

with a considerably different mean crystal size; however, there were too few crystals in one of

the rings to yield an accurate CSD shape.

Sodium meta-silicate gel used in the 30-mm (inside diameter) straight column was

prepared as above, with the exception that 0.16 M ammonium carbonate was incorporated into

the gel.  The column was partly filled with the gel, after which the gel was overlain with 0.16 M

calcium chloride.  Three distinct Liesegang rings were formed near the top of this column, with

mean crystal sizes being progressively larger farther down the column.  Crystal size was

measured (using an ocular micrometer and a low-power stereomicroscope) and tabulated for

populations within each ring following separation of the crystals from the gel.
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CSDs were determined from crystal size data using the program CrystalCounter (Eberl et

al. 2000).  In general, group size was set to a minimum that mitigated the "noise" level in the plot.

This criterion for the choice of group (i.e., bin) size proved to be important because the universal

steady-state CSD shape that results from Ostwald ripening according to LSW theory (Lifshitz,

Slyozov, and Wagner; see Eberl et al. 1998) can be deformed into a lognormal-appearing CSD if

the group size is too large.  The program then calculates the CSD shape, the mean crystal size,

the mean of the natural logarithms of the sizes (α), and the variance of the natural logarithms of

the sizes (β2, see below).  The chi-square (χ2) test (Krumbein and Graybill 1965) and the K-S

(Kolmogorov-Smirnov) test (Benjamin and Cornell 1970) were used to assess the fit of the data

to theoretical and calculated CSDs.  The chi-square test, which uses a differential distribution, is

more stringent than the K-S test which uses a cumulative distribution; however the K-S test is

useful if there are less than 10 size groups (bins) for the data, and/or if the data are noisy.  These

statistical tests compare CSDs of measured size distributions to theoretical lognormal

distributions, and give a level of significance ranging from <1% (i.e., the CSDs are not the same)

to > 10% (i.e., a high level of significance) for the K-S test, or from <1% to >20% for the chi-

square test.  CSDs are considered to be the same if the significance level for comparison between

the measured and theoretical curves is equal to or greater than the 1% to 5% range (Exner and

Lukas 1971).  No conclusions regarding our data were made without statistical confirmation,

which was used to indicate lognormality as well as to compare measured CSDs with simulated

(Galoper) or theoretical CSDs.  Probability paper commonly is used as a rapid, qualitative check

on the normality of a distribution.  If normal, a plot of the cumulative frequency shows a straight

line; if log scales have been used, then the straight line shows that the distribution is lognormal.

However, the chi-square and K-S tests are more quantitative than the graphing method because a

significance level can be assigned to the fit.

Results and Discussion

Alum experiments.

Figure 2 presents results of alum crystal growth experiments for stirred (Fig. 2a) and

unstirred (Fig. 2b) systems.  The initial diameter for each crystal is plotted versus its amount of

growth (final diameter Ð initial diameter).  Scales for ordinate and abscissa are the same for both

plots to facilitate a direct comparison.  The slopes of the lines (i.e., the size-dependent effect) in

Figure 2a are approximately proportional to the amount of crystal growth in a given experiment.

The relevant growth parameters for these experiments are given in Table 1.
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A comparison between these two plots clearly shows the effect of solution velocity as

manifested by the slope of the lines.  Figure 2 may indicate that proportionate growth is related

to a hydrodynamic effect that depends on stirring, whereby the velocity of a liquid medium

flowing around an object increases in direct proportion to the objectÕs circumference, and,

therefore, in direct proportion to its diameter.  This result also is consistent with the diffusion

step in the three-step model (and variations thereof) of crystal growth, whereby the boundary

layer thickness may decrease as velocity increases, thereby leading to an increased growth rate for

larger crystals (e.g., Canning and Randolph 1967; Abegg et al. 1968).  Thus, crystal growth under

stirred conditions results in proportionate growth (i.e., larger crystals tend to grow faster)

according to Equation 2, whereas growth under unstirred conditions yields constant growth

according to Equation 1.

Some crystals in the stirred experiments had growth rates which deviated considerably

from the mean.  This ÒnoiseÓ may be explained in part by an intrinsic randomness in the system

(Eberl et al. 1998), which, as mentioned above, may result from variation in physical properties

of crystals [e.g., lattice strain and dislocation density as suggested by Ristic et al. (1991, 1997),

and Jones and Larson (1999, 2000)], which may lead to different inherent growth rates for

individual crystals such as reported by Berglund (1983), or from a heterogeneous solution

environment (e.g., variable advective currents).

Calcite experiments.

Micron-size calcite was crystallized in bulk solution without stirring to further investigate

the influence of advection on proportionate growth.  The CSD (Fig. 3) shows a lognormal curve

(χ2 level of significance = 5% to 10%; K-S test > 10%) with a β2 of 0.23 (Table 2).  The

similarity of this plot to those generated in stirred systems (Kile et al. 2000) is evidence for

proportionate growth, because this mechanism of crystal growth is the only straightforward

approach which can consistently generate and maintain a lognormal CSD (Eberl et al. 2002a).

Convection and Brownian motion of the crystals are the likely means for advective transport of

reactants.  This observation seems contrary to the finding of constant growth for the alum

unstirred experiments; however, the data can be explained in terms of solution velocity relative to

crystal size.  Although solution motion is minimal for the calcite experiment, advective movement

may be considerable in proportion to the mean crystal size (28.2 µm for calcite vs. centimeter-

size for alum).

In the straight-column gel experiment, the upper and middle Liesegang rings contained the

smallest- (mean =  60 µm) and medium-size (mean = 147 µm) crystals, respectively, whereas the
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deepest ring contained the largest crystals (mean = 313 µm).  The CSDs for the upper and middle

rings follow the shape expected for Ostwald ripening according to LSW theory (Fig. 4a and 4b).

Chi-square comparisons between the measured and the theoretical Ostwald CSDs yielded

significance levels of 2.5%to 5% for the upper ring and <1% for the middle ring, but the K-S test

yielded a significance level of >10% for both rings.  The size variance (β2) of both CSDs (0.057

and 0.064) are those expected for the theoretical shape (0.06).  However, the crystals in these

rings are too large to have grown entirely by Ostwald ripening which, for calcite, should be

effective at low temperatures only for crystals having sizes much less than 0.1 µm (Morse and

Wang 1996).  Ripening is not expected for larger sizes because specific surface energy differences

for such crystals are too small to drive the ripening process.  Therefore, it is proposed that the

initial shapes of these CSDs resulted from Ostwald ripening at very small sizes (<<100 nm, and

probably <10 nm; Kile et al. 2000), and that this ripening was followed by proportionate growth

which preserved the Ostwald CSD shapes as the crystals grew larger.

The CSD shape for the lowest ring (Fig. 4c) also appears to follow the Ostwald shape in

that the distribution is skewed to the left; it is much narrower, however, than the Ostwald CSD,

having a β2 of 0.016 rather than the theoretical value of 0.06.  If 169 µm is subtracted from each

crystal size and the CSD recalculated (Fig. 4c), then the theoretical Ostwald CSD is achieved

with a K-S test significance level of >10 %.  This CSD shape can be attained with a proposed

growth history whereby crystallization initially starts with Ostwald ripening, followed by

proportionate growth, as was hypothesized for crystals in two upper rings.  But when the mean

size reached 144 µm for calcite in the lowest ring, the growth mechanism changed from

proportionate growth to constant growth, at which time the crystals grew an additional 169 µm

to their present size.  The growth mechanism presumably changed because the supply of

reactants changed from advective supply to diffusive supply, perhaps due to a change in

porosity caused by a compression of the gel surrounding the comparatively large crystals in the

lowest ring.

In the U-tube experiment, only the lowermost ring had sufficient crystals to be measured;

these reacted similarly to those found in the lowest ring in the straight column.  Calculations show a

growth history of Ostwald ripening followed by proportionate growth which resulted in a mean

crystal size of 438 µm; this was then followed by a brief period of constant growth to a mean size

of 565 µm.
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Natural analogs.

Most CSDs measured from natural systems show either a lognormal shape or a closely

related asymptotic shape.  Rarely, the Ostwald universal steady-state shape may be observed in

the CSDs.  As was discussed above, all of these shapes indicate proportionate growth after the

formation of the initial CSD shape (e.g., Eberl et al. 1998, and references therein; Kile and Eberl

1999; Kile et al. 2000; Eberl et al. 2002a).  Evidence for a constant growth mechanism appears to

be rare in geologic systems.  We have found only two possible isolated examples:

1.  A CSD for calcite crystals that are found in minute fractures within Precambrian rocks

(molar tooth structure) shows evidence for constant growth.  The CSD has the negative skew

expected for the Ostwald universal steady-state shape, but is much too narrow to fit an Ostwald

profile because the β2 is 0.02, rather than 0.06 that is expected for Ostwald ripening.   The CSD

can be simulated in the same manner as was the lowest Liesegang ring in the experiments

discussed above by assuming that the Ostwald shape was modified by constant growth.  The

Galoper simulation (Fig. 5a) starts with nucleation and growth, followed by Ostwald ripening,

then consecutively by proportionate growth and constant growth.  Given this crystallization

sequence, constant growth would have started when the mean crystal size was 7.5 µm, and then

continued to the mean size of 13.5 µm.  Subtracting 6 µm (see Eq. 1) from each crystal size

exactly restores the Ostwald steady-state shape (Fig. 5b).  The CSD can be simulated equally

well if the last two growth stages are reversed; however, based on geological and geochemical

considerations, the first growth sequence would be more likely.  Because the rate of crystal

growth during the constant portion of the growth history was presumably limited by ion

diffusion through microfractures in a compacted marine sediment (Furniss et al. 1998), and

because the Ostwald shape indicates that rapid nucleation occurred at large levels of

supersaturation (Kile et al. 2000; Eberl et al. 2002b), a crystal growth history can be proposed

whereby:  (1) rapid nucleation followed by Ostwald ripening occurs under conditions of high

supersaturation, followed by (2) a period of proportionate growth, which in turn changes to (3)

constant growth as increasing sediment compaction slows the reactant supply rate.

2.  CSDs for the iron sulfide crystals found within numerous diatoms (Fig. 6a) in Pyramid

Lake sediments also show a narrow profile (β2 = 0.069; Fig. 6b), perhaps indicative of constant

growth; exclusion of the small bimodal peak at the left of the plot narrows the size variance of

this profile even further, to 0.047.   This CSD was simulated by a mechanism of nucleation and

growth, followed consecutively by Ostwald ripening, proportionate growth, and constant

growth.  A period of constant growth is required to generate the small β2.  However, this growth

sequence is speculative because there may be other reaction pathways that could generate this
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CSD.   The semi-permeable silica exoskeleton may have limited the influx of reactants to supply

by diffusion, resulting in constant, size-independent crystal growth.

Conclusions

Experimental evidence indicates that crystal growth mechanisms are governed by the

nature of the transport of reactants to the crystal surface.  Accordingly, constant, size-

independent growth (Eq. 1) results when reactant supply to crystal surfaces is diffusion-limited,

whereas proportionate, size-dependent growth (Eq. 2) results when reactants are supplied by

advection.  Proportionate growth thus is expected whenever the rate of reactant supply by

advection exceeds that by diffusion.  Proportionate growth is evidenced by lognormal CSDs; by

contrast, constant growth is evidenced by very small size variances (e.g., β2 less than 0.06 for

Ostwald-like CSDs).  Thus, CSDs measured for naturally occurring minerals indicate that

crystallization by constant, diffusion-controlled growth is rare.

Advection appears to control growth even in seemingly stagnant conditions, e.g., within

miarolitic cavities and septarian concretions, where lognormal CSDs have been recorded (Kile and

Eberl, 1999).  Therefore, in geologic systems, advection, rather than diffusion, appears to

dominate the growth process.
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Tables

1. Growth parameters for alum experiments.

2. CSD parameters for calcite experiments and Precambrian molar tooth calcite.

Figures

1.  Water-jacketed crystallization vessel with variable-speed stirrer for alum experiments.

2.  Growth rate as a function of initial crystal size measured for (a) stirred and (b) unstirred

systems for alum crystals.

3.  CSD for calcite formed in a non-stirred system, with theoretical lognormal curve.

4.  CSD measured for calcite grown in a 30-mm straight column:  (a) upper Liesegang ring; (b)

middle Liesegang ring; (c) lower Liesegang ring plotted using reduced axes.

5.  Calcite crystals found in the Precambrian molar tooth structure:  (a) measured CSD compared

with the Galoper simulation (chi-square >20%) and the theoretical CSD expected for

Ostwald ripening; (b) measured CSD with constant growth stage subtracted from the

crystal sizes compared with the theoretical Ostwald curve (KS-test significance >10%).

6.  Greigite (?) from Pyramid Lake, Nevada:  (a) photomicrograph of crystals found within

diatom tests, and (b) CSD measured for crystals compared with a Galoper simulation (χ2

significance >20%).
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Table 1.  Growth parameters for alum experiments.
   Nd = not determined

Experiment
number

Stir rate
(rpm)

T
(¡C)

Evap.
rate (mL/h)

Average C
(g/L)

σ
(Eq. 3)

Slope1

(Fig. 2)
Duration

(h)
4-11-00 1222 24 Nd Nd Nd 0.284 1032

9-6-00 176 29.7 6.14 148.7 3.62 0.337 172

9-22-00 176 29.7 7.08 160.1 11.6 0.212 168

1-08-01 272 29.7 7.17 144.1 0.42 0.0648 144

2-28-01 171 29.3 1.83 Nd Nd 0.0648 672

12-99 0 24 Nd Nd Nd 0.055 360

4-00 0 24 Nd Nd Nd -0.030 1296

10-12-00 0 29.7 6.75 152.2 6.06 0.011 188

12-4-00 0 29.2 1.81 147.3 2.65 -0.019 432
1Slope determined from line drawn to exclude outliers.
2Magnetic stir bar used in place of propeller.

Table 2.  CSD parameters for calcite experiments.
   NA = not applicable

Experiment
Mean

size, µm

Group
size
(nm)

α
(from
nm)

 
 

β2

Mean size at start
of McCabe’s
growth (µm)

β2 at start of
McCabeÕs

growth

%
McCabeÕs

growth

Small
fraction, 30-
mm column

59.8 10000 10.97 0.057 NA NA NA

Medium
fraction, 30-
mm column

147.2 28000 11.87 0.064 NA NA NA

Large
fraction, 30-
mm column

312.9 26000 12.64 0.017 173.9 0.066 44

U-tube (gel)
large fraction

565.5 50000 13.23 0.038 438.3 0.070 22

Calcite,
Òmolar toothÓ

13.3 1600 9.49 0.021 7.5 0.064 44

Calcite,
unstirred

28.2 6300 10.14 0.227 NA NA NA
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Figure 1
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Figure 6a
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