The following intrinsic functions exist:
asin(<arg>) ! acos(<arg>) ! atan(<arg>) ! asind(<arg>) ! Result in degrees acosd(<arg>) ! Result in degrees atand(<arg>) ! Result in degrees
sin(<arg>) ! cos(<arg>) ! tan(<arg>) ! sind(<arg>) ! Argument in degrees cosd(<arg>) ! Argument in degrees tand(<arg>) ! Argument in degrees
sinh(<arg>) ! Hyperbolic functions cosh(<arg>) ! tanh(<arg>) !
sqrt(<arg>) ! Square root of <arg> exp(<arg>) ! Exponential (base e) abs(<arg>) ! Absolute value of <arg>
int(<arg>) ! Convert argument to integer nint(<arg>) ! Convert argument to nearest integer mod(<arg1>,<arg2>) ! Modulo <arg1> of <arg2>, real arguments frac(<arg>) ! Returns fractional part of <arg>
ran(<arg>) ! Returns uniformly distributed pseudo random value 0<= r < 1. gbox(<arg1>,<arg2>,<arg3>) ! Returns a random number distributed in a box of width <arg2> with two gaussian "shoulders" of sigma <arg1> at the left side and <arg3> on the right side gran(<arg>,<type>) ! Returns gaussian distributed pseudo random value with mean 0. if <type> is "s" or omitted, arg is the sigma of the gaussian distribution, if <type> is "f", arg is the FWHM of the gaussian distribution
bang(u1,u2,u3,v1,v2,v3[,w1,w2,w3]) ! Returns the bond angle at the site v If only vectors u and v are given, the angle between u and v is returned. blen(u1,u2,u3[,v1,v2,v3]) ! Returns the length of vector v-u. Vector v defaults to zero. dstar(h1,h2,h2[,k1,k2,k3]) ! Returns the length of reciprocal vector k-h. Vector k defaults to zero. md_test(u1,u2,u3) ! Returns the number of the microdomain closest to the position u. if the result is negative, the position is inside the microdomain, else outside. Additionally this number is stored in the variable md_next(n[1]+1], i.e. in the position after the last atom in the list. The variable md_dist[n[1]+1] receives the distance to the microdomain surface. If negative the atom is inside the microdomain, else outside. rang(h1,h2,h3,k1,k2,k3[,l1,l2,l3]) ! Returns the angle between vectors k-h and k-l at reciprocal site k. If l is omitted, the angle between the reciprocal vectors h and k is returned.
The arguments to any of these functions are any arithmetic expression.